Creating realistic three-dimensional (3D) experiences has been a very active area of research and development, and this article describes progress and what remains to be solved. A very active area of technical development has been to build displays that create the correct relationship between viewing parameters and triangulation depth cues: stereo, motion, and focus. Several disciplines are involved in the design, construction, evaluation, and use of 3D displays, but an understanding of human vision is crucial to this enterprise because in the end, the goal is to provide the desired perceptual experience for the viewer. In this article, we review research and development concerning displays that create 3D experiences. And we highlight areas in which further research and development is needed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akeley K, Watt SJ, Girshick AR, Banks MS. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23:I804–13 [Google Scholar]
  2. Backus BT, Banks MS, van Ee R, Crowell JA. 1999. Horizontal and vertical disparity, eye position, and stereoscopic slant perception. Vis. Res. 39:1143–70 [Google Scholar]
  3. Balogh T. 2006. The HoloVizio system. Proc. SPIE 6055:60550U [Google Scholar]
  4. Banks MS, Gepshtein S, Landy MS. 2004. Why is spatial stereoresolution so low?. J. Neurosci. 24:92077–89 [Google Scholar]
  5. Banks MS, Held RT, Girshick AR. 2009. Perception of 3-D layout in stereo displays. Inf. Disp. 25:12–16 [Google Scholar]
  6. Bereby-Meyer Y, Leiser D, Meyer J. 1999. Perception of artificial stereoscopic stimuli from an incorrect viewing point. Percept. Psychophys. 61:1555–63 [Google Scholar]
  7. Blake R, Fox R. 1973. The psychophysical inquiry into binocular summation. Percept. Psychophys. 14:161–85 [Google Scholar]
  8. Blake R, Sloane M, Fox R. 1981. Further developments in binocular summation. Percept. Psychophys. 30:266–76 [Google Scholar]
  9. Blondé L, Sacré J-J, Doyen D, Huynh-Thu Q, Thébault C. 2011. Diversity and coherenece of 3D crosstalk measurements. SID Symp. Digest Tech. Pap. 42:804–7 [Google Scholar]
  10. Borel T, Doyen D. 2013. 3D display technologies. Emerging Technologies for 3D Video: Creation, Coding, Transmission, and Rendering F Dufaux, B Pesquet-Popescu, M Cagnazzo New York: Wiley [Google Scholar]
  11. Brainard DH, Pelli DG, Robson T. 2002. Display characterization. Encylopedia of Imaging Science and Technology J Hornak New York: Wiley [Google Scholar]
  12. Buckley D, Frisby JP. 1993. Interaction of stereo, texture and outline cues in the shape perception of three-dimensional ridges. Vis. Res. 33:7919–33 [Google Scholar]
  13. Burr DC, Ross J. 1979. How does binocular delay give information about depth?. Vis. Res. 19:523–32 [Google Scholar]
  14. Cakmakci O, Rolland J. 2006. Head-worn displays: a review. J. Disp. Technol. 2:199–216 [Google Scholar]
  15. Campbell FW, Green DG. 1965. Monocular versus binocular visual acuity. Nature 208:191–92 [Google Scholar]
  16. Campbell FW, Robson JG. 1968. Application of Fourier analysis to the visibility of gratings. J. Physiol. 197:551–66 [Google Scholar]
  17. Cavonius CR. 1979. Binocular interaction in flicker. Q. J. Exp. Psychol. 31:273–80 [Google Scholar]
  18. Chen Z, Shi J, Tai Y. 2012. An experimental study on the relationship between maximum disparity and comfort disparity in stereoscopic video. Proc. SPIE 8556:855608 [Google Scholar]
  19. Collewijn H, Van der Steen J, Ferman L, Jansen TC. 1985. Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings. Exp. Brain Res. 59:185–96 [Google Scholar]
  20. Cossairt OS, Napoli J, Hill SL, Dorval RK, Favalora GE. 2007. Occlusion-capable multiview volumetric three-dimensional display. Appl. Opt. 46:81244–50 [Google Scholar]
  21. Cowan M. 2008. Real D 3D theatrical system: a technical overview European Digital Cinema Forum, April 24. http://www.edcf.net/articles.html
  22. Cumming BG, Judge SJ. 1986. Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey. J. Neurophysiol. 55:896–914 [Google Scholar]
  23. Dawson S. 2012. Passive 3D from the beginning. HiFi Writer Blog June 3. http://hifi-writer.com/wpblog/?p=3797
  24. Didyk P, Ritschel T, Eisemann E, Myszkowski K, Seidel H-P. 2014. A perceptual model for disparity. ACM Trans. Graph. 30:96 [Google Scholar]
  25. Dodgson NA. 2006. On the number of viewing zones required for head-tracked autostereoscopic display. Proc. SPIE 6055:60550Q [Google Scholar]
  26. Edwards L. 2009. Active shutter 3D technology for HDTV. Phys.org. Sept. 25. http://phys.org/news173082582.html
  27. Elkins DE. 2013. The Camera Assistant's Manual21 Burlington, MA: Focal Press
  28. Emoto M, Niida T, Okano F. 2005. Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. J. Disp. Technol. 1:2328–40 [Google Scholar]
  29. Fairchild MD, Wyble DR. 2007. Mean observer metamerism and the selection of display primaries. Proc. Soc. Imaging Sci. Technol., Albuquerque, NM, November151–56
  30. Favalora GE, Napoli J, Hall DM, Dorval RK, Giovinco M. et al. 2002. 100-million-voxel volumetric display. Proc. SPIE 4712:300 [Google Scholar]
  31. Fielding R. 1985. Techniques of Special Effects Cinematography Oxford, UK: Focal Press, 4th ed..
  32. Fincham EF, Walton J. 1957. The reciprocal actions of accommodation and convergence. J. Physiol. 137:488–508 [Google Scholar]
  33. Formankiewicz MA, Mollon JD. 2009. The psychophysics of detecting binocular discrepancies of luminance. Vis. Res. 49:151929–38 [Google Scholar]
  34. Frisby JP, Buckley D, Horsman JM. 1995. Integration of stereo, texture, and outline cues during pinhole viewing of real ridge-shaped objects and stereograms of ridges. Perception 24:181–98 [Google Scholar]
  35. Fry G. 1939. Further experiments on the accommodative convergence relationship. Am. J. Optom. 16:325–34 [Google Scholar]
  36. Fukushima T, Torii M, Ukai K, Wolffsohn JS, Gilmartin B. 2009. The relationship between CA/C ratio and individual differences in dynamic accommodative responses while viewing stereoscopic images. J. Vis. 9:1321 [Google Scholar]
  37. Gershun A. 1939. The Light Field, transl. P Moon, G Timoshenko. J. Math. Phys. 18:51–151 [Google Scholar]
  38. Glasser A, Campbell MC. 1998. Presbyopia and the optical changes in the human crystalline lens with age. Vis. Res. 38:2209–29 [Google Scholar]
  39. Hakala JH, Oittinen P, Häkkinen JP. 2015. Depth artifacts caused by spatial interlacing in stereoscopic 3D displays. ACM Trans. Appl. Percept. 12:13 [Google Scholar]
  40. Häkkinen J, Pölönen M, Takatalo J, Nyman G. 2006. Simulator sickness in virtual display gaming: a comparison of stereoscopic and non-stereoscopic situations. Proc. 8th Conf. Hum.-Comp. Interact. Mob. Devices Serv.227–30 New York: ACM [Google Scholar]
  41. Hands P, Smulders TV, Read JCA. 2015. Stereoscopic 3-D content appears relatively veridical when viewed from an oblique angle. J. Vis. 15:56 [Google Scholar]
  42. Heath GG. 1956. Components of accommodation. Am. J. Optom. Arch. Am. Acad. Optom. 33:11569–79 [Google Scholar]
  43. Held RT, Banks MS. 2008. Misperceptions in stereo displays: a vision science perspective. Proc. 5th Symp. Appl. Percept. Graph. Vis.23–32 New York: ACM [Google Scholar]
  44. Held RT, Cooper EA, Banks MS. 2012. Blur and disparity are complementary cues to depth. Curr. Biol. 22:426–31 [Google Scholar]
  45. Held RT, Cooper EA, O'Brien JF, Banks MS. 2010. Using blur to affect perceived distance and size. ACM Trans. Graph. 29:219 [Google Scholar]
  46. Held RT, Hui TT. 2011. A guide to stereoscopic 3D displays in medicine. Acad. Radiol. 18:1035–48 [Google Scholar]
  47. Hirsch M, Wetzstein G, Raskar R. 2014. A compressive light field projection system. ACM Trans. Graph. 33:58 [Google Scholar]
  48. Hoffman DM, Girshick AR, Akeley K, Banks MS. 2008. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8:333 [Google Scholar]
  49. Hoffman DM, Johnson PV, Kim J, Vargas AD, Banks MS. 2014. 240 Hz OLED technology properties that can enable improved image quality. J. Soc. Inf. Disp. 22:7346–56 [Google Scholar]
  50. Hoffman DM, Karasev VI, Banks MS. 2011. Temporal presentation protocols in stereoscopic displays: flicker visibility, perceived motion, and perceived depth. J. Soc. Inf. Disp. 19:3271–97 [Google Scholar]
  51. Hofstetter HW. 1945. The zone of clear single binocular vision. Am. J. Optom. Physiol. Opt. 22:361–84 [Google Scholar]
  52. Howard IP, Allison RS, Zacher JE. 1997. The dynamics of vertical vergence. Exp. Brain Res. 116:153–59 [Google Scholar]
  53. Howarth PA. 2011. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review. Ophthalmic Physiol. Opt. 31:111–22 [Google Scholar]
  54. Hu X, Hua H. 2013. An optical see-through multi-focal-plane stereoscopic display prototype enabling nearly correct focus cues. Proc. SPIE 8648:86481A [Google Scholar]
  55. Hu X, Hua H. 2014. Design and assessment of a depth-fused multi-focal-plane display prototype. J. Disp. Technol. 10:4308–16 [Google Scholar]
  56. Huang F-C, Chen K, Wetzstein G. 2015. The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. 34:60 [Google Scholar]
  57. Huang F-C, Wetzstein G, Barsky BA, Raskar R. 2014. Eyeglasses-free display: towards correcting visual aberrations with computational light field displays. ACM Trans. Graph. 33:59 [Google Scholar]
  58. Inoue T, Ohzu H. 1997. Accommodative responses to stereoscopic three-dimensional display. Appl. Opt. 36:194509–515 [Google Scholar]
  59. Ives FE. 1903. Parallax stereogram and process of making same US Patent No. 725,567
  60. Johnson PV, Kim J, Banks MS. 2015b. Stereoscopic 3D display technique using spatiotemporal interlacing has improved spatial and temporal properties. Opt. Expr. 23:79252–75 [Google Scholar]
  61. Johnson PV, Kim J, Hoffman DM, Vargas AD, Banks MS. 2015a. Motion artifacts on 240-Hz OLED stereoscopic 3D displays. J. Soc. Inf. Disp. 22:8393–403 [Google Scholar]
  62. Johnson PV, Parnell JA, Kim J, Saunter CD, Love GD, Banks MS. 2016. Dynamic lens and monovision 3D displays to improve viewer comfort. Opt. Expr. 24:1111808–27 [Google Scholar]
  63. Jones A, McDowall I, Yamada H, Bolas M, Debevec P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26:40 [Google Scholar]
  64. Jones A, Nagano K, Liu J, Busch J, Yu X. et al. 2014. Interpolating vertical parallax for an autostereoscopic three-dimensional projector array. J. Electron. Imaging 23:011005 [Google Scholar]
  65. Jordan JR, Geisler WS, Bovik AC. 1990. Color as a source of information in the stereo correspondence process. Vis. Res. 30:1955–70 [Google Scholar]
  66. Jorke H, Simon A, Fritz M. 2009. Advanced stereo projection using interference filters. J. Soc. Inf. Disp. 17:5407–10 [Google Scholar]
  67. Julesz B, White B. 1969. Short term memory and the Pulfrich phenomenon. Nature 222:639–41 [Google Scholar]
  68. Kane D, Guan P, Banks MS. 2014. The limits of human stereopsis in space and time. J. Neurosci. 34:41397–408 [Google Scholar]
  69. Kane D, Held RT, Banks MS. 2012. Visual discomfort with stereo 3D displays when the head is not upright. Proc. SPIE 8288:828814 [Google Scholar]
  70. Kelley EF. 2011. Resolving resolution. Inf. Displ. 27:918–21 [Google Scholar]
  71. Kelly DH. 1972. Flicker. Handbook of Sensory Physiology273–302 D Jameson, LM Hurvich Berlin, Ger.: Springer Berlin Heidelberg [Google Scholar]
  72. Kelly DH. 1979. Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69:1340–49 [Google Scholar]
  73. Kim D, Jung YJ, Han Y, Choi J, Kim E. et al. 2014. fMRI analysis of excessive binocular disparity on the human brain. Int. J. Imaging Syst. Technol. 24:194–102 [Google Scholar]
  74. Kim J, Johnson PV, Banks MS. 2014a. Stereoscopic 3D display with color interlacing improves perceived depth. Opt. Expr. 22:2631924–34 [Google Scholar]
  75. Kim J, Kane D, Banks MS. 2014b. The rate of change of vergence-accommodation conflict affects visual discomfort. Vis. Res. 105:159–65 [Google Scholar]
  76. Kim JS, Banks MS. 2012. Effective spatial resolution of temporally and spatially interlaced stereo 3D televisions. SID Symp. Digest Tech. Pap. 43:1879–82 [Google Scholar]
  77. Kim S-K, Yoon K-H, Yoon SK, Ju H. 2015. Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display. Opt. Expr. 23:13230–44 [Google Scholar]
  78. Klompenhouwer MA. 2006. Flat panel display signal processing PhD dissertation Eindhoven University Neth.:
  79. Konrad R, Cooper EA, Wetzstein G. 2016. Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and mono vision near-eye displays. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems1211–20 New York: ACM [Google Scholar]
  80. Kooi FL, Toet A. 2004. Visual comfort of binocular and 3D displays. Displays 25:99–108 [Google Scholar]
  81. Krishnan VV, Phillips S, Stark L. 1973. Frequency analysis of accommodation, accommodative vergence and disparity vergence. Vis. Res. 13:1545–54 [Google Scholar]
  82. Krishnan VV, Shirachi D, Stark L. 1977. Dynamic measures of vergence accommodation. Am. J. Optom. Physiol. Opt. 54:470–73 [Google Scholar]
  83. Krol JD, van de Grind WA. 1983. Depth from dichoptic edges depends on vergence tuning. Perception 12:425–38 [Google Scholar]
  84. Kubovy M. 1986. The Psychology of Perspective and Renaissance Art New York: Cambridge Univ. Press
  85. Kuroki Y. 2012. Improvement of 3D visual image quality by using high frame rate. J. Soc. Inf. Disp. 20:566–74 [Google Scholar]
  86. Laforet V. 2007. A really big show. New York Times May 31
  87. Lambooij M, Fortuin MF, IJsselsteijn WA, Heynderickx I. 2012. Reading performance as screening tool for visual complaints from stereoscopic content. Displays 33:284–90 [Google Scholar]
  88. Lambooij M, Fortuin M, IJsselsteijn WA, Evans BJW, Heynderickx I. 2011. Susceptibility to visual discomfort of 3-D displays by visual performance measures. IEEE Trans. Circuits Syst. Video Technol. 21:121913–23 [Google Scholar]
  89. Lambooij M, IJsselsteijn W, Fortuin M, Heynderickx I. 2009. Visual discomfort and visual fatigue of stereoscopic displays: a review. J. Imaging Sci. Technol. 53:1–14 [Google Scholar]
  90. Lang M, Hornung A, Wang O, Poulakos S, Smolic A, Gross M. 2010. Nonlinear disparity mapping for stereoscopic 3D. ACM Trans. Graph. 29:475 [Google Scholar]
  91. Lanman D, Hirsch M, Kim Y, Raskar R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29:6163 [Google Scholar]
  92. Lanman D, Luebke D. 2013. Near-eye light field displays. ACM Trans. Graph. 32:6220 [Google Scholar]
  93. Lee B, Park J-H. 2010. Overview of 3D/2D switchable liquid crystal display technologies. Proc. SPIE 7618:761806 [Google Scholar]
  94. Lippmann G. 1908. La photographie intégrale. Acad. Sci. 146:446–51 [Google Scholar]
  95. Liu S, Cheng D, Hua H. 2008. An optical see-through head mounted display with addressable focal planes. 7th IEEE International Symposium on Mixed and Augmented Reality33–42 Piscataway, NJ: Inst. Electr. Electron. Eng.
  96. Liu S, Hua H. 2010. A systematic method for designing depth-fused multi-focal plane three-dimensional displays. Opt. Expr. 18:1111562–73 [Google Scholar]
  97. Love GD, Hoffman DM, Hands PJW, Gao J, Kirby AK, Banks MS. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Expr. 17:15716–25 [Google Scholar]
  98. Lu C, Fender DH. 1972. The interaction of color and luminance in stereoscopic vision. Investig. Ophthalmol. Vis. Sci. 11482–90
  99. MacKenzie KJ, Dickson RA, Watt SJ. 2012. Vergence and accommodation to multiple-image-plane stereoscopic displays: “real world” responses with practical image-plane separations?. J. Electron. Imaging 21:1011002 [Google Scholar]
  100. MacKenzie KJ, Hoffman DM, Watt SJ. 2010. Accommodation to multiple-focal-plane displays: implications for improving stereoscopic displays and for accommodation control. J. Vis. 10:822 [Google Scholar]
  101. Maiello G, Manuela C, Solari F, Bex PJ. 2014. Simulated disparity and peripheral blur interact during binocular fusion. J. Vis. 14:813 [Google Scholar]
  102. Maimone A, Wetzstein G, Hirsh M, Lanman D, Raskar R, Fuchs H. 2013. Focus 3D: compressive accommodation display. ACM Trans. Graph. 32:5153 [Google Scholar]
  103. Marshall J, Burbeck C, Ariely D, Rolland J, Martin K. 1996. Occlusion edge blur: a cue to relative visual depth. J. Opt. Soc. Am. A 13:681–88 [Google Scholar]
  104. Martens TG, Ogle KN. 1959. Observations on accommodative convergence; especially its nonlinear relationships. Am. J. Ophthalmol. 47:455–62 [Google Scholar]
  105. Mather G. 2006. Foundations of Perception New York: Taylor & Francis
  106. Mather G, Smith DRR. 2000. Depth cue integration: stereopsis and image blur. Vis. Res. 40:3501–6 [Google Scholar]
  107. Mather G, Smith DRR. 2002. Blur discrimination and its relation to blur-mediated depth perception. Perception 31:1211–19 [Google Scholar]
  108. McIntire JP, Havig PR, Geiselman EE. 2014a. Stereoscopic 3D displays and human performance: a comprehensive review. Displays 35:18–26 [Google Scholar]
  109. McIntire JP, Wright ST, Harrington LK, Havig PR, Watamaniuk SN, Heft EL. 2014b. Optometric measurement predict performance but not comfort on a virtual object placement task with a stereoscopic three-dimensional display. Opt. Eng. 53:6061711 [Google Scholar]
  110. Mitchell DE, O'Hagan S. 1972. Accuracy of stereoscopic localization of small line segments that differ in size or orientation for the two eyes. Vis. Res. 12:437–54 [Google Scholar]
  111. Morgan MJ. 1979. Perception of continuity in stroboscopic motion: a temporal frequency analysis. Vis. Res. 19:491–500 [Google Scholar]
  112. Mun S, Park M-C, Park S, Whang M. 2012. SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neurosci. Lett. 525:289–94 [Google Scholar]
  113. Narain R, Albert RA, Bulbul A, Ward GJ, Banks MS, O'Brien JF. 2015. Optimal presentation of imagery with focus cues on multi-plane displays. ACM Trans. Graph. 34:459 [Google Scholar]
  114. Nefs HT. 2012. Depth of field affects perceived depth-width ratios in photographs of natural scenes. Seeing Perceiving 25577–95
  115. Nojiri Y, Yamanoue H, Hanazato A, Emoto M, Okano F. 2004. Visual comfort/discomfort and visual fatigue caused by stereoscopic HDTV viewing. Proc. SPIE 5291:303 [Google Scholar]
  116. Nojiri Y, Yamanoue H, Hanazato A, Okana F. 2003. Measurement of parallax distribution, and its application to the analysis of visual comfort for stereoscopic HDTV. Proc. SPIE 5006:195 [Google Scholar]
  117. Norcia AM, Tyler CW. 1984. Temporal frequency limits for stereoscopic apparent motion processes. Vis. Res. 24:395–401 [Google Scholar]
  118. Palmer SE. 1999. Vision Science: Photons to Phenomenology Cambridge, MA: MIT press
  119. Palmer SE, Brooks JL. 2008. Edge-region grouping in figure-ground organization and depth perception. J. Exp. Psychol.: Hum. Percept. Perform. 34:61353–71 [Google Scholar]
  120. Palmisano S. 1996. Perceiving self-motion in depth: the role of stereoscopic motion and changing-size cues. Percept. Psychophys. 58:81168–76 [Google Scholar]
  121. Palmisano S. 2002. Consistent stereoscopic information increases the perceived speed of vection in depth. Perception 31:463–80 [Google Scholar]
  122. Park S, Won MJ, Mun S, Lee EC, Whang M. 2014. Does visual fatigue from 3D displays affect autonomic regulation and heart rhythm?. Int. J. Psychophysiol. 92:142–48 [Google Scholar]
  123. Pastoor S. 1993. Human factors of 3D displays in advanced image communications. Displays 14:150–57 [Google Scholar]
  124. Peli E. 1998. The visual effects of head-mounted display (HMD) are not distinguishable from those of desk-top computer display. Vis. Res. 38:2053–66 [Google Scholar]
  125. Pentland AP. 1987. A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9:523–31 [Google Scholar]
  126. Percival AS. 1928. The Prescribing of Spectacles Bristol, UK: J. Wright & Sons
  127. Pollock B, Burton M, Kelly JW, Gilbert S, Winer E. 2012. The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments. IEEE Trans. Vis. Comput. Graph. 18:581–88 [Google Scholar]
  128. Pulfrich C. 1922. Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. Die Naturwissenschaften 10751–61
  129. Ravikumar S, Akeley K, Banks MS. 2011. Creating effective focus cues in multi-plane 3D displays. Opt. Expr. 19:2120940–52 [Google Scholar]
  130. Read JCA, Bohr I. 2014. User experience while viewing stereoscopic 3D television. Ergonomics 57:1140–53 [Google Scholar]
  131. Read JCA, Cumming BG. 2005. The stroboscopic Pulfrich effect is not evidence for the joint encoding of motion and depth. J. Vis. 5:53 [Google Scholar]
  132. Read JCA, Godfrey A, Bohr I, Simonotto J, Galna B, Smulders TV. 2016. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight. Ergonomics. In press [Google Scholar]
  133. Ross J, Hogben JH. 1975. The Pulfrich effect and short-term memory in stereopsis. Vis. Res. 15:1289–90 [Google Scholar]
  134. Rovamo J, Raninen A. 1988. Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit-Harper and Ferry-Porter laws. Vis. Res. 28:7785–90 [Google Scholar]
  135. Schechner YY, Kiryati N. 2000. Depth from defocus versus stereo: How different really are they?. Int. J. Comput. Vis. 29:2141–62 [Google Scholar]
  136. Schor CM. 1992. A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses. Optom. Vis. Sci. 69:4258–69 [Google Scholar]
  137. Semmlow J, Wetzel P. 1979. Dynamic contributions of the components of binocular vergence. J. Opt. Soc. Am. 69:639–45 [Google Scholar]
  138. Seuntiëns PJ, Meesters LM, IJsselsteijn WA. 2005. Perceptual attributes of crosstalk in 3D images. Displays 26:4–5177–83 [Google Scholar]
  139. Sheard C. 1930. Zones of ocular comfort. Am. J. Optom. 7:19–25 [Google Scholar]
  140. Sheedy JE, Hayes J, Engle J. 2003. Is all asthenopia the same?. Optom. Vis. Sci. 80:11732–39 [Google Scholar]
  141. Shibata T, Kim J, Hoffman DM, Banks MS. 2011. The zone of comfort: predicting visual discomfort with stereo displays. J. Vis. 11:811 [Google Scholar]
  142. Shibata T, Muneyuki F, Oshima K, Yoshitake J, Kawai T. 2013. Comfortable stereo viewing on mobile devices. Proc. SPIE 8648:86481D [Google Scholar]
  143. Simon A, Jorke H. 2011. Interference filter system for high-brightness and natural-color stereoscopic imaging. SID Symp. Digest Tech. Pap. 42:317–19 [Google Scholar]
  144. Son J-Y, Saveljev VV, Choi Y-J, Bahn J-E, Kim S-K, Choi H-H. 2003. Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier, and integral photography plates. Opt. Eng. 42:113326–33 [Google Scholar]
  145. Soneira RM. 2012. 3D TV display technology shoot-out. DisplayMate. http://www.displaymate.com/3D_TV_ShootOut_1.htm
  146. Sugawara M, Masaoka K, Emoto M, Matsuo Y, Nojiri Y. 2008. Research on human factors in ultrahigh-definition television (UHDTV) to determine its specifications. SMPTE Mot. Imaging J. 117:323–29 [Google Scholar]
  147. Sullivan A. 2004. DepthCube solid-state 3D volumetric display. Proc. SPIE 5291:279 [Google Scholar]
  148. Torii M, Okada Y, Ukai K, Wolffsohn JS, Gilmartin B. 2008. Dynamic measurement of accommodative responses while viewing stereoscopic image. J. Mod. Opt. 55:4–5557–67 [Google Scholar]
  149. Trentacoste M, Mantiuk R, Heidrich W. 2011. Blur-aware image downsampling. Comput. Graph. Forum 30:573–82 [Google Scholar]
  150. Tsirlin I, Wilcox LM, Allison RS. 2011. The effect of crosstalk on the perceived depth from disparity and monocular occlusions. IEEE Trans. Broadcast 57:2445–53 [Google Scholar]
  151. Turner TL, Hellbaum RF. 1986. LC shutter glasses provide 3-D display for simulated flight. Inf. Disp. 9:222–24 [Google Scholar]
  152. Tyler CW. 1974. Depth perception in disparity gratings. Nature 251:140–42 [Google Scholar]
  153. Urvoy M, Barkowsky M, Le Callet P. 2013. How visual fatigue and discomfort affect 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors. Ann. Telecommun. 68:641–55 [Google Scholar]
  154. van Beurden MHPH, IJsselsteijn WA, Juola JF. 2012. Effectiveness of stereoscopic displays in medicine: a review. 3D Res. 3:3 [Google Scholar]
  155. van Ee R, Anderson BL. 2001. Motion direction, speed and orientation in binocular matching. Nature 410:690–94 [Google Scholar]
  156. Vishwanath D, Blaser E. 2010. Retinal blur and the perception of egocentric distance. J. Vis. 10:1026 [Google Scholar]
  157. Vishwanath D, Girshick AR, Banks MS. 2005. Why pictures look right when viewed from the wrong place. Nature Neurosci. 8:101401–10 [Google Scholar]
  158. Wandell BA, Silverstein L. 2003. Digital color reproduction. The Science of Color S Shevell Oxford, UK: Elsevier [Google Scholar]
  159. Watson AB. 2010. Display motion blur: comparison of measurement methods. J. Soc. Inf. Disp. 18:2179–90 [Google Scholar]
  160. Watson AB. 2013. High frame rates and human vision: a view through the window of visibility. SMPTE Mot. Imaging J. 122:18–32 [Google Scholar]
  161. Watson AB, Ahumada AJ, Farrell JE. 1986. Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays. J. Opt. Soc. Am. A 3:300–7 [Google Scholar]
  162. Watt SJ, Akeley K, Ernst MO, Banks MS. 2005. Focus cues affect perceived depth. J. Vis. 5:107 [Google Scholar]
  163. Wetzstein G, Lanman D, Heidrich W, Raskar R. 2011. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30:95 [Google Scholar]
  164. Wetzstein G, Lanman D, Hirsch M, Raskar R. 2012. Tensor displays: compressive fight field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31:80 [Google Scholar]
  165. Wheatstone C. 1838. Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128:371–94 [Google Scholar]
  166. Wilcox LM, Allison RS, Helliker J, Dunk B, Anthony RC. 2015. Evidence that viewers prefer higher frame-rate film. ACM Trans. Appl. Percept. 12:15 [Google Scholar]
  167. Wilcox LM, Stewart JAD. 2003. Determinants of perceived image quality: ghosting vs. brightness. Proc. SPIE 5006:263 [Google Scholar]
  168. Woods AJ. 2012. Crosstalk in stereoscopic displays: a review. J. Electron. Imaging 21:4040902 [Google Scholar]
  169. Woods AJ, Docherty T, Koch R. 1993. Image distortions in stereoscopic displays. Proc. SPIE 1915, Stereosc. Disp. Appl. IV, San Jose, CA36
  170. Woods AJ, Harris CR. 2010. Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses. Proc. SPIE 7254:75240Q [Google Scholar]
  171. Woods AJ, Yuen KL, Karvinen KS. 2007. Characterizing crosstalk in anaglyphic stereoscopic images on LCD monitors and plasma displays. J. Soc. Inf. Disp. 15:11889–98 [Google Scholar]
  172. Wöpking M. 1995. Viewing comfort with stereoscopic pictures: an experimental study on the subjective effects of disparity magnitude and depth of focus. J. Soc. Inf. Disp.101–3
  173. Yang S, Schlieski T, Salmons B, Cooper SC, Doherty RA. et al. 2012. Stereoscopic viewing and reported perceived immersion and symptoms. Optom. Vis. Sci. 89:1068–80 [Google Scholar]
  174. Yang S, Sheedy JE. 2011. Effects of vergence and accommodative responses on viewer's comfort in viewing 3D stimuli. Proc. SPIE 7863:78630Q [Google Scholar]
  175. Yano S, Emoto M, Mitsuhashi T. 2004. Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25:141–50 [Google Scholar]
  176. Yano S, Ide S, Mitsuhashi T, Thwaites H. 2002. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23:191–201 [Google Scholar]
  177. Yun JD, Kwak Y, Yang S. 2013. Evaluation of perceptual resolution and crosstalk in stereoscopic displays. J. Disp. Technol. 9:106–11 [Google Scholar]
  178. Zannoli M, Love GD, Narain R, Banks MS. 2016. Blur and the perception of depth at occlusions. J. Vis. 16:617 [Google Scholar]
  179. Zhang T, O'Hare L, Hibbard PB, Nefs HT, Heynderickx I. 2014. Depth of field affects perceived depth in stereographs. ACM Trans. Appl. Percept. 11:418 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error