1932

Abstract

For four decades, investigations of the biological basis of critical periods in the developing mammalian visual cortex were dominated by study of the consequences of altered early visual experience in cats and nonhuman primates. The neural deficits thus revealed also provided insight into the origin and neural basis of human amblyopia that in turn motivated additional studies of humans with abnormal early visual input. Recent human studies point to deficits arising from alterations in all visual cortical areas and even in nonvisual cortical regions. As the new human data accumulated in parallel with a near-complete shift toward the use of rodent animal models for the study of neural mechanisms, it is now essential to review the human data and the earlier animal data obtained from cats and monkeys to infer general conclusions and to optimize future choice of the most appropriate animal model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-090721-110411
2022-09-15
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-090721-110411.html?itemId=/content/journals/10.1146/annurev-vision-090721-110411&mimeType=html&fmt=ahah

Literature Cited

  1. Atkinson J, Braddick O, French J. 1979. Contrast sensitivity of the human neonate measured by the visual evoked potential. Investig. Ophthalmol. Vis. Sci. 18:210–13
    [Google Scholar]
  2. Badde S, Ley P, Rajendran SS, Shareef I, Kekunnaya R, Roder B 2020. Sensory experience during early sensitive periods shapes cross-modal temporal biases. eLife 9:e61238
    [Google Scholar]
  3. Baker FH, Grigg P, Von Noorden GK. 1974. Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res 66:185–208
    [Google Scholar]
  4. Banks MS, Aslin RN, Letson RD. 1975. Sensitive period for the development of binocular vision. Science 190:675–77
    [Google Scholar]
  5. Beaver CJ, Ji Q, Daw NW 2001. Layer differences in the effect of monocular vision in light- and dark-reared kittens. Vis. Neurosci. 18:811–20
    [Google Scholar]
  6. Berkley MA, Sprague JM. 1979. Striate cortex and visual acuity functions in the cat. J. Comp. Neurol. 187:679–702
    [Google Scholar]
  7. Birch EE, Stager DR. 1986. Prevalence of good visual acuity following surgery for congenital unilateral cataract. Arch. Ophthalmol. 106:40–43
    [Google Scholar]
  8. Birch EE, Stager DR. 1996. The critical period for surgical treatment of dense congenital unilateral cataract. Investig. Ophthalmol. Vis. Sci. 7:1532–38
    [Google Scholar]
  9. Birch EE, Stager DR, Berry P, Everet M. 1990. Prospective assessment of acuity and stereopsis in amblyopic infantile esotropes following early surgery. Investig. Ophthalmol. Vis. Sci. 31:758–65
    [Google Scholar]
  10. Birch EE, Stager D, Leffler J, Weakley D. 1998. Early treatment of congenital unilateral cataract minimizes unequal competition. Investig. Ophthalmol. Vis. Sci. 39:1560–66
    [Google Scholar]
  11. Birch EE, Stager DR, Wright WW. 1986. Grating acuity development after early surgery for congenital unilateral cataract. Arch. Ophthalmol. 104:1783–87
    [Google Scholar]
  12. Birch EE, Swanson WH, Stager DR, Woody M, Everett M. 1993. Outcome after very early treatment of dense congenital unilateral cataract. Investig. Ophthalmol. Vis. Sci. 34:3687–99
    [Google Scholar]
  13. Birch E, Williams C, Drover J, Fu V, Cheng C et al. 2008. Randot preschool stereoacuity test: normative data and validity. J. AAPOS 12:23–26
    [Google Scholar]
  14. Blake R, Gianfilippo AD. 1980. Spatial vision in cats with selective neural deficits. J. Neurophysiol. 43:1197–205
    [Google Scholar]
  15. Blakemore C. 1976. The conditions required for the maintenance of binocularity in the kitten's visual cortex. . J. Physiol. 261:423–44
    [Google Scholar]
  16. Blakemore C, Garey LJ, Vital-Durand F. 1978. The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex. J. Physiol. 283:223–62
    [Google Scholar]
  17. Blakemore C, Van Sluyters RC. 1974. Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period. J. Physiol. 237:195–216
    [Google Scholar]
  18. Blakemore C, Vital-Durand F, Garey LJ. 1981. Recovery from monocular deprivation in the monkey. I. Reversal of physiological effects in the visual cortex. Proc. R. Soc. B 213:399–423
    [Google Scholar]
  19. Boothe RG, Louden T, Aiyer A, Izquierdo A, Drews C, Lambert SR. 2000. Visual outcome after contact lens and intraocular lens correction of neonatal monocular aphakia in monkeys. Investig. Ophthalmol. Vis. Sci. 41:110–19
    [Google Scholar]
  20. Bottari D, Kekunnaya R, Hense M, Troje NF, Sourav S, Röder B. 2018. Motion processing after sight restoration: no competition between visual recovery and auditory compensation. NeuroImage 167:284–96
    [Google Scholar]
  21. Bottari D, Troje NF, Ley P, Hense M, Kekunnaya R, Röder B. 2015. The neural development of the biological motion processing system does not rely on early visual input. Cortex 71:359–67
    [Google Scholar]
  22. Bowering ER, Maurer D, Lewis TL, Brent HP. 1997. Constriction of the visual field of children after early visual deprivation. J. Pediatr. Ophthalmol. Strabismus 34:347–56
    [Google Scholar]
  23. Braddick O, Wattam-Bell J, Day J, Atkinson J. 1983. The onset of binocular function in human infants. Hum. Neurobiol. 2:65–69
    [Google Scholar]
  24. Brown SM, Archer SM, Del Monte MA. 1999. Stereopsis and binocular vision after surgery for unilateral infantile cataract. J. AAPOS 3:109–13
    [Google Scholar]
  25. Chen J, Wu ED, Chen X, Zhu LH, Li X et al. 2016. Rapid integration of tactile and visual information by a newly sighted child. Curr. Biol. 26:1069–74
    [Google Scholar]
  26. Chen Y-C, Lewis TL, Shore DI, Maurer D. 2017. Early binocular input is critical for development of audiovisual but not visuotactile simultaneity perception. Curr. Biol. 27:583–89
    [Google Scholar]
  27. Collignon O, Dormal G, Albouy G, Vandewalle G, Voss P et al. 2013. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136:2769–83
    [Google Scholar]
  28. Collignon O, Dormal G, de Heering A, Lepore F, Lewis TL, Maurer D. 2015. Long-lasting crossmodal cortical reorganization triggered by brief postnatal visual deprivation. Curr. Biol. 25:2379–83
    [Google Scholar]
  29. Crawford MLJ, Blake R, Cool SJ, Von Noorden GK. 1975. Physiological consequences of unilateral and bilateral eye closure in macaque monkeys: some further observations. Brain Res 84:150–54
    [Google Scholar]
  30. Crawford MLJ, Marc RE. 1976. Light transmission of cat and monkey eyelids. Vis. Res. 16:323–24
    [Google Scholar]
  31. Cynader M. 1983. Prolonged sensitivity to monocular deprivation in dark-reared cats: effects of age and visual exposure. Dev. Brain Res. 4:417–26
    [Google Scholar]
  32. Cynader M, Mitchell DE. 1980. Prolonged sensitivity to monocular deprivation in dark-reared cats. J. Neurophysiol. 43:1026–40
    [Google Scholar]
  33. Cynader M, Timney BN, Mitchell DE. 1980. Period of susceptibility of kitten visual cortex to the effects of monocular deprivation extends beyond six months of age. Brain Res 191:545–50
    [Google Scholar]
  34. Daw NW. 1998. Critical periods and amblyopia. Arch. Ophthalmol. 116:4502–5
    [Google Scholar]
  35. Daw NW. 2006. Visual Development Berlin: Springer. , 2nd ed..
    [Google Scholar]
  36. Daw NW, Berman NE, Ariel M 1978. Interaction of critical periods in the visual cortex of kittens. Science 199:565–67
    [Google Scholar]
  37. Daw NW, Fox KD, Sato H, Czepita D. 1992. Critical period for monocular deprivation in the cat visual cortex. J. Neurophysiol. 67:197–202
    [Google Scholar]
  38. Daw NW, Wyatt HJ. 1976. Kittens reared in a unidirectional environment: evidence for a critical period. J. Physiol. 257:155–70
    [Google Scholar]
  39. de Heering A, Dormal G, Pelland M, Lewis T, Maurer D, Collignon O. 2016. A brief period of postnatal visual deprivation alters the balance between auditory and visual attention. Curr. Biol. 26:3101–5
    [Google Scholar]
  40. De Smedt S, Ngabonziza I, Speybrouck N, Fonteyne Y, Minani JB, et al. 2016. Visual and functional outcome of pediatric bilateral cataract surgery with intraocular lens implantation in Rwanda. Int. J. Ophthalmol. Clin. Res. 3:065
    [Google Scholar]
  41. Dräger UC. 1978. Observations on monocular deprivation in mice. J. Neurophysiol. 41:28–42
    [Google Scholar]
  42. Drews-Botsch CD, Celano M, Kruger S, Hartmann EE, Infant Aphakia Treat. Study. 2012. Adherence to occlusion therapy in the first six months of follow-up and visual acuity among participants in the Infant Aphakia Treatment Study (IATS). Investig. Ophthalmol. Vis. Sci. 53:3368–75
    [Google Scholar]
  43. Duffy KR, Mitchell DE. 2013. Darkness alters maturation of visual cortex and promotes fast recovery from prior monocular deprivation. Curr. Biol. 23:382–86
    [Google Scholar]
  44. El Mallah MK, Chakravarthy U, Hart PM. 2000. Amblyopia: Is visual loss permanent?. Br. J. Ophthalmol. 84:952–56
    [Google Scholar]
  45. Ellemberg D, Lewis TL, Liu CH, Maurer D. 1999. Development of spatial and temporal vision during childhood. Vis. Res. 39::2325–33
    [Google Scholar]
  46. Ellemberg D, Lewis TL, Maurer D, Brar S, Brent HP. 2002. Better perception of global motion after monocular than after binocular deprivation. Vis. Res. 42:169–79
    [Google Scholar]
  47. Ellemberg D, Lewis TL, Maurer D, Brent HP. 2000. Influence of monocular deprivation during infancy on the later development of spatial and temporal vision. Vis. Res. 40:3283–95
    [Google Scholar]
  48. Erchova I, Vasalauskaite A, Longo V, Sengpiel F. 2017. Enhancement of visual cortex plasticity by dark exposure. Philos. Trans. R. Soc. B 372:20160159
    [Google Scholar]
  49. Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L. 1994. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vis. Res. 34:709–20
    [Google Scholar]
  50. Falcone MM, Hunter DG, Gaier ED. 2021. Emerging therapies for amblyopia. Semin. Ophthalmol. 36:282–88
    [Google Scholar]
  51. Fawcett SL, Wang Y-Z, Birch EE. 2005. The critical period for susceptibility of human stereopsis. Investig. Ophthalmol. Vis. Sci. 6:521–25
    [Google Scholar]
  52. Fong MF, Mitchell DE, Duffy KR, Bear MF. 2018. Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. PNAS 113:4914139–44
    [Google Scholar]
  53. Frasnelli J, Collignon O, Voss P, Lepore F. 2011. Crossmodal plasticity in sensory loss. Prog. Brain Res. 191:233–49
    [Google Scholar]
  54. Freeman RD, Ohzawa I. 1988. Monocularly deprived cats: Binocular tests of cortical cells reveal functional connections from the deprived eye. J. Neurosci. 8:2491–506
    [Google Scholar]
  55. Freeman RD, Ohzawa I. 1992. Development of binocular vision in the kitten's striate cortex. J. Neurosci. 12:4721–36
    [Google Scholar]
  56. Gandhi TK, Singh AK, Swami P, Ganesh S, Sinha P. 2017. Emergence of categorical face perception after extended early-onset blindness. PNAS 114:6139–43
    [Google Scholar]
  57. Ganesh S, Arora P, Sethi S, Gandhi TK, Kalia A et al. 2014. Results of late surgical intervention in children with early-onset bilateral cataracts. Br. J. Ophthalmol. 98:1424–28
    [Google Scholar]
  58. Giffin F, Mitchell DE. 1978. The rate of recovery of vision after early monocular deprivation in kittens. J. Physiol. 274:511–37
    [Google Scholar]
  59. Gogate P, Parbhoo D, Ramson P, Budhoo R, Øverland L. et al. 2016. Surgery for sight: outcomes of congenital and developmental cataracts operated in Durban, South Africa. Eye 30:406–12
    [Google Scholar]
  60. Gogate PM, Sahasrabudhe M, Shah M, Patil S, Kulkarni AN et al. 2014. Long term outcomes of bilateral congenital and developmental cataracts operated in Maharashtra, India. Miraj pediatric cataract study III. Indian J. Ophthalmol. 62:186–95
    [Google Scholar]
  61. Gordon JA, Stryker MP. 1996. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16:3274–86
    [Google Scholar]
  62. Green CS, Bavelier D. 2003. Action video game modifies visual selective attention. Nature 423:534–37
    [Google Scholar]
  63. Green CS, Bavelier D. 2006a. Effect of action video games on the spatial distribution of visuospatial attention. J. Exp. Psychol. Hum. Percept. Perform. 32:1465–78
    [Google Scholar]
  64. Green CS, Bavelier D. 2006b. Enumeration versus multiple object tracking: the case of action video game players. Cognition 101:217–45
    [Google Scholar]
  65. Guerreiro MJS, Putzar L, Röder B. 2015. The effect of early visual deprivation on the neural bases of multisensory processing. Brain 138:1499–504
    [Google Scholar]
  66. Guerreiro MJS, Putzar L, Röder B. 2016a. The effect of early visual deprivation on the neural bases of auditory processing. J. Neurosci. 36:1620–30
    [Google Scholar]
  67. Guerreiro MJS, Putzar L, Röder B. 2016b. Persisting cross-modal changes in sight-recovery individuals modulate visual perception. Curr. Biol. 26:3096–100
    [Google Scholar]
  68. Guire ES, Lickey ME, Gordon B. 1999. Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. J. Neurophysiol. 81:121–28
    [Google Scholar]
  69. Hadad B, Schwartz S, Maurer D, Lewis TL. 2015. Motion perception: a review of developmental changes and the role of early visual experience. Front. Integr. Neurosci. 9:49
    [Google Scholar]
  70. Hadad B-S, Maurer D, Lewis TL. 2012. Sparing of sensitivity to biological motion but not of global motion after early visual deprivation. Dev. Sci. 15:474–81
    [Google Scholar]
  71. Hartmann EE, Stout AU, Lynn MJ, Yen KG, Kruger SJ et al. 2015. Stereopsis results at 4.5 years of age in the infant aphakia treatment study. Am. J. Ophthalmol. 159:64–70.e1
    [Google Scholar]
  72. Harwerth RS, Smith EL, Duncan GC, Crawford MLJ, Von Noorden GK. 1986. Multiple sensitive periods in the development of the primate visual system. Science 232:235–38
    [Google Scholar]
  73. He HY, Hodos W, Quinlan EM. 2006. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J. Neurosci. 26:2951–55
    [Google Scholar]
  74. He HY, Ray B, Dennis K, Quinlan EM 2007. Experience-dependent recovery of vision following chronic deprivation amblyopia. Nat. Neurosci. 10:113436
    [Google Scholar]
  75. Hensch TK. 2004. Critical period regulation. Annu. Rev. Neurosci. 27:549–79
    [Google Scholar]
  76. Hensch TK. 2005. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6:877–88
    [Google Scholar]
  77. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hubener M. 2006. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9:127–32
    [Google Scholar]
  78. Hoffmann KP. 1979. Optokinetic nystagmus and single-cell responses in the nucleus tractus opticus after early monocular deprivation in the cat. Developmental Neurobiology of Vision RD Freeman 63–72 Berlin: Springer
    [Google Scholar]
  79. Holman KD, Duffy KR, Mitchell DE 2018. Short periods of darkness fail to restore visual or neural plasticity in adult cats. Vis. Neurosci. 35:E002
    [Google Scholar]
  80. Horton JC, Hocking DR. 1996. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J. Neurosci. 16:1791–807
    [Google Scholar]
  81. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B et al. 1999. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–55
    [Google Scholar]
  82. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  83. Hubel DH, Wiesel TN. 1970. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206:419–36
    [Google Scholar]
  84. Hubel DH, Wiesel TN, LeVay S. 1977. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. B 278:377–409
    [Google Scholar]
  85. Issa NP, Trachtenberg JT, Chapman B, Zahs KR, Stryker MP. 1999. The critical period for ocular dominance plasticity in the ferret's visual cortex. J. Neurosci. 19:6965–78
    [Google Scholar]
  86. Jacobson SG, Mohindra I, Held R. 1981. Development of visual acuity in infants with congenital cataracts. Br. J. Ophthalmol. 65:727–35
    [Google Scholar]
  87. Jacobson SG, Mohindra I, Held R. 1983. Monocular visual form deprivation in human infants. Doc. Ophthalmol. 55:199–211
    [Google Scholar]
  88. Jeffrey BG, Birch EE, Stager DR, Weakley DR. 2001. Early binocular visual experience may improve binocular sensory outcomes in children after surgery for congenital unilateral cataract. J. AAPOS 5:209–16
    [Google Scholar]
  89. Jeon ST, Lewis TL, Maurer D. 2012. The effect of video game training on the vision of adults with bilateral deprivation amblyopia. Seeing Perceiving 25:493–520
    [Google Scholar]
  90. Jones KR, Spear PD, Tong L. 1984. Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex. J. Neurosci. 4:2543–52
    [Google Scholar]
  91. Kalia A, Lesmes LA, Dorr M, Gandhi T, Chatterjee G et al. 2014. Development of pattern vision following early and extended blindness. PNAS 111:2035–39
    [Google Scholar]
  92. Kasamatsu T, Imamura K. 2020. Ocular dominance plasticity: molecular mechanisms revisited. J. Comp. Neurol. 528:3039–74
    [Google Scholar]
  93. Kiorpes L. 2015. Visual development in primates: neural mechanisms and critical periods. Dev. Neurobiol. 75:101080–90
    [Google Scholar]
  94. Kupfer C. 1957. Treatment of amblyopia ex anopsia in adults: a preliminary report of seven cases. Am. J. Ophthalmol. 43:918–22
    [Google Scholar]
  95. Lambert SR, DuBois L, Cotsonis G, Hartmann EE, Drews-Botsch C. 2016. Factors associated with stereopsis and a good visual acuity outcome among children in the Infant Aphakia Treatment Study. Eye 30:1221–28
    [Google Scholar]
  96. LeVay S, Wiesel TN, Hubel DH. 1980. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191:1–51
    [Google Scholar]
  97. Levelt CN, Hübener M. 2012. Critical-period plasticity in the visual cortex. Annu. Rev. Neurosci. 35:309–30
    [Google Scholar]
  98. Levi DM. 2020. Rethinking amblyopia 2020. Vis. Res. 176:118–29
    [Google Scholar]
  99. Lewis TL, Ellemberg D, Maurer D, Wilkinson F, Wilson HR et al. 2002. Sensitivity to global form in glass patterns after early visual deprivation in humans. Vis. Res. 42:939–48
    [Google Scholar]
  100. Lewis TL, Maurer D. 2005. Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev. Psychobiol. 46:163–83
    [Google Scholar]
  101. Lewis TL, Maurer D. 2009. Effects of early pattern deprivation on visual development. Optom. Vis. Sci. 86:640–46
    [Google Scholar]
  102. Lewis TL, Maurer D, Brent HP 1985. Optokinetic nystagmus in children treated for bilateral cataracts. Eye Movements and Human Information Processing R Groner, G McConkie, C Menz 85–105 Amsterdam: North Holland
    [Google Scholar]
  103. Lewis TL, Maurer D, Brent HP. 1989. Optokinetic nystagmus in normal and visually deprived children: implications for cortical development. Can. J. Psychol. 43:121–40
    [Google Scholar]
  104. Lewis TL, Maurer D, Brent HP. 1995. Development of grating acuity in children treated for unilateral or bilateral congenital cataract. Investig. Ophthalmol. Vis. Sci. 36:2080–95
    [Google Scholar]
  105. Lewis TL, Maurer D, Chung JY, Holmes-Shannon R, Van Schaik CS. 2000. The development of symmetrical OKN in infants: quantification based on OKN acuity for nasalward versus temporalward motion. Vis. Res. 40:445–53
    [Google Scholar]
  106. Lewis TL, Maurer D, Smith RJ, Haslip JK. 1992a. The development of symmetrical optokinetic nystagmus during infancy. Clin. Vis. Sci. 7:211–18
    [Google Scholar]
  107. Lewis TL, Maurer D, Tytla ME, Bowering ER, Brent HP. 1992b. Vision in the “good” eye of children treated for unilateral congenital cataract. Ophthalmology 99:1013–17
    [Google Scholar]
  108. Li R, Polat U, Makous W, Bavelier D. 2009. Enhancing the contrast sensitivity function through action video game training. Nat. Neurosci. 12:549–51
    [Google Scholar]
  109. Liao DS, Krahe TE, Prusky GT, Medina AE, Ramoa AS. 2004. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity. J. Neurophysiol. 92:2113–21
    [Google Scholar]
  110. Lunghi C, Sframeli AT, Lepri A, Lepri M, Lisi D et al. 2019. A new counterintuitive training for adult amblyopia. Ann. Clin. Transl. Neurol. 6:274–84
    [Google Scholar]
  111. Ma F, Ren M, Wang L, Wang Q, Guo J 2017. Visual outcomes of dense pediatric cataract surgery in eastern China. PLOS ONE 12:e0180166
    [Google Scholar]
  112. Maffei L, Berardi N, Domenici L, Parisi V, Pizzorusso T 1992. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J. Neurosci. 12:4651–62
    [Google Scholar]
  113. Magli A, Carelli R, Forte R, Chiariello Vecchio E, Esposito F, Torre A 2017. Congenital and developmental cataracts: focus on strabismus outcomes at long-term follow-up. Semin. Ophthalmol. 32:358–62
    [Google Scholar]
  114. Magli A, Forte R, Carelli R, Magli G, Esposito F, Torre A 2016. Long-term follow-up after surgery for congenital and developmental cataracts. Semin. Ophthalmol. 31:261–65
    [Google Scholar]
  115. Maurer D. 2017. Critical periods re-examined: evidence from children treated for dense cataracts. Cogn. Dev. 42:27–36
    [Google Scholar]
  116. Maurer D, Ellemberg D, Lewis TL. 2006. Repeated measurements of contrast sensitivity reveal limits to visual plasticity after early binocular deprivation in humans. Neuropsychologia 44:2104–12
    [Google Scholar]
  117. Maurer D, Lewis TL 2001. Visual acuity: the role of visual input in inducing postnatal change. Clin. Neurosci. Res. 1:239–47
    [Google Scholar]
  118. Maurer D, Lewis TL, Brent HP, Levin AV. 1999. Rapid improvement in the acuity of infants after visual input. Science 286:108–10
    [Google Scholar]
  119. Maurer D, Lewis TL, Weiss MJ 1991. The development of peripheral vision and its physiological underpinnings. Newborn Attention: Biological Constraints and the Influence of Experience M Weiss, P Zelazo 218–55 Norwood, NJ: Prager
    [Google Scholar]
  120. Maurer D, Mondloch CJ, Lewis TL. 2007. Sleeper effects. Dev. Sci. 10:40–47
    [Google Scholar]
  121. McGee AW, Yang Y, Fischer QS, Daw NW, Srittmatter SM. 2005. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–26
    [Google Scholar]
  122. McKyton A, Ben-Zion I, Doron R, Zohary E. 2015. The limits of shape recognition following late emergence from blindness. Curr. Biol. 25:2373–78
    [Google Scholar]
  123. Mitchell DE. 1988. The extent of visual recovery from early monocular or binocular visual deprivation in kittens. J. Physiol. 395:639–60
    [Google Scholar]
  124. Mitchell DE. 1991. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens. Phil. Trans. R. Soc. B 333:51–79
    [Google Scholar]
  125. Mitchell DE 2002. Behavioral analyses of the contribution of cat primary visual cortex to vision. The Cat Primary Visual Cortex BR Payne, A Peters 655–94 San Diego: Academic
    [Google Scholar]
  126. Mitchell DE, Aronitz E, Bobbie-Ansah P, Crowder N, Duffy KR. 2019a. Fast recovery of the amblyopic eye acuity of kittens following brief exposure to total darkness depends on the fellow eye. Neural Plast. 2019:7624837
    [Google Scholar]
  127. Mitchell DE, Crowder NA, Duffy KR. 2019b. The critical period for darkness-induced recovery of the vision of the amblyopic eye following early monocular deprivation. . J. Vis. 19:625
    [Google Scholar]
  128. Mitchell DE, Crowder NA, Holman K, Smithen M, Duffy KR. 2015. Ten days of darkness causes temporary blindness during an early critical period in felines. Proc. R. Soc. B 282:2042756
    [Google Scholar]
  129. Mitchell DE, Cynader M, Movshon JA. 1977. Recovery from the effects of monocular deprivation in kittens. J. Comp. Neurol. 176:53–64
    [Google Scholar]
  130. Mitchell DE, Lomber SG. 2013. An examination of linking hypotheses drawn from the perceptual consequences of experimentally induced changes in neural circuitry. Vis. Neurosci. 30:271–76
    [Google Scholar]
  131. Mitchell DE, MacNeil K, Crowder NA., Holman K, Duffy KR. 2016. The recovery of visual functions in amblyopic felines following brief exposure to total darkness. J. Physiol. 594:149–67
    [Google Scholar]
  132. Mitchell DE, Murphy KM, Dzioba HA, Horne JA. 1986. Optimization of visual recovery from early monocular deprivation in kittens: implications for occlusion therapy in the treatment of amblyopia. Clin. Vis. Sci. 1:173–77
    [Google Scholar]
  133. Mitchell DE, Murphy KM, Kaye MG. 1984. The permanence of the visual recovery that follows reverse occlusion of monocularly deprived kittens. Investig. Ophthalmol. Vis. Sci. 25:908–17
    [Google Scholar]
  134. Mitchell DE, Sengpiel F. 2018. Animal models of amblyopia. Vis. Neurosci. 35:E017
    [Google Scholar]
  135. Mitchell DE, Timney B. 1984. Postnatal development of function in the mammalian visual system. Handbook of Physiology I: The Nervous System, Vol. 3, Part 1: Sensory Processes I Darian-Smith 507–55 Bethesda, MD: Am. Physiol. Soc.
    [Google Scholar]
  136. Mitchell JF, Leopold DA 2015. The marmoset monkey as a model for visual neuroscience. Neurosci. Res. 93:20–46
    [Google Scholar]
  137. Morishita H, Hensch TK. 2008. Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18:101–7
    [Google Scholar]
  138. Morishita H, Miwa JM, Heintz N, Hensch TK. 2010. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. . Science 330:1238–40
    [Google Scholar]
  139. Movshon JA. 1976. Reversal of the physiological effects of monocular deprivation in the kitten's visual cortex. J. Physiol. 261:125–75
    [Google Scholar]
  140. Movshon JA, Kiorpes L 1990. The role of experience in visual development. Development of Sensory Systems in Mammals JR Coleman 155–202 New York: Wiley
    [Google Scholar]
  141. Movshon JA, Van Sluyters RC. 1981. Visual neuronal development. Annu. Rev. Psychol. 32:477–522
    [Google Scholar]
  142. Mower GD. 1991. The effect of dark rearing on the time course of the critical period in cat visual cortex. Dev. Brain Res. 58:151–58
    [Google Scholar]
  143. Mower GD, Berry D, Burchfiel JL, Duffy FH. 1981. Comparison of the effects of dark rearing and binocular suture on development and plasticity of cat visual cortex. Brain Res 220:255–67
    [Google Scholar]
  144. Mower GD, Caplan CJ, Christen WG, Duffy FH 1985. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. J. Comp. Neurol. 235:448–66
    [Google Scholar]
  145. Mower GD, Caplan CJ, Letsou G. 1982. Behavioral recovery from binocular deprivation in the cat. Behav. Brain Res. 4:209–15
    [Google Scholar]
  146. Mower GD, Christen WG. 1985. Role of visual experience in activating critical period in cat visual cortex. J. Neurophysiol. 53:572–89
    [Google Scholar]
  147. Murphy KM, Beston BR, Boley PM, Jones GD. 2005. Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. Dev. Psychobiol. 46:209–21
    [Google Scholar]
  148. Murphy KM, Mitchell DE. 1987. Reduced visual acuity in both eyes of monocularly deprived kittens following a short or long period of reverse occlusion. J. Neurosci. 7:1526–36
    [Google Scholar]
  149. Olson CR, Freeman RD. 1978. Progressive changes in kitten striate cortex during monocular vision. J. Neurophysiol. 37:26–32
    [Google Scholar]
  150. Olson CR, Freeman RD. 1980. Profile of the sensitive period for monocular deprivation in kittens. Exp. Brain Res. 39:17–21
    [Google Scholar]
  151. Ostrovsky Y, Meyers E, Ganesh S, Mathur U, Sinha P. 2009. Visual parsing after recovery from blindness. Psychol. Sci. 20:1484–91
    [Google Scholar]
  152. Paryani M, Khandekar RB, Dole K, Dharmadhikari S, Rishikeshi N. 2012. Visual outcome and impact on quality of life after surgeries differ in children operated for unilateral and bilateral cataract (Pune study 2011). Oman J. Ophthalmol. 5:150–56
    [Google Scholar]
  153. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. 2002. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–51
    [Google Scholar]
  154. Press LJ. 1997. Applied Concepts in Vision Therapy Maryland Heights, MO: Mosby
    [Google Scholar]
  155. Prusky GT, Douglas RM. 2003. Developmental plasticity of mouse visual acuity. Eur. J. Neurosci. 17:163–73
    [Google Scholar]
  156. Prusky GT, West PW, Douglas RM. 2000. Experience-dependent plasticity of visual acuity in rats. Eur. J. Neurosci. 12:3781–86
    [Google Scholar]
  157. Putzar L, Goerendt I, Lange K, Rösler F, Röder B. 2007. Early visual deprivation impairs multisensory interactions in humans. Nat. Neurosci. 10:1243–45
    [Google Scholar]
  158. Putzar L, Gondan M, Röder B. 2012. Basic multisensory functions can be acquired after congenital visual pattern deprivation in humans. Dev. Neuropsychol. 37:697–711
    [Google Scholar]
  159. Putzar L, Hötting K, Röder B. 2010. Early visual deprivation affects the development of face recognition and of audio-visual speech perception. Restor. Neurol. Neurosci. 28:251–57
    [Google Scholar]
  160. Rajendran SS, Bottari D, Shareef I, Pitchaimuthu K, Sourav S et al. 2020. Biological action identification does not require early visual input for development. eNeuro 7:ENUERO.0534–19.2020
    [Google Scholar]
  161. Rauschecker JP. 1991. Mechanisms of visual plasticity: Hebb synapses, NMDA receptors and beyond. Physiol. Rev. 71:587–615
    [Google Scholar]
  162. Ruthazer ES, Baker GE, Stryker MP. 1999. Development and organization of ocular dominance bands in primary visual cortex of the sable ferret. J. Comp. Neurol. 407:151–65
    [Google Scholar]
  163. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. 2017. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40:499–538
    [Google Scholar]
  164. Shatz CJ, Stryker MP. 1978. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. 281:267–83
    [Google Scholar]
  165. Sherman SM, Spear PD. 1982. Organization of visual pathways in normal and visually deprived cats. Physiol. Rev. 62:738–855
    [Google Scholar]
  166. Sourav S, Bottari D, Kekunnaya R, Röder B. 2018. Evidence of a retinotopic organization of early visual cortex but impaired extrastriate processing in sight recovery individuals. J. Vis. 18:22
    [Google Scholar]
  167. Stafford CA. 1984. Critical period plasticity for visual function: definition in monocularly deprived rats using visually evoked potentials. Ophthalmic Physiol. Opt. 4:95–100
    [Google Scholar]
  168. Stryker MP, Lowell S 2018. Amblyopia: new molecular/pharmacological and environmental approaches. Vis. Neurosci. 35:e018
    [Google Scholar]
  169. Taylor D, Vaegan, Morris JA, Rodgers JE, Warland J 1979. Amblyopia in bilateral infantile and juvenile cataract: relationship to timing of treatment. Trans. Ophthalmol. Soc. UK 99:170–75
    [Google Scholar]
  170. Teller DY, Movshon JA. 1986. Visual development. Vis. Res. 26:1483–506
    [Google Scholar]
  171. Timney B. 1981. The development of binocular depth perception in kittens. Investig. Ophthalmol. Vis. Sci. 21:493–96
    [Google Scholar]
  172. Timney B, Mitchell DE, Giffin F. 1978. The development of vision in cats after extended periods of dark-rearing. Exp. Brain Res 31:547–60
    [Google Scholar]
  173. Tsirlin I, Colpa L, Goltz HC, Wong AM. 2015. Behavioral training as new treatment for adult amblyopia: a meta-analysis and systematic review. Investig. Ophthalmol. Vis. Sci. 56:4061–75
    [Google Scholar]
  174. Tyschen L. 2020. Animal wrongs and animal rights: why nonhuman primate research is essential for children's eye health. Am. J. Ophthalmol. 153:3560–63
    [Google Scholar]
  175. Vaegan, Taylor D 1979. Critical period for deprivation amblyopia in children. Trans. Ophthalmol. Soc. U. K. 99:432–39
    [Google Scholar]
  176. Von Noorden GK, Crawford MLJ. 1978. Morphological and physiological changes in the monkey visual system after short-term lid suture. Investig. Ophthalmol. Vis. Sci. 17:762–68
    [Google Scholar]
  177. Von Noorden GK, Crawford MLJ. 1979. The sensitive period. Trans. Ophthalmol. Soc. U. K. 99:442–46
    [Google Scholar]
  178. Von Senden M. 1960. Space and Sight transl. Heath P Glencoe, IL: Free Press
    [Google Scholar]
  179. Wattam-Bell J, Birtles D, Nyström P, von Hofsten C, Rosander K et al. 2010. Reorganization of global form and motion processing during human visual development. Curr. Biol. 20:411–15
    [Google Scholar]
  180. Wiesel TN, Hubel DH. 1963. Single-cell responses in the striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003–17
    [Google Scholar]
  181. Wiesel TN, Hubel DH. 1965. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28:1029–40
    [Google Scholar]
  182. Wilson JR, Tigges M, Boothe RG, Tigges J, Gammon JA. 1991. Effects of aphakia on the geniculostriate system of infant rhesus monkeys. Acta Anat 142:193–203
    [Google Scholar]
  183. Wilson JR, Webb SV, Sherman SM. 1977. Conditions for dominance of one eye during competitive development of central connections in visually deprived cats. Brain Res 136:277–87
    [Google Scholar]
  184. Worth C. 1929. Squint: Its Causes, Pathology, and Treatment Philadelphia: Blakiston's. , 6th ed..
    [Google Scholar]
  185. Writ. Comm. Pediatr. Eye Dis. Investig. Group (PEDIG), Repka MX, Dean TW, Kraker RT, Bothun ED et al. 2019. Visual acuity and ophthalmic outcomes in the year after cataract surgery among children younger than 13 years. JAMA Ophthalmol. 137:817–24
    [Google Scholar]
  186. Yamamoto M, Dogru M, Nakamura M, Shirabe H, Tsukahara Y, Sekiya Y. 1998. Visual function following congenital cataract surgery. Jpn. J. Ophthalmol. 42:411–16
    [Google Scholar]
  187. Zhou J, He Z, Wu Y, Chen Y, Chen X et al. 2019. Inverse occlusion: a binocularly motivated treatment for amblyopia. Neural Plast. 2019:5157628
    [Google Scholar]
/content/journals/10.1146/annurev-vision-090721-110411
Loading
/content/journals/10.1146/annurev-vision-090721-110411
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error