Photoreceptors have been the most intensively studied retinal cell type. Early lineage studies showed that photoreceptors are produced by retinal progenitor cells (RPCs) that produce only photoreceptor cells and by RPCs that produce both photoreceptor cells and other retinal cell types. More recent lineage studies have shown that there are intrinsic, molecular differences among these RPCs and that these molecular differences operate in gene regulatory networks (GRNs) that lead to the choice of the rod versus the cone fate. In addition, there are GRNs that lead to the choice of a photoreceptor fate and that of another retinal cell type. An example of such a GRN is one that drives the binary fate choice between a rod photoreceptor and bipolar cell. This GRN has many elements, including both feedforward and feedback regulatory loops, highlighting the complexity of such networks. This and other examples of retinal cell fate determination are reviewed here, focusing on the events that direct the choice of rod and cone photoreceptor fate.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akagi T, Inoue T, Miyoshi G, Bessho Y, Takahashi M. et al. 2004. Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J. Biol. Chem. 279:2728492–98 [Google Scholar]
  2. Akhmedov NB, Piriev NI, Chang B, Rapoport AL, Hawes NL. et al. 2000. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. PNAS 97:105551–56 [Google Scholar]
  3. Allison WT, Dann SG, Veldhoen KM, Hawryshyn CW. 2006. Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J. Comp. Neurol. 499:5702–15 [Google Scholar]
  4. Altshuler D, Lo Turco JJ, Cepko CL. 1991. Specification of cell type in the vertebrate retina. Development of the Visual System DM-K Lam, CJ Shatz 37–58 Cambridge, MA: MIT Press [Google Scholar]
  5. Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers PH, Jamrich M. 2004. Regulation of vertebrate eye development by Rx genes. Int. J. Dev. Biol. 48:761–70 [Google Scholar]
  6. Bao Z-Z, Cepko CL. 1997. The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci. 17:41425–34 [Google Scholar]
  7. Béby F, Housset M, Fossat N, Le Greneur C, Flamant F. et al. 2010. Otx2 gene deletion in adult mouse retina induces rapid RPE dystrophy and slow photoreceptor degeneration. PLOS ONE 5:7e11673 [Google Scholar]
  8. Behesti H, Holt JK, Sowden JC. 2006. The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup. BMC Dev. Biol. 6:62 [Google Scholar]
  9. Beier KT, Samson MES, Matsuda T, Cepko CL. 2011. Conditional expression of the TVA receptor allows clonal analysis of descendents from Cre-expressing progenitor cells. Dev. Biol. 353:2309–20 [Google Scholar]
  10. Belecky-Adams T, Cook B, Adler R. 1996. Correlations between terminal mitosis and differentiated fate of retinal precursor cells in vivo and in vitro: analysis with the “window-labeling” technique. Dev. Biol. 178:2304–15 [Google Scholar]
  11. Bernard C, Kim H-T, Torero Ibad R, Lee EJ, Simonutti M. et al. 2014. Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes. Hum. Mol. Genet. 23:71742–53 [Google Scholar]
  12. Brzezinski JA IV, Kim EJ, Johnson JE, Reh TA. 2011. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138:163519–31 [Google Scholar]
  13. Brzezinski JA IV, Lamba DA, Reh TA. 2010. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 137:4619–29 [Google Scholar]
  14. Brzezinski JA IV, Uoon Park K, Reh TA. 2013. Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Dev. Biol. 384:2194–204 [Google Scholar]
  15. Busskamp V, Krol J, Nelidova D, Daum J, Szikra T. et al. 2014. miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function. Neuron 83:3586–600 [Google Scholar]
  16. Cai L, Morrow EM, Cepko CL. 2000. Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development 127:143021–30 [Google Scholar]
  17. Carter-Dawson LD, LaVail MM. 1979. Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J. Comp. Neurol. 188:2263–72 [Google Scholar]
  18. Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C. et al. 2006. Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev. Cell 11:6831–44 [Google Scholar]
  19. Cepko C. 2014. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 15:9615–27 [Google Scholar]
  20. Chang DH, Calame KL. 2002. The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech. Dev. 117:1–2305–9 [Google Scholar]
  21. Chen C-MA, Cepko CL. 2002. The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation. Development 129:235363–75 [Google Scholar]
  22. Chen J, Rattner A, Nathans J. 2005. The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J. Neurosci. 25:1118–29 [Google Scholar]
  23. Chen S, Wang Q-L, Nie Z, Sun H, Lennon G. et al. 1997. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:51017–30 [Google Scholar]
  24. Cheng CL, Flamarique IN. 2007. Chromatic organization of cone photoreceptors in the retina of rainbow trout: Single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J. Exp. Biol. 210:4123–35 [Google Scholar]
  25. Cheng CL, Gan KJ, Flamarique IN. 2009. Thyroid hormone induces a time-dependent opsin switch in the retina of salmonid fishes. Investig. Ophthalmol. Vis. Sci. 50:63024–32 [Google Scholar]
  26. Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL. 2011. NeuroD factors regulate cell fate and neurite stratification in the developing retina. J. Neurosci. 31:207365–79 [Google Scholar]
  27. Corbo JC, Cepko CL. 2005. A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced S-cone syndrome. PLOS Genet. 1:2e11 [Google Scholar]
  28. Corbo JC, Lawrence KA, Karlstetter M, Myers CA, Abdelaziz M. et al. 2010. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors. Genome Res. 20:111512–25 [Google Scholar]
  29. Daniele LL, Lillo C, Lyubarsky AL, Nikonov SS, Philp N. et al. 2005. Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse. Investig. Ophthalmol. Vis. Sci. 46:62156–67 [Google Scholar]
  30. Davis RL, Turner DL. 2001. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20:588342–57 [Google Scholar]
  31. De la Huerta I, Kim I-J, Voinescu PE, Sanes JR. 2012. Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. PNAS 109:4317663–68 [Google Scholar]
  32. Dorval KM, Bobechko BP, Fujieda H, Chen S, Zack DJ, Bremner R. 2006. CHX10 targets a subset of photoreceptor genes. J. Biol. Chem. 281:2744–51 [Google Scholar]
  33. Elliott J, Jolicoeur C, Ramamurthy V, Cayouette M. 2008. Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60:126–39 [Google Scholar]
  34. Emerson MM, Cepko CL. 2011. Identification of a retina-specific Otx2 enhancer element active in immature developing photoreceptors. Dev. Biol. 360:1241–55 [Google Scholar]
  35. Emerson MM, Surzenko N, Goetz JJ, Trimarchi J, Cepko CL. 2013. The Otx2 and Onecut factors promote cone photoreceptor and horizontal cell genesis over rod photoreceptors. Dev. Cell 26:59–72 [Google Scholar]
  36. Euler T, Wässle H. 1995. Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol. 361:3461–78 [Google Scholar]
  37. Fekete DM, Perez-Miguelsanz J, Ryder EF, Cepko CL. 1994. Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev. Biol. 166:2666–82 [Google Scholar]
  38. Forrest D, Swaroop A. 2012. Minireview: the role of nuclear receptors in photoreceptor differentiation and disease. Mol. Endocrinol. 26:6905–15 [Google Scholar]
  39. Fujieda H, Bremner R, Mears AJ, Sasaki H. 2009. Retinoic acid receptor-related orphan receptor α regulates a subset of cone genes during mouse retinal development. J. Neurochem. 108:191–101 [Google Scholar]
  40. Furukawa T, Hurley JB, Kawamura S. 2014. Vertebrate Photoreceptors: Functional Molecular Bases Tokyo: Springer [Google Scholar]
  41. Furukawa T, Kozak CA, Cepko CL. 1997a. rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. PNAS 94:73088–93 [Google Scholar]
  42. Furukawa T, Morrow EM, Cepko CL. 1997b. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:4531–41 [Google Scholar]
  43. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL. 1999. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 23:4466–70 [Google Scholar]
  44. Furukawa T, Mukherjee S, Bao Z-Z, Morrow EM, Cepko CL. 2000. rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron 26:2383–94 [Google Scholar]
  45. Gibson-Brown JJ, Agulnik SI, Silver LM, Papaioannou VE. 1998. Expression of T-box genes Tbx2Tbx5 during chick organogenesis. Mech. Dev. 74:1–2165–69 [Google Scholar]
  46. Godinho L, Williams PR, Claassen Y, Provost E, Leach SD. et al. 2007. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron 56:4597–603 [Google Scholar]
  47. Green ES, Stubbs JL, Levine EM. 2003. Genetic rescue of cell number in a mouse model of microphthalmia: interactions between Chx10 and G1-phase cell cycle regulators. Development 130:3539–52 [Google Scholar]
  48. Gross JM, Dowling JE. 2005. Tbx2b is essential for neuronal differentiation along the dorsal/ventral axis of the zebrafish retina. PNAS 102:124371–76 [Google Scholar]
  49. Hafler BP, Surzenko N, Beier KT, Punzo C, Trimarchi JM. et al. 2012. Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. PNAS 109:207882–87 [Google Scholar]
  50. Haider NB, Mollema N, Gaule M, Yuan Y, Sachs AJ. et al. 2009. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction. Exp. Eye Res. 89:3365–72 [Google Scholar]
  51. Haider NB, Naggert J, Nishina PM. 2001. Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum. Mol. Genet. 10:161619–26 [Google Scholar]
  52. Hatakeyama J, Tomita K, Inoue T, Kageyama R. 2001. Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128:81313–22 [Google Scholar]
  53. He J, Zhang G, Almeida AD, Cayouette M, Simons BD, Harris WA. 2012. How variable clones build an invariant retina. Neuron 75:5786–98 [Google Scholar]
  54. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:7461168–74 [Google Scholar]
  55. Hernandez J, Matter-Sadzinski L, Skowronska-Krawczyk D, Chiodini F, Alliod C. et al. 2007. Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis. J. Biol. Chem. 282:5237894–905 [Google Scholar]
  56. Hobert O. 2008. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. PNAS 105:5120067–71 [Google Scholar]
  57. Hsiau TH-C, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC. 2007. The cis-regulatory logic of the mammalian photoreceptor transcriptional network. PLOS ONE 2:7e643 [Google Scholar]
  58. Hutcheson DA, Hanson MI, Moore KB, Le TT, Brown NL, Vetter ML. 2005. bHLH-dependent and -independent modes of Ath5 gene regulation during retinal development. Development 132:4829–39 [Google Scholar]
  59. Jadhav AP, Mason HA, Cepko CL. 2006. Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133:5913–23 [Google Scholar]
  60. Jia L, Oh ECT, Ng L, Srinivas M, Brooks M. et al. 2009. Retinoid-related orphan nuclear receptor RORβ is an early-acting factor in rod photoreceptor development. PNAS 106:4117534–39 [Google Scholar]
  61. Kanekar S, Perron M, Dorsky R, Harris WA, Jan LY. et al. 1997. Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19:5981–94 [Google Scholar]
  62. Katoh K, Omori Y, Onishi A, Sato S, Kondo M, Furukawa T. 2010. Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J. Neurosci. 30:196515–26 [Google Scholar]
  63. Kim DS, Matsuda T, Cepko CL. 2008. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J. Neurosci. 28:317748–64 [Google Scholar]
  64. Kimura A, Singh D, Wawrousek EF, Kikuchi M, Nakamura M, Shinohara T. 2000. Both PCE-1/RX and OTX/CRX interactions are necessary for photoreceptor-specific gene expression. J. Biol. Chem. 275:21152–60 [Google Scholar]
  65. Koike C, Nishida A, Ueno S, Saito H, Sanuki R. et al. 2007. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol. Cell. Biol. 27:238318–29 [Google Scholar]
  66. LaVail MM, Rapaport DH, Rakic P. 2001. Cytogenesis in the monkey retina. J. Comp. Neurol. 309:186–114 [Google Scholar]
  67. Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. 2004. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43:6795–807 [Google Scholar]
  68. Li X, Chen Z, Desplan C. 2013. Temporal patterning of neural progenitors in Drosophila. Curr. Top. Dev. Biol. 105:69–96 [Google Scholar]
  69. Lin B, Masland RH. 2006. Populations of wide-field amacrine cells in the mouse retina. J. Comp. Neurol. 499:5797–809 [Google Scholar]
  70. Liu Y, Shen Y-C, Rest JS, Raymond PA, Zack DJ. 2001. Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene. Investig. Ophthalmol. Vis. Sci. 42:2481–87 [Google Scholar]
  71. Livne-bar I, Pacal M, Cheung MC, Hankin M, Trogadis J. et al. 2006. Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. PNAS 103:134988–93 [Google Scholar]
  72. Luo H, Jin K, Xie Z, Qiu F, Li S. et al. 2012. Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors. PNAS 109:9E553–62 [Google Scholar]
  73. MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. 1999. The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J. Comp. Neurol. 413:2305–26 [Google Scholar]
  74. Madelaine R, Blader P. 2011. A cluster of non-redundant Ngn1 binding sites is required for regulation of deltaA expression in zebrafish. Dev. Biol. 350:1198–207 [Google Scholar]
  75. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:2266–80 [Google Scholar]
  76. Mathers PH, Grinberg A, Mahon KA, Jamrich M. 1997. The Rx homeobox gene is essential for vertebrate eye development. Nature 387:6633603–7 [Google Scholar]
  77. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA. et al. 2001. Nrl is required for rod photoreceptor development. Nat. Genet. 29:4447–52 [Google Scholar]
  78. Mizeracka K, DeMaso CR, Cepko CL. 2013a. Notch1 is required in newly postmitotic cells to inhibit the rod photoreceptor fate. Development 140:3188–97 [Google Scholar]
  79. Mizeracka K, Trimarchi JM, Stadler MB, Cepko CL. 2013b. Analysis of gene expression in wild-type and Notch1 mutant retinal cells by single cell profiling. Dev. Dyn. 242:1147–59 [Google Scholar]
  80. Montana CL, Lawrence KA, Williams NL, Tran NM, Peng G-H. et al. 2011. Transcriptional regulation of neural retina leucine zipper (Nrl), a photoreceptor cell fate determinant. J. Biol. Chem. 286:4236921–31 [Google Scholar]
  81. Morrow EM, Furukawa T, Lee JE, Cepko CL. 1999. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:123–36 [Google Scholar]
  82. Morrow EM, Furukawa T, Raviola E, Cepko CL. 2005. Synaptogenesis and outer segment formation are perturbed in the neural retina of Crx mutant mice. BMC Neurosci. 6:5 [Google Scholar]
  83. Muranishi Y, Terada K, Furukawa T. 2012. An essential role for Rax in retina and neuroendocrine system development. Dev. Growth Differ. 54:3341–48 [Google Scholar]
  84. Muranishi Y, Terada K, Inoue T, Katoh K, Tsujii T. et al. 2011. An essential role for RAX homeoprotein and NOTCH–HES signaling in Otx2 expression in embryonic retinal photoreceptor cell fate determination. J. Neurosci. 31:16792–807 [Google Scholar]
  85. Nakamura K, Harada C, Namekata K, Harada T. 2006. Expression of olig2 in retinal progenitor cells. Neuroreport 17:4345–49 [Google Scholar]
  86. Nelson BR, Gumuscu B, Hartman BH, Reh TA. 2006. Notch activity is downregulated just prior to retinal ganglion cell differentiation. Dev. Neurosci. 28:128–41 [Google Scholar]
  87. Nelson BR, Hartman BH, Georgi SA, Lan MS, Reh TA. 2007. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304:2479–98 [Google Scholar]
  88. Nelson BR, Hartman BH, Ray CA, Hayashi T, Bermingham-McDonogh O, Reh TA. 2009. Acheate-scute like 1 (Ascl1) is required for normal Delta-like (Dll) gene expression and Notch signaling during retinal development. Dev. Dyn. 238:92163–78 [Google Scholar]
  89. Nelson BR, Reh TA. 2008. Relationship between Delta-like and proneural bHLH genes during chick retinal development. Dev. Dyn. 237:61565–80 [Google Scholar]
  90. Nelson SM, Park L, Stenkamp DL. 2009. Retinal homeobox 1 is required for retinal neurogenesis and photoreceptor differentiation in embryonic zebrafish. Dev. Biol. 328:124–39 [Google Scholar]
  91. Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C. et al. 2001. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27:194–98 [Google Scholar]
  92. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S. et al. 2003. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6:121255–63 [Google Scholar]
  93. Ochi H, Sakagami K, Ishii A, Morita N, Nishiuchi M. et al. 2004. Temporal expression of L-Maf and RaxL in developing chicken retina are arranged into mosaic pattern. Gene Expr. Patterns 4:5489–94 [Google Scholar]
  94. Ochocinska MJ, Hitchcock PF. 2009. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish. Mech. Dev. 126:3–4128–41 [Google Scholar]
  95. Onishi A, Peng G-H, Hsu C, Alexis U, Chen S, Blackshaw S. 2009. Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61:2234–46 [Google Scholar]
  96. Onishi A, Peng G-H, Poth EM, Lee DA, Chen J. et al. 2010. The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival. PNAS 107:2511579–84 [Google Scholar]
  97. Pearson BJ, Doe CQ. 2004. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20:619–47 [Google Scholar]
  98. Powell LM, Jarman AP. 2008. Context dependence of proneural bHLH proteins. Curr. Opin. Genet. Dev. 18:5411–17 [Google Scholar]
  99. Raj A, van Oudenaarden A. 2009. Single-molecule approaches to stochastic gene expression. Annu. Rev. Biophys. 38:255–70 [Google Scholar]
  100. Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM. 2004. Timing and topography of cell genesis in the rat retina. J. Comp. Neurol. 474:2304–24 [Google Scholar]
  101. Reese BE, Necessary BD, Tam PPL, Faulkner-Jones B, Tan S-S. 1999. Clonal expansion and cell dispersion in the developing mouse retina. Eur. J. Neurosci. 11:82965–78 [Google Scholar]
  102. Riesenberg AN, Liu Z, Kopan R, Brown NL. 2009. Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J. Neurosci. 29:4112865–77 [Google Scholar]
  103. Roberts MR, Hendrickson A, McGuire CR, Reh TA. 2006. Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. Investig. Ophthalmol. Vis. Sci. 46:82897–904 [Google Scholar]
  104. Rocha SF, Lopes SS, Gossler A, Henrique D. 2009. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev. Biol. 328:154–65 [Google Scholar]
  105. Rompani SB, Cepko CL. 2008. Retinal progenitor cells can produce restricted subsets of horizontal cells. PNAS 105:1192–97 [Google Scholar]
  106. Roorda A, Metha AB, Lennie P, Williams DR. 2001. Packing arrangement of the three cone classes in primate retina. Vis. Res. 41:10–111291–306 [Google Scholar]
  107. Rowan S, Cepko CL. 2005. A POU factor binding site upstream of the Chx10 homeobox gene is required for Chx10 expression in subsets of retinal progenitor cells and bipolar cells. Dev. Biol. 281:2240–55 [Google Scholar]
  108. Shibasaki K, Takebayashi H, Ikenaka K, Feng L, Gan L. 2007. Expression of the basic helix–loop–factor Olig2 in the developing retina: Olig2 as a new marker for retinal progenitors and late-born cells. Gene Expr. Patterns 7:1–257–65 [Google Scholar]
  109. Sidman RL. 1961. Histogenesis of mouse retina studied with thymidine-H3. The Structure of the Eye KG Sniolscr 487–506 New York: Academic [Google Scholar]
  110. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P. et al. 2007. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol. Biol. 7:33 [Google Scholar]
  111. Sjöberg M, Vennström B, Forrest D. 1992. Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for α and N-terminal variant β receptors. Development 114:139–47 [Google Scholar]
  112. Smallwood PM, Wang Y, Nathans J. 2002. Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. PNAS 99:21008–11 [Google Scholar]
  113. Sowden JC, Holt JKL, Meins M, Smith HK, Bhattacharya SS. 2001. Expression of Drosophila omb-related T-box genes in the developing human and mouse neural retina. Investig. Ophthalmol. Vis. Sci. 42:133095–102 [Google Scholar]
  114. Spana EP, Doe CQ. 1996. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17:121–26 [Google Scholar]
  115. Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M. et al. 2008. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134:3508–20 [Google Scholar]
  116. Suzuki SC, Bleckert A, Williams PR, Takechi M, Kawamura S, Wong ROL. 2013. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. PNAS 110:3715109–14 [Google Scholar]
  117. Swain PK, Hicks D, Mears AJ, Apel IJ, Smith JE. et al. 2001. Multiple phosphorylated isoforms of NRL are expressed in rod photoreceptors. J. Biol. Chem. 276:3936824–30 [Google Scholar]
  118. Swaroop A, Kim D, Forrest D. 2010. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 11:8563–76 [Google Scholar]
  119. Swaroop A, Xu J, Pawar H, Jackson A, Skolnick C, Agarwal N. 1992. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. PNAS 89:1266–70 [Google Scholar]
  120. Takabatake Y, Takabatake T, Takeshima K. 2000. Conserved and divergent expression of T-box genes Tbx2-Tbx5 in Xenopus. Mech. Dev. 91:1–2433–37 [Google Scholar]
  121. Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R. 2000. Mammalian achaetescute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19:205460–72 [Google Scholar]
  122. Trimarchi JM, Harpavat S, Billings NA, Cepko CL. 2008a. Thyroid hormone components are expressed in three sequential waves during development of the chick retina. BMC Dev. Biol. 8:101 [Google Scholar]
  123. Trimarchi JM, Stadler MB, Cepko CL. 2008b. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLOS ONE 3:2e1588 [Google Scholar]
  124. Turner DL, Cepko CL. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:6126131–36 [Google Scholar]
  125. Turner DL, Snyder EY, Cepko CL. 1990. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:6833–45 [Google Scholar]
  126. Vetter ML, Brown NL. 2001. The role of basic helix-loop-helix genes in vertebrate retinogenesis. Semin. Cell Dev. Biol. 12:6491–98 [Google Scholar]
  127. Wang JC, Harris WA. 2005. The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification. Dev. Biol. 285:1101–15 [Google Scholar]
  128. Wang S, Sengel C, Emerson MM, Cepko CL. 2014. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev. Cell 30:5513–27 [Google Scholar]
  129. Wang Y, Smallwood PM, Cowan M, Blesh D, Lawler A, Nathans J. 1999. Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. PNAS 96:95251–56 [Google Scholar]
  130. Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C. 2006. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:7081174–80 [Google Scholar]
  131. Wong LL, Rapaport DH. 2009. Defining retinal progenitor cell competence in Xenopus laevis by clonal analysis. Development 136:101707–15 [Google Scholar]
  132. Wu H-Y, Perron M, Hollemann T. 2009. The role of Xenopus Rx-L in photoreceptor cell determination. Dev. Biol. 327:2352–65 [Google Scholar]
  133. Yan R-T, He L, Wang S-Z. 2009. Pro-photoreceptor activity of chick neurogenin1. Investig. Ophthalmol. Vis. Sci. 50:125567–76 [Google Scholar]
  134. Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R. 2006. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133:71367–78 [Google Scholar]
  135. Yoshida S, Mears AJ, Friedman JS, Carter T, He S. et al. 2004. Expression profiling of the developing and mature Nrl−/− mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Hum. Mol. Genet. 13:141487–503 [Google Scholar]
  136. Young RW. 1985. Cell differentiation in the retina of the mouse. Anat. Rec. 212:2199–205 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error