The human eye is a relatively simple optical instrument that imposes the first performance limits on the visual system. This review describes the main optical properties of the eye: geometric image formation, aberrations, and intraocular scattering. The article also discusses the sources of optical degradations and their impact on visual performance.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Artal P, Benito A, Pérez GM, Alcón E, De Casas A. et al. 2011. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLOS ONE 6:2e16823 [Google Scholar]
  2. Artal P, Benito A, Tabernero J. 2006. The human eye is an example of robust optical design. J. Vis. 6:1–7 [Google Scholar]
  3. Artal P, Berrio E, Guirao A, Piers P. 2002. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J. Opt. Soc. Am. A 19:137–43 [Google Scholar]
  4. Artal P, Chen L, Fernández EJ, Singer B, Manzanera S, Williams DR. 2004. Neural adaptation for the eye's optical aberrations. J. Vis. 4:281–87 [Google Scholar]
  5. Artal P, Derrington AM, Colombo E. 1995. Refraction, aliasing, and the absence of motion reversals in peripheral vision. Vis. Res. 35:939–47 [Google Scholar]
  6. Artal P, Ferro M, Miranda I, Navarro R. 1993. Effects of aging in retinal image quality. J. Opt. Soc. Am. A 10:1656–62 [Google Scholar]
  7. Artal P, Guirao A, Berrio E, Williams DR. 2001. Compensation of corneal aberrations by internal optics in the human eye. J. Vis. 1:1–8 [Google Scholar]
  8. Artal P, Manzanera S, Piers P, Weeber H. 2010. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Opt. Express 18:1637–48 [Google Scholar]
  9. Artal P, Navarro R. 1994. Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression. J. Opt. Soc. Am. A 11:246–49 [Google Scholar]
  10. Artal P, Tabernero J. 2008. The eye's aplanatic answer. Nat. Photonics 2:586–89 [Google Scholar]
  11. Atchison DA, Smith G. 2000. Optics of the Human Eye Edinburgh, UK: Butterworth-Heinemann [Google Scholar]
  12. Bedford RE, Wyszecki G. 1957. Axial chromatic aberration of the human eye. J. Opt. Soc. Am. 47:564–65 [Google Scholar]
  13. Benny Y, Manzanera S, Prieto PM, Ribak EN, Artal P. 2007. Wide-angle chromatic aberration corrector for the human eye. J. Opt. Soc. Am. A 24:1538–44 [Google Scholar]
  14. Berrio E, Tabernero J, Artal P. 2010. Optical aberrations and alignment of the eye with age. J. Vis. 10:34 [Google Scholar]
  15. Charman WN, Jennings JAN. 1976. Objective measurements of longitudinal chromatic aberration of human eye. Vis. Res. 16:999–1005 [Google Scholar]
  16. Díaz JA, Irlbauer M, Martínez JA. 2004. Diffractive–refractive hybrid doublet to achromatize the human eye. J. Mod. Opt. 51:2223–34 [Google Scholar]
  17. Ginis HS, Perez GM, Bueno JM, Artal P. 2012. The wide-angle point spread function of the human eye reconstructed by a new optical method. J. Vis. 12:20 [Google Scholar]
  18. Ginis HS, Perez GM, Bueno JM, Pennos A, Artal P. 2013. Wavelength dependence of the ocular straylight. Invest. Ophthalmol. Vis. Sci. 54:3702–8 [Google Scholar]
  19. Goodman JW. 2005. Introduction to Fourier Optics Englewood, CO: Roberts & Co, 3rd ed.. [Google Scholar]
  20. Guirao A, Artal P. 1999. Off-axis monochromatic aberrations estimated from double pass measurements in the human eye. Vis. Res. 39:207–17 [Google Scholar]
  21. Guirao A, González C, Redondo M, Geraghty E, Norrby S, Artal P. 1999. Average optical performance of the human eye as a function of age in a normal population. Investig. Ophthalmol. Vis. Sci. 40:203–13 [Google Scholar]
  22. Hammond BR Jr, Wooten BR, Snodderly DM. 1997. Individual variations in the spatial profile of human macular pigment. J. Opt. Soc. Am. A 14:1187–96 [Google Scholar]
  23. He JC, Burns SA, Marcos S. 2000. Monochromatic aberrations in the accommodated human eye. Vis. Res. 40:41–48 [Google Scholar]
  24. Howarth PA, Zhang XX, Bradley A, Still DL, Thibos LN. 1988. Does the chromatic aberration of the eye vary with age?. J. Opt. Soc. Am. A 2:2087–92 [Google Scholar]
  25. Jaeken B, Artal P. 2012. Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular resolution. Investig. Ophthalmol. Vis. Sci. 53:3405–13 [Google Scholar]
  26. Jaeken B, Lundström L, Artal P. 2011. Fast scanning peripheral wave-front sensor for the human eye. Opt. Express 19:7903–13 [Google Scholar]
  27. Jaeken B, Mirabet S, Marín JM, Artal P. 2013. Comparison of the optical image quality in the periphery of phakic and pseudophakic eyes. Investig. Ophthalmol. Vis. Sci. 54:3594–99 [Google Scholar]
  28. Kuroda T, Fujikado T, Maeda N, Oshika T, Hirohara Y, Mihashi T. 2002. Wavefront analysis in eyes with nuclear or cortical cataract. Am. J. Ophthalmol. 134:1–9 [Google Scholar]
  29. Le Grand Y, El Hage SG. 1980. Physiological Optics Berlin: Springer [Google Scholar]
  30. Lundström L, Manzanera S, Prieto PM, Ayala DB, Gorceix N. et al. 2007. Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye. Opt. Express 15:12654–61 [Google Scholar]
  31. Manzanera S, Canovas C, Prieto PM, Artal P. 2008. A wavelength tunable wavefront sensor for the human eye. Opt. Express 16:7748–55 [Google Scholar]
  32. Manzanera S, Prieto PM, Benito A, Tabernero J, Artal. 2015. Location of achromatizing pupil position and first Purkinje reflection in a normal population. Investig. Ophthalmol. Vis. Sci. 56:962–66 [Google Scholar]
  33. Maréchal A. 1947. Etude des effets combinés de la diffraction et des aberrations géométriques sur l’image d’un point lumineux. Rev. Opt. Theor. Instrum. 26:257–77 [Google Scholar]
  34. Pedrotti FL, Pedrotti LS. 1993. Introduction to Optics Englewood Cliffs, NJ: Prentice-Hall, 2nd. ed. [Google Scholar]
  35. Pelli DG. 1990. The quantum efficiency of vision. Vision: Coding and Efficiency C Blakemore New York: Cambridge Univ. Press [Google Scholar]
  36. Pérez GM, Manzanera S, Artal P. 2009. Impact of scattering and spherical aberration in contrast sensitivity. J. Vis. 9:19 [Google Scholar]
  37. Powell I. 1981. Lenses for correcting chromatic aberration of the eye. Appl. Opt. 20:4152–55 [Google Scholar]
  38. Santamaría J, Artal P, Bescós J. 1987. Determination of the point-spread function of human eyes using a hybrid optical–digital method. J. Opt. Soc. Am. A 4:1109–14 [Google Scholar]
  39. Schwarz C, Cánovas C, Manzanera S, Weeber H, Prieto PM. et al. 2014. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light. J. Vis. 14:8 [Google Scholar]
  40. Simonet P, Campbell MCW. 1990. The optical transverse chromatic aberration on the fovea of the human eye. Vis. Res. 30:187–206 [Google Scholar]
  41. Smith G, Atchison DA. 1997. The Eye and Visual Optical Instruments Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  42. Tabernero J, Benito A, Alcón E, Artal P. 2007. Mechanism of compensation of aberrations in the human eye. J. Opt. Soc. Am. A 24:3274–83 [Google Scholar]
  43. Tabernero J, Benito A, Nourrit V, Artal P. 2006. Instrument for measuring the misalignments of ocular surfaces. Opt. Express 14:10945–56 [Google Scholar]
  44. Thibos LN, Bradley A, Still DL, Zhang X, Howarth PA. 1990. Theory and measurement of ocular chromatic aberration. Vis. Res. 3:33–49 [Google Scholar]
  45. Thibos LN, Ye M, Zhang X, Bradley A. 1992. The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans. Appl. Opt. 31:3594–600 [Google Scholar]
  46. van Norren D, Vos JJ. 1974. Spectral transmission of the human ocular media. Vis. Res. 14:1237–44 [Google Scholar]
  47. Villegas EA, Alcón E, Artal P. 2008. Optical quality of the eye in subjects with normal and excellent visual acuity. Investig. Ophthalmol. Vis. Sci. 49:4688–96 [Google Scholar]
  48. Villegas EA, Alcón E, Artal P. 2014. Minimum amount of astigmatism that should be corrected. J. Cataract Refract. Surg. 40:13–19 [Google Scholar]
  49. Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R. et al. 2009. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116:369–78 [Google Scholar]
  50. Wald G, Griffin DR. 1947. The change in refractive power of the human eye in dim and bright light. J. Opt. Soc. Am. 37:321–66 [Google Scholar]
  51. Young T. 1801. On the mechanism of the eye. Philos. Trans. R. Soc. Lond. 91:23–88 [Google Scholar]
  52. Zhang X, Bradley A, Thibos LN. 1991. Achromatizing the human eye: the problem of chromatic parallax. J. Opt. Soc. Am. A 8:686–91 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error