1932

Abstract

Visual information processing contains two opposite needs. There is both a need to comprehend the richness of the visual world and a need to extract only pertinent visual information to guide thoughts and behavior at a given moment. I argue that these two aspects of visual processing are mediated by two complementary visual systems in the primate brain—specifically, the occipitotemporal cortex (OTC) and the posterior parietal cortex (PPC). The role of OTC in visual processing has been documented extensively by decades of neuroscience research. I review here recent evidence from human imaging and monkey neurophysiology studies to highlight the role of PPC in adaptive visual processing. I first document the diverse array of visual representations found in PPC. I then describe the adaptive nature of visual representation in PPC by contrasting visual processing in OTC and PPC and by showing that visual representations in PPC largely originate from OTC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-033954
2018-09-15
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-033954.html?itemId=/content/journals/10.1146/annurev-vision-091517-033954&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen RA, Cui H 2009. Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63:568–83
    [Google Scholar]
  2. Arcaro MJ, Pinsk MA, Li X, Kastner S 2011. Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J. Neurosci. 31:2064–78
    [Google Scholar]
  3. Balan PF, Gottlieb J 2009. Functional significance of non-spatial information in monkey lateral intraparietal area. J. Neurosci. 29:8166–76
    [Google Scholar]
  4. Bettencourt KC, Xu Y 2016.a Decoding under distraction reveals distinct occipital and parietal contributions to visual short-term memory representation. Nat. Neurosci. 19:150–57
    [Google Scholar]
  5. Bettencourt KC, Xu Y 2016.b Understanding location- and feature-based processing along the human intraparietal sulcus. J. Neurophysiol. 116:1488–97
    [Google Scholar]
  6. Bracci S, Daniels N, Op de Beeck HP 2017. Task context overrules object- and category-related representational content in the human parietal cortex. Cereb. Cortex 27:310–21
    [Google Scholar]
  7. Bray S, Arnold AEGF, Iaria G, MacQueen G 2013. Structural connectivity of visuotopic intraparietal sulcus. NeuroImage 82:137–45
    [Google Scholar]
  8. Bridge H, Thomas OM, Minini L, Cavina-Pratesi C, Milner AD et al. 2013. Structural and functional changes across the visual cortex of a patient with visual form agnosia. J. Neurosci. 33:12779–91
    [Google Scholar]
  9. Buschman TJ, Siegel M, Roy JE, Miller EK 2011. Neural substrates of cognitive capacity limitations. PNAS 108:11252–55
    [Google Scholar]
  10. Buxbaum LJ, Shapiro AD, Coslett HB 2014. Critical brain regions for tool-related and imitative actions: a componential analysis. Brain 137:1971–85
    [Google Scholar]
  11. Carey DP, Harvey M, Milner AD 1996. Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia 34:329–38
    [Google Scholar]
  12. Chafee MV, Goldman-Rakic PS 1998. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79:2919–40
    [Google Scholar]
  13. Chao LL, Martin A 2000. Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478–84
    [Google Scholar]
  14. Christophel TB, Allefeld C, Endisch C, Haynes J-D 2018. View-independent working memory representations of artificial shapes in prefrontal and posterior regions of the human brain. Cereb. Cortex 282146–61
    [Google Scholar]
  15. Christophel TB, Haynes JD 2014. Decoding complex flow-field patterns in visual working memory. NeuroImage 91:43–51
    [Google Scholar]
  16. Christophel TB, Hebart MN, Haynes JD 2012. Decoding the contents of visual short-term memory from human visual and parietal cortex. J. Neurosci. 32:12983–89
    [Google Scholar]
  17. Christophel TB, Cichy RM, Hebart MN, Haynes JD 2015. Parietal and early visual cortices encode working memory content across mental transformations. NeuroImage 106:198–206
    [Google Scholar]
  18. Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD 2017. The distributed nature of working memory. Trends Cogn. Sci. 21:111–24
    [Google Scholar]
  19. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS 2013. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16:1348–55
    [Google Scholar]
  20. Constantinidis C, Steinmetz MA 1996. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 76:1352–55
    [Google Scholar]
  21. Corbetta M, Shulman GL 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3:201–15
    [Google Scholar]
  22. Corbetta M, Shulman GL 2011. Spatial neglect and attention networks. Annu. Rev. Neurosci. 34:569–99
    [Google Scholar]
  23. Coslett HB, Saffran E 1991. Simultanagnosia: to see but not two see. Brain 114:1523–45
    [Google Scholar]
  24. Cowan N, Li D, Moffit A, Becker TM, Martin EA et al. 2011. A neural region of abstract working memory. J. Cogn. Neurosci. 23:2852–63
    [Google Scholar]
  25. Culham JC, Valyear KF 2006. Human parietal cortex in action. Curr. Opin. Neurobiol. 16:205–12
    [Google Scholar]
  26. D'Esposito M, Postle BR 2015. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66:115–42
    [Google Scholar]
  27. Duchaine B, Yovel G 2015. A revised neural framework for face processing. Annu. Rev. Vis. Sci. 1:393–416
    [Google Scholar]
  28. Duncan J 1984. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113:501–17
    [Google Scholar]
  29. Duncan J 2010. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14:172–79
    [Google Scholar]
  30. Durand JB, Peeters R, Norman JF, Todd JT, Orban GA 2009. Parietal regions processing visual 3D shape extracted from disparity. NeuroImage 46:1114–26
    [Google Scholar]
  31. Emrich SM, Johnson JS, Sutterer DW, Postle BR 2017. Comparing the effects of 10-Hz repetitive TMS on task of visual STM and attention. J. Cogn. Neurosci. 29:286–97
    [Google Scholar]
  32. Erez Y, Duncan J 2015. Discrimination of visual categories based on behavioral relevance in widespread regions of frontoparietal cortex. J. Neurosci. 35:12383–93
    [Google Scholar]
  33. Eskandar EN, Assad JA 1999. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat. Neurosci. 2:88–93
    [Google Scholar]
  34. Ester EF, Sprague TC, Serences JT 2015. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87:893–905
    [Google Scholar]
  35. Ester E, Sutterer D, Serences J, Awh E 2016. Feature-selective attentional modulations in human frontoparietal cortex. J. Neurosci. 36:8188–99
    [Google Scholar]
  36. Fanini A, Assad JA 2009. Direction selectivity of neurons in the macaque lateral intraparietal area. J. Neurophysiol. 101:289–305
    [Google Scholar]
  37. Felleman DJ, Van Essen DC 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  38. Fitzgerald JK, Freedman DJ, Assad JA 2011. Generalized associative representations in parietal cortex. Nat. Neurosci. 14:1075–79
    [Google Scholar]
  39. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS 102:9673–78
    [Google Scholar]
  40. Freedman DJ, Assad JA 2006. Experience-dependent representation of visual categories in parietal cortex. Nature 443:85–88
    [Google Scholar]
  41. Freud E, Ganel T, Avidan G, Gilaie-Dotan S 2016.a Functional dissociation between action and perception in developmental object agnosia. Cortex 76:17–27
    [Google Scholar]
  42. Freud E, Ganel T, Shelef I, Hammer MD, Avidan G, Behrmann M 2017. Three-dimensional representations of objects in dorsal cortex are dissociable from those in ventral cortex. Cereb. Cortex 27:422–34
    [Google Scholar]
  43. Freud E, Plaut DC, Behrmann M 2016.b “What” is happening in the dorsal visual pathway. Trends Cogn. Sci. 20:773–84
    [Google Scholar]
  44. Friedman-Hill SR, Robertson LC, Treisman A 1995. Parietal contribution to visual feature binding: evidence from a patient with bilateral lesions. Science 269:853–55
    [Google Scholar]
  45. Fuster JM 2001. The prefrontal cortex—an update: Time is of the essence. Neuron 30:319–33
    [Google Scholar]
  46. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M 2001. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur. J. Neurosci. 13:1572–88
    [Google Scholar]
  47. Gallivan JP, Culham JC 2015. Neural coding within human brain areas involved in actions. Curr. Opin. Neurobiol. 33:141–49
    [Google Scholar]
  48. Georgieva S, Peeters R, Kolster H, Todd JT, Orban GA 2009. The processing of three-dimensional shape from disparity in the human brain. J. Neurosci. 29:727–42
    [Google Scholar]
  49. Gilaie-Dotan S 2016. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia. Neuropsychologia 83:179–91
    [Google Scholar]
  50. Gilaie-Dotan S, Perry A, Bonneh Y, Malach R, Bentin S 2009. Seeing with profoundly deactivated mid-level visual areas: non-hierarchical functioning in the human visual cortex. Cereb. Cortex 19:1687–703
    [Google Scholar]
  51. Gillebert CR, Mantini D, Thijs V, Sunaert S, Dupont P, Vandenberghe R 2011. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain 134:1694–709
    [Google Scholar]
  52. Gnadt JW, Andersen RA 1988. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70:216–20
    [Google Scholar]
  53. Goldman-Rakic PS 1995. Cellular basis of working memory. Neuron 14:477–85
    [Google Scholar]
  54. Goodale MA 2014. How (and why) the visual control of action differs from visual perception. Proc. R. Soc. B 281:20140337
    [Google Scholar]
  55. Goodale MA, Meenan JP, Bülthoff HH et al. 1994. Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr. Biol. 4:604–10
    [Google Scholar]
  56. Goodale MA, Milner AD 1992. Separate visual pathways for perception and action. Trends Neurosci 15:20–25
    [Google Scholar]
  57. Goodale MA, Milner AD, Jakobson LS, Carey DP 1991. A neurological dissociation between perceiving objects and grasping them. Nature 349:154–56
    [Google Scholar]
  58. Gottlieb J, Balan PF 2010. Attention as a decision in information space. Trends Cogn. Sci. 14:240–48
    [Google Scholar]
  59. Gottlieb J, Snyder LH 2010. Spatial and non-spatial functions of the parietal cortex. Curr. Opin. Neurobiol. 20:731–40
    [Google Scholar]
  60. Greenberg AS, Verstynen T, Chiu YC, Yantis S, Schneider W, Behrmann M 2012. Visuotopic cortical connectivity underlying attention revealed with white-matter tractography. J. Neurosci. 32:2773–82
    [Google Scholar]
  61. Grefkes C, Fink GR 2005. The functional organization of the intraparietal sulcus in humans and monkeys. J. Anat. 207:3–17
    [Google Scholar]
  62. Harel A, Kravitz DJ, Baker CI 2014. Task context impacts visual object processing differentially across the cortex. PNAS 111:E962–71
    [Google Scholar]
  63. Harrison SA, Tong F 2009. Decoding reveals the contents of visual working memory in early visual areas. Nature 458:632–35
    [Google Scholar]
  64. Hou Y, Liu T 2012. Neural correlates of object-based attentional selection in human cortex. Neuropsychologia 50:2916–25
    [Google Scholar]
  65. Humphreys GW, Romani C, Olson A, Riddoch MJ, Duncan J 1994. Non-spatial extinction following lesions of the parietal lobe in humans. Nature 372:357–59
    [Google Scholar]
  66. Hutchinson JB, Uncapher MR, Weiner KS, Bressler DW, Silver MA et al. 2014. Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereb. Cortex 24:49–66
    [Google Scholar]
  67. Ibos G, Freedman DJ 2014. Dynamic integration of task-relevant visual features in posterior parietal cortex. Neuron 83:1468–80
    [Google Scholar]
  68. Jacob SN, Nieder A 2014. Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli. Neuron 83:226–37
    [Google Scholar]
  69. Jacob SN, Vallentin D, Nieder A 2012. Relating magnitudes: the brain's code for proportions. Trends Cogn. Sci. 16:157–66
    [Google Scholar]
  70. James TW, Culham J, Humphrey GK, Milner AD, Goodale MA 2003. Ventral occipital lesions impair object recognition but not object-directed grasping: a fMRI study. Brain 248:2463–75
    [Google Scholar]
  71. Janssen P, Scherberger H 2015. Visual guidance in control of grasping. Annu. Rev. Neurosci. 38:69–86
    [Google Scholar]
  72. Janssen P, Verhoef B, Premereur E 2018. Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision. Cortex 98:218–27
    [Google Scholar]
  73. Jeong SK, Xu Y 2013. Neural representation of targets and distractors during visual object individuation and identification. J. Cognitive Neurosci. 25:117–26
    [Google Scholar]
  74. Jeong SK, Xu Y 2016. Behaviorally relevant abstract object identity representation in the human parietal cortex. J. Neurosci. 36:1607–19
    [Google Scholar]
  75. Jeong SK, Xu Y 2017. Task-context dependent linear representation of multiple visual objects in human parietal cortex. J. Cognitive Neurosci. 29:1778–89
    [Google Scholar]
  76. Kamigaki T, Fukushima T, Miyashita Y 2009. Cognitive set reconfiguration signaled by macaque posterior parietal neurons. Neuron 61:941–51
    [Google Scholar]
  77. Kamigaki T, Fukushima T, Miyashita Y 2011. Neuronal signal dynamics during preparation and execution for behavioral shifting in macaque posterior parietal cortex. J. Cogn. Neurosci. 23:2503–20
    [Google Scholar]
  78. Kastner S, Chen Q, Jeong SK, Mruczeke REB 2017. A brief comparative review of primate posterior parietal cortex: a novel hypothesis on the human toolmaker. Neuropsychologia 105:123–34
    [Google Scholar]
  79. Kiani R, Shadlen MN 2009. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324:759–64
    [Google Scholar]
  80. Konen CS, Behrmann M, Nishimura M, Kastner S 2011. The functional neuroanatomy of object agnosia: a case study. Neuron 71:49–60
    [Google Scholar]
  81. Konen CS, Kastner S 2008.a Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J. Neurosci. 28:8361–75
    [Google Scholar]
  82. Konen CS, Kastner S 2008.b Two hierarchically organized neural systems for object information in human visual cortex. Nat. Neurosci. 11:224–31
    [Google Scholar]
  83. Kravitz DJ, Saleem KS, Baker CI, Mishkin M 2011. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12:217–30
    [Google Scholar]
  84. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:26–49
    [Google Scholar]
  85. Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC 2017. Sustained activity encoding working memories: not fully distributed. Trends Neurosci 40:328–46
    [Google Scholar]
  86. Lehky SR, Sereno AB 2007. A comparison of shape encoding in primate dorsal and ventral visual pathways. J. Neurophysiol. 97:307–19
    [Google Scholar]
  87. Lewis JW, Van Essen DC 2000. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428:112–37
    [Google Scholar]
  88. Lingnau A, Downing PE 2015. The lateral occipitotemporal cortex in action. Trends Cogn. Sci. 19:268–77
    [Google Scholar]
  89. Liu T, Hospadaruk L, Zhu DC, Gardner JL 2011. Feature-specific attentional priority signals in human cortex. J. Neurosci. 31:4484–95
    [Google Scholar]
  90. Luck SJ, Vogel EK 1997. The capacity of visual working memory for features and conjunctions. Nature 390:279–81
    [Google Scholar]
  91. MacEvoy SP, Epstein RA 2009. Decoding the representation of multiple simultaneous objects in human occipitotemporal cortex. Curr. Biol. 19:943–47
    [Google Scholar]
  92. MacEvoy SP, Epstein RA 2011. Constructing scenes from objects in human occipitotemporal cortex. Nat. Neurosci. 14:1323–29
    [Google Scholar]
  93. Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL et al. 2011. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 31:4087–100
    [Google Scholar]
  94. Mazza V 2017. Simultanagnosia and object individuation. Cogn. Neuropsychol. 34:430–39
    [Google Scholar]
  95. Milner AD 2017. How do the two visual streams interact with each other. ? Exp. Brain Res. 235:1297–308
    [Google Scholar]
  96. Mishkin M, Ungerleider LG, Macko KA 1983. Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–17
    [Google Scholar]
  97. Moeller S, Crapse T, Chang L, Tsao DY 2017. The effect of face patch microstimulation on perception of faces and objects. Nat. Neurosci. 20:743–52
    [Google Scholar]
  98. Morcos AS, Harvey CD 2016. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19:1672–81
    [Google Scholar]
  99. Mruczek REB, von Loga IS, Kastner S 2013. The representation of tool and nontool object information in the human intraparietal sulcus. J. Neurophysiol. 109:2883–96
    [Google Scholar]
  100. Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD et al. 2014. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17:1661–63
    [Google Scholar]
  101. Murray SO, Wojciulik E 2004. Attention increases neural selectivity in the human lateral occipital complex. Nat. Neurosci. 7:70–74
    [Google Scholar]
  102. O'Craven KM, Downing PE, Kanwisher N 1999. fMRI evidence for objects as the units of attentional selection. Nature 401:584–87
    [Google Scholar]
  103. Op de Beeck HP, Baker CI 2010. The neural basis of visual object learning. Trends Cogn. Sci. 14:22–30
    [Google Scholar]
  104. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA et al. 2011. Functional network organization of the human brain. Neuron 72:665–78
    [Google Scholar]
  105. Ptak R, Schnider A 2011. The attention network of the human brain: relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention. Neuropsychologia 49:3063–70
    [Google Scholar]
  106. Qi XL, Katsuki F, Meyer T, Rawley JB, Zhou X et al. 2010. Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Front. Syst. Neurosci. 4:12
    [Google Scholar]
  107. Quintana J, Fuster JM 1992. Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport 3:721–24
    [Google Scholar]
  108. Ralph MAL, Jefferies E, Patterson K, Rogers TT 2017. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18:42–55
    [Google Scholar]
  109. Reddy L, Kanwisher NG, VanRullen R 2009. Attention and biased competition in multi-voxel object representations. PNAS 106:21447–52
    [Google Scholar]
  110. Runyan CA, Piasini E, Panzeri S, Harvey CD 2017. Distinct timescales of population coding across cortex. Nature 548:92–96
    [Google Scholar]
  111. Sakai K, Miyashita Y 1991. Neural organization for the long-term memory of paired associates. Nature 354:152–55
    [Google Scholar]
  112. Salazar RF, Dotson NM, Bressler SL, Gray CM 2012. Content-specific fronto-parietal synchronization during visual working memory. Science 338:1097–100
    [Google Scholar]
  113. Sarma A, Masse NY, Wang XJ, Freedman DJ 2016. Task specific versus generalized mnemonic representations in parietal and prefrontal cortices. Nat. Neurosci. 19:143–49
    [Google Scholar]
  114. Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA 2005. Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. J. Neurosci. 25:4294–306
    [Google Scholar]
  115. Serences JT 2016. Neural mechanisms of information storage in visual short-term memory. Vis. Res. 128:53–67
    [Google Scholar]
  116. Serences JT, Ester EF, Vogel EK, Awh E 2009. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20:207–14
    [Google Scholar]
  117. Sereno AB, Maunsell JH 1998. Shape selectivity in primate lateral intraparietal cortex. Nature 395:500–3
    [Google Scholar]
  118. Sereno MI, Pitzalis S, Martinez A 2001. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–54
    [Google Scholar]
  119. Sheremata SL, Bettencourt KC, Somers DC 2010. Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J. Neurosci. 30:12581–88
    [Google Scholar]
  120. Shikata E, Hamzei F, Glauche V, Knab R, Dettmers C et al. 2001. Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J. Neurophysiol. 85:1309–14
    [Google Scholar]
  121. Shomstein S, Gottlieb J 2016. Spatial and non-spatial aspects of visual attention: interactive cognitive mechanisms and neural underpinnings. Neuropsychologia 92:9–19
    [Google Scholar]
  122. Silver M, Kastner S 2009. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13:488–95
    [Google Scholar]
  123. Sprague TC, Ester EF, Serences JT 2014. Reconstructions of information in visual spatial working memory degrade with memory load. Curr. Biol. 24:2174–80
    [Google Scholar]
  124. Sprague TC, Ester EF, Serences JT 2016. Restoring latent visual working memory representations in human cortex. Neuron 91:694–707
    [Google Scholar]
  125. Suzuki M, Gottlieb J 2013. Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nat. Neurosci. 16:98–104
    [Google Scholar]
  126. Swaminathan SK, Freedman DJ 2012. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex. Nat. Neurosci. 15:315–20
    [Google Scholar]
  127. Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA et al. 2016. A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26:2205–14
    [Google Scholar]
  128. Todd JJ, Marois R 2004. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:751–54
    [Google Scholar]
  129. Todd JJ, Marois R 2005. Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cogn. Affect Behav. Neurosci. 6:144–55
    [Google Scholar]
  130. Toth LJ, Assad JA 2002. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415:165–68
    [Google Scholar]
  131. Tsutsui K, Sakata H, Naganuma T, Taira M 2002. Neural correlates for perception of 3D surface orientation from texture gradient. Science 298:409–12
    [Google Scholar]
  132. Van Dromme IC, Premereur E, Verhoef BE, Vanduffel W, Janssen P 2016. Posterior parietal cortex drives inferotemporal activations during three-dimensional object vision. PLOS Biol 14:e1002445
    [Google Scholar]
  133. Van Polanen V, Davare M 2015. Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia 79:186–91
    [Google Scholar]
  134. Vaziri-Pashkam M, Xu Y 2017. Goal-directed visual processing differentially impacts human ventral and dorsal visual representations. J. Neurosci. 37:8767–82
    [Google Scholar]
  135. Vaziri-Pashkam M, Xu Y 2018. An information-driven 2-pathway characterization of occipitotemporal and posterior parietal visual object representations. Cereb. Cortex. In press. https://doi.org/10.1093/cercor/bhy080
    [Crossref] [Google Scholar]
  136. Verhoef BE, Vogels R, Janssen P 2010. Contribution of inferior temporal and posterior parietal activity to three-dimensional shape perception. Curr. Biol. 20:909–13
    [Google Scholar]
  137. Verhoef BE, Vogels R, Janssen P 2012. Inferotemporal cortex subserves three-dimensional structure categorization. Neuron 73:171–82
    [Google Scholar]
  138. Verhoef BE, Vogels R, Janssen P 2015. Effects of microstimulation in the anterior intraparietal area during three-dimensional shape categorization. PLOS ONE 10:e0136543
    [Google Scholar]
  139. Verhoef BE, Vogels R, Janssen P 2016. Binocular depth processing in the ventral visual pathway. Philos. Trans R. Soc. B 371:20150259
    [Google Scholar]
  140. Wagner AD, Shannon BJ, Kahn I, Buckner RL 2005. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9:445–53
    [Google Scholar]
  141. Wardak C, Olivier E, Duhamel J 2004. A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron 42:501–8
    [Google Scholar]
  142. Weber EMG, Peters B, Hahn T, Bledowski C, Fiebach CJ 2016. Superior intraparietal sulcus controls the variability of visual working memory precision. J. Neurosci. 36:5623–35
    [Google Scholar]
  143. Webster MJ, Bachevalier J, Ungerleider LG 1994. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb. Cortex 4:470–83
    [Google Scholar]
  144. Whitwell RL, Milner AD, Goodale MA 2014. The two visual systems hypothesis: new challenges and insights from visual form agnosic patient DF. Front. Neurol. 5:255
    [Google Scholar]
  145. Williams ZM, Elfar JC, Eskandar EN, Toth LJ, Assad JA 2003. Parietal activity and the perceived direction of ambiguous apparent motion. Nat. Neurosci. 6:616–23
    [Google Scholar]
  146. Woolgar A, Williams MA, Rich AN 2015. Attention enhances multivoxel representation of novel objects in frontal, parietal and visual cortices. NeuroImage 109:429–37
    [Google Scholar]
  147. Xu Y 2007. The role of the superior intra-parietal sulcus in supporting visual short-term memory for multi-feature objects. J. Neurosci. 27:11676–86
    [Google Scholar]
  148. Xu Y 2008. Representing connected and disconnected shapes in human inferior intraparietal sulcus. NeuroImage 40:1849–56
    [Google Scholar]
  149. Xu Y 2009. Distinctive neural mechanisms supporting visual object individuation and identification. J. Cogn. Neurosci. 21:511–19
    [Google Scholar]
  150. Xu Y 2010. The neural fate of task-irrelevant features in object-based processing. J. Neurosci. 30:14020–28
    [Google Scholar]
  151. Xu Y 2017. Reevaluating the sensory account of visual working memory storage. Trends Cogn. Sci. 21:794–815
    [Google Scholar]
  152. Xu Y 2018. Sensory cortex is nonessential in working memory storage. (A reply to commentaries). Trends Cogn. Sci. 22:192–93
    [Google Scholar]
  153. Xu Y, Chun MM 2006. Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440:91–95
    [Google Scholar]
  154. Xu Y, Chun MM 2007. Visual grouping in human parietal cortex. PNAS 104:18766–71
    [Google Scholar]
  155. Xu Y, Chun MM 2009. Selecting and perceiving multiple visual objects. Trends Cogn. Sci. 13:167–74
    [Google Scholar]
  156. Xu Y, Jeong S 2015. The contribution of human superior intra-parietal sulcus to visual short-term memory and perception. Mechanisms of Sensory Working Memory: Attention and Performance XXV P Jolicoeur, J Martinez-Trujillo 33–42 New York: Academic. , 1st. ed.
    [Google Scholar]
  157. Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA 2012. Development of white matter and reading skills. PNAS 109:E3045–53
    [Google Scholar]
  158. Yu Q, Shim WM 2017. Occipital, parietal, and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory. NeuroImage 157:97–107
    [Google Scholar]
  159. Zhang J, Liu Y, Xu Y 2015. Neural decoding reveals impaired face configural processing in the right fusiform face area of individuals with developmental prosopagnosia. J. Neurosci. 35:1539–48
    [Google Scholar]
  160. Zoccolan D, Cox DD, DiCarlo JJ 2005. Multiple object response normalization in monkey inferotemporal cortex. J. Neurosci. 25:8150–64
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-033954
Loading
/content/journals/10.1146/annurev-vision-091517-033954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error