Humans and other species explore a visual scene by making rapid eye movements (saccades) two to three times every second. Although the eyes may appear immobile in the brief intervals between saccades, microscopic (fixational) eye movements are always present, even when an observer is attending to a single point. These movements occur during the very periods in which visual information is acquired and processed, and their functions have long been debated. Recent technical advances in controlling retinal stimulation during normal oculomotor activity have shed new light on the visual contributions of fixational eye movements and the degree to which these movements can be controlled. The emerging body of evidence, reviewed in this article, indicates that fixational eye movements are important components of the strategy by which the visual system processes fine spatial details; they enable both precise positioning of the stimulus on the retina and encoding of spatial information into the joint space–time domain.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adler FH, Fliegelman M. 1934. Influence of fixation on the visual acuity. Arch. Ophthalmol. 12:475–83 [Google Scholar]
  2. Adler FH, Meyer GP. 1935. The mechanism of the fovea. Trans. Am. Ophthalmol. Soc. 33:266–80 [Google Scholar]
  3. Ahissar E, Arieli A. 2001. Figuring space by time. Neuron 32:185–201 [Google Scholar]
  4. Ahissar E, Arieli A. 2012. Seeing via miniature eye movements: a dynamic hypothesis for vision. Front. Comput. Neurosci. 6:89 [Google Scholar]
  5. Arend LE. 1973. Spatial differential and integral operations in human vision: implications of stabilized retinal image fading. Psychol. Rev. 80:374–95 [Google Scholar]
  6. Atick J, Redlich A. 1992. What does the retina know about natural scenes?. Neural Comput. 4:196–210 [Google Scholar]
  7. Attneave F. 1954. Some informational aspects of visual perception. Psychol. Rev. 61:183–93 [Google Scholar]
  8. Averill HI, Weymouth FW. 1925. Visual perception and the retinal mosaic. II. The influence of eye movements on the displacement threshold. J. Comp. Psychol. 5:147–76 [Google Scholar]
  9. Aytekin M, Victor JD, Rucci M. 2014. The visual input to the retina during natural head-free fixation. J. Neurosci. 34:12701–15 [Google Scholar]
  10. Bahill AT, Clark MR, Stark L. 1975. The main sequence, a tool for studying human eye movements. Math. Biosci. 24:191–204 [Google Scholar]
  11. Barlow HB. 1952. Eye movements during fixation. J. Physiol. 116:290–306 [Google Scholar]
  12. Barlow HB. 1961. Possible principles underlying the transformation of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT Press [Google Scholar]
  13. Boyce PR. 1967. Monocular fixation in human eye movement. Proc. R. Soc. Lond. B 167:293–315 [Google Scholar]
  14. Bridgeman B, Palca J. 1980. The role of microsaccades in high acuity observational tasks. Vis. Res. 20:813–17 [Google Scholar]
  15. Bruno RM, Sakmann B. 2006. Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312:1622–27 [Google Scholar]
  16. Burak Y, Rokni U, Meister M, Sompolinsky H. 2010. Bayesian model of dynamic image stabilization in the visual system. PNAS 107:19525–30 [Google Scholar]
  17. Cherici C, Kuang X, Poletti M, Rucci M. 2012. Precision of sustained fixation in trained and untrained observers. J. Vis. 12:631 [Google Scholar]
  18. Collewijn H, Kowler E. 2008. The significance of microsaccades for vision and oculomotor control. J. Vis. 8:1–21 [Google Scholar]
  19. Collewijn H, Martins AJ, Steinman RM. 1981. Natural retinal image motion: origin and change. Ann. N.Y. Acad. Sci. 374:312–29 [Google Scholar]
  20. Collewijn H, Van Der Mark F. 1972. Ocular stability in variable feedback conditions in the rabbit. Vis. Res. 36:47–57 [Google Scholar]
  21. Cornsweet TN. 1956. Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 46:987–88 [Google Scholar]
  22. Cunitz RJ, Steinman RM. 1969. Comparison of saccadic eye movements during fixation and reading. Vision Res. 9:683–93 [Google Scholar]
  23. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523 [Google Scholar]
  24. Dan Y, Alonso JM, Usrey WM, Reid RC. 1998. Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nat. Neurosci. 6:501–7 [Google Scholar]
  25. Desbordes G, Rucci M. 2007. A model of the dynamics of retinal activity during natural visual fixation. Vis. Neurosci. 24:217–30 [Google Scholar]
  26. Ditchburn RW. 1973. Eye Movements and Visual Perception Oxford, UK: Clarendon Press [Google Scholar]
  27. Ditchburn RW, Fender DH, Mayne S. 1959. Vision with controlled movements of the retinal image. J. Physiol. 145:98–107 [Google Scholar]
  28. Ditchburn RW, Ginsborg BL. 1952. Vision with a stabilized retinal image. Nature 170:36–37 [Google Scholar]
  29. Ditchburn RW, Ginsborg BL. 1953. Involuntary eye movements during fixation. J. Physiol. 119:1–17 [Google Scholar]
  30. Eizenman M, Hallett PE, Frecker RC. 1985. Power spectra for ocular drift and tremor. Vis. Res. 24:1635–40 [Google Scholar]
  31. Engbert R, Kliegl R. 2004. Microsaccades keep the eyes’ balance during fixation. Psychol. Sci. 15:431–36 [Google Scholar]
  32. Engbert R, Mergenthaler K, Sinn P, Pikovsky A. 2011. An integrated model of fixational eye movements and microsaccades. PNAS 108:765–70 [Google Scholar]
  33. Epelboim J, Kowler E. 1993. Slow control with eccentric targets: evidence against a position-corrective model. Vis. Res. 33:361–80 [Google Scholar]
  34. Field DJ. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4:2379–94 [Google Scholar]
  35. Fiorentini A, Ercoles AM. 1966. Involuntary eye movements during attempted monocular fixation. Atti Fond. Giorgio Ronchi 21:199–217 [Google Scholar]
  36. Greschner M, Bongard M, Rujan P, Ammermuller J. 2002. Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nat. Neurosci. 5:341–47 [Google Scholar]
  37. Haddad GM, Steinman RM. 1973. The smallest voluntary saccade: implications for fixation. Vis. Res. 13:1075–86 [Google Scholar]
  38. Hafed ZM. 2013. Alteration of visual perception prior to microsaccades. Neuron 77:775–86 [Google Scholar]
  39. Hafed ZM, Clark JJ. 2002. Microsaccades as an overt measure of covert attention shifts. Vis. Res. 42:2533–45 [Google Scholar]
  40. Hafed ZM, Goffart L, Krauzlis RJ. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323:940–43 [Google Scholar]
  41. Hansen T, Pracejus L, Gegenfurtner KR. 2009. Color perception in the intermediate periphery of the visual field. J. Vis. 9:1–12 [Google Scholar]
  42. Havermann K, Cherici C, Rucci M, Lappe M. 2014. Fine-scale plasticity of microscopic saccades. J. Neurosci. 34:11665–72 [Google Scholar]
  43. Herrington TM, Masse NY, Hachmeh KJ, Smith JET, Assad JA, Cook EP. 2009. The effect of microsaccades on the correlation between neural activity and behavior in middle temporal, ventral intraparietal, and lateral intraparietal areas. J. Neurosci. 29:5793–805 [Google Scholar]
  44. Hohl SS, Lisberger SG. 2011. Representation of perceptually invisible image motion in extrastriate visual area MT of macaque monkeys. J. Neurosci. 31:16561–69 [Google Scholar]
  45. Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, van de Weijer JV. 2011. Eye Tracking: A Comprehensive Guide to Methods and Measures New York: Oxford University Press [Google Scholar]
  46. Hyvärinen A, Hurri J, Hoyer PO. 2009. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision New York: Springer-Verlag [Google Scholar]
  47. Jacobs RJ. 1979. Visual resolution and contour interaction in the fovea and periphery. Vis. Res. 19:1187–95 [Google Scholar]
  48. Kagan I. 2012. Microsaccades and image fading during natural vision. Response to “Microsaccadic efficacy and contribution to foveal and peripheral vision,” MB McCamy et al.. J. Neurosci. December 20 [Google Scholar]
  49. Kagan I, Gur M, Snodderly DM. 2008. Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences. J. Vis. 8:1419 [Google Scholar]
  50. Kaplan E, Benardete E. 2001. The dynamics of primate retinal ganglion cells. Prog. Brain. Res. 134:17–34 [Google Scholar]
  51. Kelly DH. 1979. Motion and vision. I. Stabilized images of stationary gratings. J. Opt. Soc. Am. 69:1266–74 [Google Scholar]
  52. Ko HK, Poletti M, Rucci M. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13:1549–53 [Google Scholar]
  53. Koenderink JJ. 1972. Contrast enhancement and the negative afterimage. J. Opt. Soc. Am. 62:685–89 [Google Scholar]
  54. Kowler E. 2011. Eye movements: the past 25 years. Vis. Res. 51:1457–83 [Google Scholar]
  55. Kowler E, Steinman RM. 1980. Small saccades serve no useful purpose: reply to a letter by R. W. Ditchburn. Vis. Res. 20:273–76 [Google Scholar]
  56. Kuang X, Poletti M, Victor JD, Rucci M. 2012. Temporal encoding of spatial information during active visual fixation. Curr. Biol. 20:510–14 [Google Scholar]
  57. Legge GE, Kersten D. 1987. Contrast discrimination in peripheral vision. J. Opt. Soc. Am. A 4:1594–98 [Google Scholar]
  58. Malinov IV, Epelboim J, Herst AN, Steinman RM. 2000. Characteristics of saccades and vergence in two kinds of sequential looking tasks. Vis. Res. 40:2083–90 [Google Scholar]
  59. Marshall WH, Talbot SA. 1942. Recent evidence for neural mechanisms in vision leading to a general theory of sensory acuity. Biological Symposia—Visual Mechanisms 7 H Klüver 117–64 Lancaster, PA: Cattel [Google Scholar]
  60. Martinez-Conde S, Macknik SL, Hubel DH. 2000. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nat. Neurosci. 3:251–58 [Google Scholar]
  61. Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA. 2006. Microsaccades counteract fading during fixation. Neuron 49:297–305 [Google Scholar]
  62. Millodot M. 1966. Foveal and extra-foveal acuity with and without stabilized retinal images. Br. J. Physiol. Opt. 23:75–106 [Google Scholar]
  63. Mostofi N, Boi M, Rucci M. 2015. Are the visual transients from microsaccades helpful? Measuring the influences of small saccades on contrast sensitivity. Vis. Res. In press. doi:10.1016/j.visres.2015.01.003 [Google Scholar]
  64. Nachmias J. 1961. Determiners of the drift of the eye during monocular fixation. J. Opt. Soc. Am. 51:761–66 [Google Scholar]
  65. Nandy AS, Tjan BS. 2012. Saccade-confounded image statistics explain visual crowding. Nat. Neurosci. 15:463–69 [Google Scholar]
  66. Packer O, Williams DR. 1992. Blurring by fixational eye movements. Vision Res. 32:1931–39 [Google Scholar]
  67. Poletti M, Listorti C, Rucci M. 2013. Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Curr. Biol. 23:1691–95 [Google Scholar]
  68. Poletti M, Rucci M. 2008. Oculomotor synchronization of visual responses in modeled populations of retinal ganglion cells. J. Vis. 8:144 [Google Scholar]
  69. Poletti M, Rucci M. 2010. Fixational eye movements under various conditions of image fading. J. Vis. 10:31–18 [Google Scholar]
  70. Pritchard RM, Heron W. 1960. Small eye movements of the cat. Canad. J. Psychol. 40:131–37 [Google Scholar]
  71. Putnam NM, Hofer HJ, Doble N, Chen L, Carroll J, Williams DR. 2005. The locus of fixation and the foveal cone mosaic. J. Vis. 7:632–39 [Google Scholar]
  72. Ratliff F, Riggs LA. 1950. Involuntary motions of the eye during monocular fixation. J. Exp. Psychol. 40:687–701 [Google Scholar]
  73. Riggs LA, Ratliff F. 1952. The effects of counteracting the normal movements of the eye. J. Opt. Soc. Am. 42:872–73 [Google Scholar]
  74. Rolfs M. 2009. Microsaccades: small steps on a long way. Vision Res. 49:2415–41 [Google Scholar]
  75. Rucci M. 2008. Fixational eye movements, natural image statistics, and fine spatial vision. Network: Comp. Neural 19:253–85 [Google Scholar]
  76. Rucci M, Casile A. 2004. Decorrelation of neural activity during fixational instability: possible implications for the refinement of V1 receptive fields. Vis. Neurosci. 21:725–38 [Google Scholar]
  77. Rucci M, Iovin R, Poletti M, Santini F. 2007. Miniature eye movements enhance fine spatial detail. Nature 447:852–55 [Google Scholar]
  78. Santini F, Redner G, Iovin R, Rucci M. 2007. EyeRIS: a general-purpose system for eye-movement-contingent display control. Behav. Res. Methods. 39:350–64 [Google Scholar]
  79. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216 [Google Scholar]
  80. Skavenski AA, Hansen RM, Steinman RM, Winterson BJ. 1979. Quality of retinal image stabilization during small natural and artificial body rotations in man. Vis. Res. 19:675–83 [Google Scholar]
  81. Skavenski AA, Robinson DA, Steinman RM, Timberlake GT. 1975. Miniature eye movements of fixation in rhesus monkey. Vis. Res. 15:1269–73 [Google Scholar]
  82. Snodderly DM. 2015. A physiological perspective on fixational eye movements. Vis. Res. In press. doi:10.1016/j.visres.2014.12.006 [Google Scholar]
  83. Snodderly DM, Kagan I, Gur M. 2001. Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding. Vis. Neurosci. 18:259–77 [Google Scholar]
  84. Srinivasan MV, Laughlin SB, Dubs A. 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B 216:427–59 [Google Scholar]
  85. St. Cyr GJS, Fender DH. 1969. The interplay of drifts and flicks in binocular fixation. Vis. Res. 9:245–65 [Google Scholar]
  86. Steinbach MJ. 2004. Owls’ eyes move. Br. J. Ophthal. 88:1103 [Google Scholar]
  87. Steinman RM. 2003. Gaze control under natural conditions. The Visual Neurosciences LM Chalupa, JS Werner 1339–56 Cambridge, MA: MIT Press [Google Scholar]
  88. Steinman RM, Cunitz RJ, Timberlake GT, Herman M. 1967. Voluntary control of microsaccades during maintained monocular fixation. Science 155:1577–79 [Google Scholar]
  89. Steinman RM, Haddad GM, Skavenski AA, Wyman D. 1973. Miniature eye movement. Science 181:810–19 [Google Scholar]
  90. Steinman RM, Kowler E, Collewijn H. 1990. New directions for oculomotor research. Vis. Res. 30:1845–64 [Google Scholar]
  91. Thaler L, Schütz AC, Goodale MA, Gegenfurtner KR. 2013. What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vis. Res. 76:31–42 [Google Scholar]
  92. Timberlake GT, Wyman D, Skavenski AA, Steinman RM. 1972. The oculomotor error signal in the fovea. Vis. Res. 12:1059–64 [Google Scholar]
  93. Tulunay-Keesey U. 1982. Fading of stabilized retinal images. J. Opt. Soc. Am. 72:440–47 [Google Scholar]
  94. van Hateren JH. 1992. A theory of maximizing sensory information. Biol. Cybern. 68:23–29 [Google Scholar]
  95. Weymouth FW, Hines DC, Acres LH, Raaf JE, Wheeler MC. 1928. Visual acuity within the area centralis and its relation to eye movements and fixation. Am. J. Ophthalmol. 11:947–60 [Google Scholar]
  96. Whitham EM, Fitzgibbon SP, Lewis TW, Pope KJ, DeLosAngeles D. et al. 2011. Visual experiences during paralysis. Front. Hum. Neurosci. 5:160 [Google Scholar]
  97. Winterson B, Collewijn H. 1976. Microsaccades during finely guided visuomotor tasks. Vis. Res. 16:1387–90 [Google Scholar]
  98. Wyman D, Steinman RM. 1973. Latency characteristics of small saccades. Vis. Res. 13:2173–75 [Google Scholar]
  99. Zuber BL, Stark L, Cook G. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 150:1459–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error