1932

Abstract

Receptive fields are a core property of cortical organization. Modern neuroimaging allows routine access to visual population receptive fields (pRFs), enabling investigations of clinical disorders. Yet how the underlying neural circuitry operates is controversial. The controversy surrounds observations that measurements of pRFs can change in healthy adults as well as in patients with a range of ophthalmological and neurological disorders. The debate relates to the balance between plasticity and stability of the underlying neural circuitry. We propose that to move the debate forward, the field needs to define the implied mechanism. First, we review the pRF changes in both healthy subjects and those with clinical disorders. Then, we propose a computational model that describes how pRFs can change in healthy humans. We assert that we can correctly interpret the pRF changes in clinical disorders only if we establish the capabilities and limitations of pRF dynamics in healthy humans with mechanistic models that provide quantitative predictions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-033948
2018-09-15
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-033948.html?itemId=/content/journals/10.1146/annurev-vision-091517-033948&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson EJ, Tibber MS, Schwarzkopf DS, Shergill SS, Fernandez-Egea E et al. 2017. Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds. J. Neurosci. 37:1546–56
    [Google Scholar]
  2. Anton-Erxleben K, Carrasco M 2013. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 14:188–200
    [Google Scholar]
  3. Baker CI, Peli E, Knouf N, Kanwisher NG 2005. Reorganization of visual processing in macular degeneration. J. Neurosci. 25:614–18
    [Google Scholar]
  4. Barton B, Brewer AA 2015. fMRI of the rod scotoma elucidates cortical rod pathways and implications for lesion measurements. PNAS 112:5201–6
    [Google Scholar]
  5. Baseler HA, Brewer AA, Sharpe LT, Morland AB, Jagle H, Wandell BA 2002. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nat. Neurosci. 5:364–70
    [Google Scholar]
  6. Baseler HA, Gouws A, Haak KV, Racey C, Crossland MD et al. 2011. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14:649–55
    [Google Scholar]
  7. Binda P, Thomas JM, Boynton GM, Fine I 2013. Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping. J. Vis. 13:713
    [Google Scholar]
  8. Braitenberg V, Schuz A 1998. Cortex: Statistics and Geometry of Neuronal Connectivity Berlin: Springer-Verlag. , 2nd ed..
    [Google Scholar]
  9. Brewer AA, Barton B 2012. Effects of healthy aging on human primary visual cortex. Health 4:695–702
    [Google Scholar]
  10. Brewer AA, Barton B 2014. Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields. Front. Psychol. 5:74
    [Google Scholar]
  11. Calford MB, Chino YM, Das A, Eysel UT, Gilbert CD et al. 2005. Neuroscience: rewiring the adult brain. Nature 438:E3
    [Google Scholar]
  12. Cheong SK, Tailby C, Solomon SG, Martin PR 2013. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 33:6864–76
    [Google Scholar]
  13. Clavagnier S, Dumoulin SO, Hess RF 2015. Is the cortical deficit in amblyopia due to reduced cortical magnification, loss of neural resolution, or neural disorganization. ? J. Neurosci. 35:14740–55
    [Google Scholar]
  14. Dakin S, Carlin P, Hemsley D 2005. Weak suppression of visual context in chronic schizophrenia. Curr. Biol. 15:R822–24
    [Google Scholar]
  15. de Haas B, Schwarzkopf DS, Anderson EJ, Rees G 2014. Perceptual load affects spatial tuning of neuronal populations in human early visual cortex. Curr. Biol. 24:R66–67
    [Google Scholar]
  16. Dell'Osso LF, Daroff RB 1998. Two additional scenarios for see-saw nystagmus: achiasma and hemichiasma. J. Neuro-Ophthalmol. 18:112–13
    [Google Scholar]
  17. Dilks DD, Baker CI, Liu Y, Kanwisher N 2009. “Referred visual sensations”: rapid perceptual elongation after visual cortical deprivation. J. Neurosci. 29:8960–64
    [Google Scholar]
  18. Dilks DD, Serences JT, Rosenau BJ, Yantis S, McCloskey M 2007. Human adult cortical reorganization and consequent visual distortion. J. Neurosci. 27:9585–94
    [Google Scholar]
  19. Dumoulin SO, Hess RF, May KA, Harvey BM, Rokers B, Barendregt M 2014. Contour extracting networks in early extrastriate cortex. J. Vis. 14:518
    [Google Scholar]
  20. Dumoulin SO, Jirsch JD, Bernasconi A 2007. Functional organization of human visual cortex in occipital polymicrogyria. Hum. Brain Mapp. 28:1302–12
    [Google Scholar]
  21. Dumoulin SO, Wandell BA 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:647–60
    [Google Scholar]
  22. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH et al. 1994. fMRI of human visual cortex. Nature 369:525
    [Google Scholar]
  23. Field DJ, Hayes A, Hess RF 1993. Contour integration by the human visual system: evidence for a local “association field. .” Vis. Res. 33:173–93
    [Google Scholar]
  24. Fracasso A, Koenraads Y, Porro GL, Dumoulin SO 2016.a Bilateral population receptive fields in congenital hemihydranencephaly. Ophthalmic Physiol. Opt. 36:324–34
    [Google Scholar]
  25. Fracasso A, Petridou N, Dumoulin SO 2016.b Systematic variation of population receptive field properties across cortical depth in human visual cortex. NeuroImage 139:427–38
    [Google Scholar]
  26. Gilbert CD, Das A, Ito M, Kapadia MK, Westheimer G 1996. Cortical dynamics and visual perception. Cold Spring Harb. Symp. Quant. Biol. 61:105–13
    [Google Scholar]
  27. Gilbert CD, Wiesel TN 1992. Receptive field dynamics in adult primary visual cortex. Nature 356:150–52
    [Google Scholar]
  28. Greene CA, Dumoulin SO, Harvey BM, Ress D 2014. Measurement of population receptive fields in human early visual cortex using back-projection tomography. J. Vis. 14:117
    [Google Scholar]
  29. Haak KV, Cornelissen FW, Morland AB 2012. Population receptive field dynamics in human visual cortex. PLOS ONE 7:e37686
    [Google Scholar]
  30. Haak KV, Langers DR, Renken R, van Dijk P, Borgstein J, Cornelissen FW 2014. Abnormal visual field maps in human cortex: a mini-review and a case report. Cortex 56:14–25
    [Google Scholar]
  31. Haak KV, Winawer J, Harvey BM, Renken R, Dumoulin SO et al. 2013. Connective field modeling. NeuroImage 66:376–84
    [Google Scholar]
  32. Harvey BM, Braddick OJ 2008. Psychophysical differences in processing of global motion and form detection and position discrimination. J. Vis. 8:714
    [Google Scholar]
  33. Harvey BM, Dumoulin SO 2011. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J. Neurosci. 31:13604–12
    [Google Scholar]
  34. Harvey BM, Dumoulin SO 2016. Visual motion transforms visual space representations similarly throughout the human visual hierarchy. NeuroImage 127:173–85
    [Google Scholar]
  35. Harvey BM, Dumoulin SO 2017. A network of topographic numerosity maps in human association cortex. Nat. Hum. Behav. 1:36
    [Google Scholar]
  36. Harvey BM, Fracasso A, Petridou N, Dumoulin SO 2015. Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. PNAS 112:13525–30
    [Google Scholar]
  37. Harvey BM, Klein BP, Petridou N, Dumoulin SO 2013.a Topographic representation of numerosity in the human parietal cortex. Science 341:1123–26
    [Google Scholar]
  38. Harvey BM, Vansteensel MJ, Ferrier CH, Petridou N, Zuiderbaan W et al. 2013.b Frequency specific spatial interactions in human electrocorticography: V1 alpha oscillations reflect surround suppression. NeuroImage 65:424–32
    [Google Scholar]
  39. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30
    [Google Scholar]
  40. He D, Mo C, Wang Y, Fang F 2015. Position shifts of fMRI-based population receptive fields in human visual cortex induced by Ponzo illusion. Exp. Brain Res. 233:3535–41
    [Google Scholar]
  41. Hoffmann MB, Dumoulin SO 2015. Congenital visual pathway abnormalities: a window onto cortical stability and plasticity. Trends Neurosci 38:55–65
    [Google Scholar]
  42. Hoffmann MB, Kaule FR, Levin N, Masuda Y, Kumar A et al. 2012. Plasticity and stability of the visual system in human achiasma. Neuron 75:393–401
    [Google Scholar]
  43. Hoffmann MB, Tolhurst DJ, Moore AT, Morland AB 2003. Organization of the visual cortex in human albinism. J. Neurosci. 23:8921–30
    [Google Scholar]
  44. Hummer A, Ritter M, Tik M, Ledolter AA, Woletz M et al. 2016. Eyetracker-based gaze correction for robust mapping of population receptive fields. NeuroImage 142:211–24
    [Google Scholar]
  45. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL 2016. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532:453–58
    [Google Scholar]
  46. Huth AG, Nishimoto S, Vu AT, Gallant JL 2012. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76:1210–24
    [Google Scholar]
  47. Jancke D, Erlhagen W, Schoner G, Dinse HR 2004. Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. J. Physiol. 556:971–82
    [Google Scholar]
  48. Kay KN, Naselaris T, Prenger RJ, Gallant JL 2008. Identifying natural images from human brain activity. Nature 452:352–55
    [Google Scholar]
  49. Kay KN, Weiner KS, Grill-Spector K 2015. Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25:595–600
    [Google Scholar]
  50. Kay KN, Winawer J, Mezer A, Wandell BA 2013. Compressive spatial summation in human visual cortex. J. Neurophysiol. 110:481–94
    [Google Scholar]
  51. Kay KN, Yeatman JD 2017. Bottom-up and top-down computations in word- and face-selective cortex. eLife 6:e22341
    [Google Scholar]
  52. Klein BP, Harvey BM, Dumoulin SO 2014. Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84:227–37
    [Google Scholar]
  53. Knapen T, Swisher JD, Tong F, Cavanagh P 2016. Oculomotor remapping of visual information to foveal retinotopic cortex. Front. Syst. Neurosci. 10:54
    [Google Scholar]
  54. Larsson J, Heeger DJ 2006. Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci. 26:13128–42
    [Google Scholar]
  55. Lee S, Papanikolaou A, Logothetis NK, Smirnakis SM, Keliris GA 2013. A new method for estimating population receptive field topography in visual cortex. NeuroImage 81:144–57
    [Google Scholar]
  56. Leibowitz HM, Krueger DE, Maunder LR, Milton RC, Kini MM et al. 1980. The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv. Ophthalmol. 24:335–610
    [Google Scholar]
  57. Levin N, Dumoulin SO, Winawer J, Dougherty RF, Wandell BA 2010. Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65:21–31
    [Google Scholar]
  58. Li X, Dumoulin SO, Mansouri B, Hess RF 2007. The fidelity of the cortical retinotopic map in human amblyopia. Eur. J. Neurosci. 25:1265–77
    [Google Scholar]
  59. Machens CK, Wehr MS, Zador AM 2004. Linearity of cortical receptive fields measured with natural sounds. J. Neurosci. 24:1089–100
    [Google Scholar]
  60. Mante V, Frazor RA, Bonin V, Geisler WS, Carandini M 2005. Independence of luminance and contrast in natural scenes and in the early visual system. Nat. Neurosci. 8:1690–97
    [Google Scholar]
  61. Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA 2008. V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb. Cortex 18:2483–93
    [Google Scholar]
  62. Masuda Y, Horiguchi H, Dumoulin SO, Furuta A, Miyauchi S et al. 2010. Task-dependent V1 responses in human retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 51:5356–64
    [Google Scholar]
  63. Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y et al. 2008. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60:915–29
    [Google Scholar]
  64. Muckli L, Naumer MJ, Singer W 2009. Bilateral visual field maps in a patient with only one hemisphere. PNAS 106:13034–39
    [Google Scholar]
  65. Naselaris T, Kay KN 2015. Resolving ambiguities of MVPA using explicit models of representation. Trends Cogn. Sci. 19:551–54
    [Google Scholar]
  66. Nasiotis K, Clavagnier S, Baillet S, Pack CC 2017. High-resolution retinotopic maps estimated with magnetoencephalography. NeuroImage 145:107–17
    [Google Scholar]
  67. Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL 2011. Reconstructing visual experiences from brain activity evoked by natural movies. Curr. Biol. 21:1641–46
    [Google Scholar]
  68. Olman CA, Bao P, Engel SA, Grant AN, Purington C et al. 2016. Hemifield columns co-opt ocular dominance column structure in human achiasma. NeuroImage 164:59–66
    [Google Scholar]
  69. Papanikolaou A, Keliris GA, Lee S, Logothetis NK, Smirnakis SM 2015. Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas. NeuroImage 120:176–90
    [Google Scholar]
  70. Papanikolaou A, Keliris GA, Papageorgiou TD, Shao Y, Krapp E et al. 2014. Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects. PNAS 111:E1656–65
    [Google Scholar]
  71. Pouget A, Deneve S, Duhamel JR 2002. A computational perspective on the neural basis of multisensory spatial representations. Nat. Rev. Neurosci. 3:741–47
    [Google Scholar]
  72. Puckett AM, DeYoe EA 2015. The attentional field revealed by single-voxel modeling of fMRI time courses. J. Neurosci. 35:5030–42
    [Google Scholar]
  73. Rakic P 2002. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 3:65–71
    [Google Scholar]
  74. Reynolds JH, Heeger DJ 2009. The normalization model of attention. Neuron 61:168–85
    [Google Scholar]
  75. Salinas E, Abbott LF 2001. Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Prog. Brain Res. 130:175–90
    [Google Scholar]
  76. Schoenmakers S, Barth M, Heskes T, van Gerven M 2013. Linear reconstruction of perceived images from human brain activity. NeuroImage 83:951–61
    [Google Scholar]
  77. Schwarzkopf DS, Anderson EJ, de Haas B, White SJ, Rees G 2014. Larger extrastriate population receptive fields in autism spectrum disorders. J. Neurosci. 34:2713–24
    [Google Scholar]
  78. Schwarzkopf DS, Song C, Rees G 2011. The surface area of human V1 predicts the subjective experience of object size. Nat. Neurosci. 14:28–30
    [Google Scholar]
  79. Self MW, van Kerkoerle T, Goebel R, Roelfsema PR 2018. Benchmarking laminar fMRI: neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. NeuroImage In press. http://doi.org/10.1016/j.neuroimage.2017.06.045
    [Crossref] [Google Scholar]
  80. Senden M, Reithler J, Gijsen S, Goebel R 2014. Evaluating population receptive field estimation frameworks in terms of robustness and reproducibility. PLOS ONE 9:e114054
    [Google Scholar]
  81. Sereno MI 2005. Neuroscience: plasticity and its limits. Nature 435:288–89
    [Google Scholar]
  82. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW et al. 1995. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–93
    [Google Scholar]
  83. Sheremata SL, Silver MA 2015. Hemisphere-dependent attentional modulation of human parietal visual field representations. J. Neurosci. 35:508–17
    [Google Scholar]
  84. Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schuz A et al. 2005.a Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435:300–7
    [Google Scholar]
  85. Smirnakis SM, Schmid MC, Brewer AA, Tolias AS, Schuz A et al. 2005.b Neuroscience: rewiring the adult brain (Reply). Nature 438:E3–4
    [Google Scholar]
  86. Smith AT, Singh KD, Williams AL, Greenlee MW 2001. Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cereb. Cortex 11:1182–90
    [Google Scholar]
  87. Sprague TC, Serences JT 2013. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16:1879–87
    [Google Scholar]
  88. Stein J 2001. The magnocellular theory of developmental dyslexia. Dyslexia 7:12–36
    [Google Scholar]
  89. Stigliani, Jeska B, Grill-Spector K 2017. Encoding model of temporal processing in human visual cortex. PNAS 114:E11047–56
    [Google Scholar]
  90. St-Yves G, Naselaris T 2018. The feature-weighted receptive field: an interpretable encoding model for complex feature spaces. NeuroImage In press
    [Google Scholar]
  91. Sunness JS, Liu T, Yantis S 2004. Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. Ophthalmology 111:1595–98
    [Google Scholar]
  92. Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB et al. 2006. Inverse retinotopy: inferring the visual content of images from brain activation patterns. NeuroImage 33:1104–16
    [Google Scholar]
  93. Thomas JM, Huber E, Stecker GC, Boynton GM, Saenz M, Fine I 2015. Population receptive field estimates of human auditory cortex. NeuroImage 105:428–39
    [Google Scholar]
  94. Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK et al. 1997. Functional analysis of V3A and related areas in human visual cortex. J. Neurosci. 17:7060–78
    [Google Scholar]
  95. van Bergen RS, Ma WJ, Pratte MS, Jehee JF 2015. Sensory uncertainty decoded from visual cortex predicts behavior. Nat. Neurosci. 18:1728–30
    [Google Scholar]
  96. van Dijk JA, de Haas B, Moutsiana C, Schwarzkopf DS 2016. Intersession reliability of population receptive field estimates. NeuroImage 143:293–303
    [Google Scholar]
  97. van Es DM, Theeuwes J, Knapen T 2018. Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention. bioRxiv 147223. https://doi.org/10.1101/147223
    [Crossref]
  98. Van Essen DC, Maunsell JH 1983. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–75
    [Google Scholar]
  99. van Gerven MAJ 2017. A primer on encoding models in sensory neuroscience. J. Math. Psychol. 76:172–83
    [Google Scholar]
  100. Vanni S, Henriksson L, James AC 2005. Multifocal fMRI mapping of visual cortical areas. NeuroImage 27:95–105
    [Google Scholar]
  101. Victor JD, Apkarian P, Hirsch J, Conte MM, Packard M et al. 2000. Visual function and brain organization in non-decussating retinal–fugal fibre syndrome. Cereb. Cortex 10:2–22
    [Google Scholar]
  102. Victor JD, Purpura K, Katz E, Mao B 1994. Population encoding of spatial frequency, orientation, and color in macaque V1. J. Neurophysiol. 72:2151–66
    [Google Scholar]
  103. Vo VA, Sprague TC, Serences JT 2017. Spatial tuning shifts increase the discriminability and fidelity of population codes in visual cortex. J. Neurosci. 37:3386–401
    [Google Scholar]
  104. Wandell BA, Dumoulin SO, Brewer AA 2007. Visual field maps in human cortex. Neuron 56:366–83
    [Google Scholar]
  105. Wandell BA, Smirnakis SM 2009. Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10:873–84
    [Google Scholar]
  106. Wandell BA, Winawer J 2015. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19:349–57
    [Google Scholar]
  107. Winawer J, Kay KN, Foster BL, Rauschecker AM, Parvizi J, Wandell BA 2013. Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Curr. Biol. 23:1145–53
    [Google Scholar]
  108. Winawer J, Parvizi J 2016. Linking electrical stimulation of human primary visual cortex, size of affected cortical area, neuronal responses, and subjective experience. Neuron 92:1213–19
    [Google Scholar]
  109. Witthoft N, Poltoratski S, Nguyen M, Golarai G, Liberman A et al. 2016. Reduced spatial integration in the ventral visual cortex underlies face recognition deficits in developmental prosopagnosia. bioRxiv 051102. https://doi.org/10.1101/051102
    [Crossref]
  110. Womelsdorf T, Anton-Erxleben K, Pieper F, Treue S 2006. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat. Neurosci. 9:1156–60
    [Google Scholar]
  111. Womelsdorf T, Anton-Erxleben K, Treue S 2008. Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J. Neurosci. 28:8934–44
    [Google Scholar]
  112. Yildirim F, Carvalho J, Cornelissen FW 2017. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping. NeuroImage 164:183–93
    [Google Scholar]
  113. Yoshor D, Bosking WH, Ghose GM, Maunsell JH 2007. Receptive fields in human visual cortex mapped with surface electrodes. Cereb. Cortex 17:2293–302
    [Google Scholar]
  114. Zhou J, Benson NC, Kay K, Winawer J 2017. Compressive temporal summation in human visual cortex. J. Neurosci. 38:691–709
    [Google Scholar]
  115. Zipser K 2017. Visualizing fMRI BOLD responses to diverse naturalistic scenes using retinotopic projection. J. Vis. 17:618
    [Google Scholar]
  116. Zuiderbaan W, Harvey BM, Dumoulin SO 2012. Modeling center-surround configurations in population receptive fields using fMRI. J. Vis. 12:310
    [Google Scholar]
  117. Zuiderbaan W, Harvey BM, Dumoulin SO 2017. Image identification from brain activity using the population receptive field model. PLOS ONE 12:e0183295
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-033948
Loading
/content/journals/10.1146/annurev-vision-091517-033948
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error