1932

Abstract

The human visual system reliably extracts shape information from complex natural scenes in spite of noise and fragmentation caused by clutter and occlusions. A fast, feedforward sweep through ventral stream involving mechanisms tuned for orientation, curvature, and local Gestalt principles produces partial shape representations sufficient for simpler discriminative tasks. More complete shape representations may involve recurrent processes that integrate local and global cues. While feedforward discriminative deep neural network models currently produce the best predictions of object selectivity in higher areas of the object pathway, a generative model may be required to account for all aspects of shape perception. Research suggests that a successful model will account for our acute sensitivity to four key perceptual dimensions of shape: topology, symmetry, composition, and deformation.

Keyword(s): contourformobjectshape
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034110
2018-09-15
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034110.html?itemId=/content/journals/10.1146/annurev-vision-091517-034110&mimeType=html&fmt=ahah

Literature Cited

  1. Albright TD, Gross CG 1990. Do inferior temporal cortex neurons encode shape by acting as Fourier descriptor filters?. Proceedings of the International Conference on Fuzzy Logic and Neural Networks375–78 Izuka, Japan: Fuzzy Logic Syst. Inst.
    [Google Scholar]
  2. Almazen EJ, Tal R, Qian Y, Elder JH 2017. MCMLSD: a dynamic programming approach to line segment detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition5854–62 Los Alamitos, CA: IEEE
    [Google Scholar]
  3. Barlow HB 1959. Sensory mechanisms, the reduction of redundancy, and intelligence. NPL Symposium on the Mechanization of Thought Process, Vol. 10 London: HM Stationery Office
    [Google Scholar]
  4. Bell J, Badcock DR 2008. Luminance and contrast cues are integrated in global shape detection with contours. Vis. Res. 48:2336–44
    [Google Scholar]
  5. Bergholdt M, Kappes J, Schmidt S, Schnörr C 2010. A study of parts-based object class detection using complete graphs. Int. J. Comput. Vis. 87:93–117
    [Google Scholar]
  6. Biederman I 1987. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94:115
    [Google Scholar]
  7. Binford TO, Tenenbaum JM 1973. Computer vision. Computer 6:19–24
    [Google Scholar]
  8. Blum H 1973. Biological shape and visual science (part I). J. Theor. Biol. 38:205–87
    [Google Scholar]
  9. Booth MC, Rolls ET 1998. View-invariant representations of familiar object by neurons in the inferior temporal visual cortex. Cereb. Cortex 8:510–23
    [Google Scholar]
  10. Brincat SL, Connor CE 2004. Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nat. Neurosci. 7:880–86
    [Google Scholar]
  11. Brincat SL, Connor CE 2006. Dynamic shape synthesis in posterior inferotemporal cortex. Neuron 49:17–24
    [Google Scholar]
  12. Bülthoff HH, Edelman S 1992. Psychophysical support for a two-dimensional view interpolation theory of object recognition. PNAS 89:60–64
    [Google Scholar]
  13. Campbell F, Kulikowski J 1966. Orientation selectivity of the human visual system. J. Physiol. 187:437–45
    [Google Scholar]
  14. Carlson E, Rasquinha R, Zhang K, Connor C 2011. A sparse object coding scheme in area V4. Curr. Biol. 21:288–93
    [Google Scholar]
  15. Carlson T, Tovar DA, Alink A, Kriegeskorte N 2013. Representational dynamics of object vision: the first 1000 ms. J. Vis. 13:101
    [Google Scholar]
  16. Cavanagh P 1991. What's up in top-down processing?. Representations of Vision: Trends and Tacit Assumptions in Vision Research A Gorea 295–304 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  17. Chen M, Yan Y, Gong X, Gilbert CD, Liang H, Li W 2014. Incremental integration of global contours through interplay between visual cortical areas. Neuron 82:682–94
    [Google Scholar]
  18. Cortese J, Dyre BP 1996. Perceptual similarity of shapes generated from Fourier descriptors. J. Exp. Psychol. Hum. Percept. Perform. 22:133–43
    [Google Scholar]
  19. Corthout E, Uttl B, Walsh V, Hallett M, Cowey A 1999. Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. NeuroReport 10:2631–34
    [Google Scholar]
  20. Craft E, Schutze H, Niebur E, von der Heydt R 2007. A neural model of figure-ground organization. J. Neurophysiol. 97:4310–26
    [Google Scholar]
  21. Dalal N, Triggs B 2005. Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1886–93 Los Alamitos, CA: IEEE Comp. Soc.
    [Google Scholar]
  22. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L 2009. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition248–55 Los Alamitos, CA: IEEE
    [Google Scholar]
  23. Desimone R, Albright TD, Gross CG, Bruce C 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62
    [Google Scholar]
  24. DiCarlo JJ, Cox DC 2007. Untangling invariant object recognition. Trends Cogn. Sci. 11:333–41
    [Google Scholar]
  25. DiCarlo JJ, Zoccolan D, Rust NC 2012. How does the brain solve visual object recognition. ? Neuron 73:415–34
    [Google Scholar]
  26. Dickinson SJ, Pentland AP, Rosenfeld A 1992. From volumes to views: an approach to 3-D object recognition. CVGIP Image Underst 55:130–54
    [Google Scholar]
  27. do Carmo MP 1976. Differential Geometry of Curves and Surfaces Englewood Cliffs, NJ: Prentice-Hall
    [Google Scholar]
  28. Dobbins A, Zucker SW, Cynader MS 1987. Endstopping in the visual cortex as a substrate for calculating curvature. Nature 329:438–41
    [Google Scholar]
  29. Drewes J, Goren G, Zhu W, Elder J 2016. Recurrent processing in the formation of shape percepts. J. Neurosci. 36:185–92
    [Google Scholar]
  30. Dubinskiy A, Zhu SC 2003. A multi-scale generative model for animate shapes and parts. Proceedings: Ninth IEEE International Conference on Computer Vision249–56 Los Alamitos, CA: IEEE
    [Google Scholar]
  31. Ehinger K, Adams WJ, Graf EW, Elder JH 2017. Local depth edge detection in humans and deep neural networks. 2017 IEEE International Conference on Computer Vision Workshops2681–89 Los Alamitos, CA: IEEE
    [Google Scholar]
  32. Elder JH 1999. Are edges incomplete. ? Int. J. Comput. Vis. 34:97–122
    [Google Scholar]
  33. Elder JH 2014. Bridging the dimensional gap: perceptual organization of contour into two-dimensional shape. Oxford Handbook of Perceptual Organization J Wagemans 71–83 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  34. Elder JH, Goldberg RM 2001. Image editing in the contour domain. IEEE Trans. Pattern Anal. Mach. Intell. 23:291–96
    [Google Scholar]
  35. Elder JH, Goldberg RM 2002. Ecological statistics of Gestalt laws for the perceptual organization of contours. J. Vis. 2:45
    [Google Scholar]
  36. Elder JH, Krupnik A, Johnston LA 2003. Contour grouping with prior models. IEEE Trans. Pattern Anal. Mach. Intell. 25:661–74
    [Google Scholar]
  37. Elder JH, Oleskiw TD, Yakubovich A, Peyré G 2013. On growth and formlets: sparse multi-scale coding of planar shape. Image Vis. Comput. 31:1–13
    [Google Scholar]
  38. Elder JH, Oleskiw TD, Fründ I 2018. The role of global cues in the perceptual grouping of natural shapes. J. Vis. In press
    [Google Scholar]
  39. Elder JH, Sachs AJ 2004. Psychophysical receptive fields of edge detection mechanisms. Vis. Res. 44:795–813
    [Google Scholar]
  40. Elder JH, Trithart S, Pintilie G, MacLean D 2004. Rapid processing of cast and attached shadows. Perception 33:1319–38
    [Google Scholar]
  41. Elder JH, Velisavljević L 2009. Cue dynamics underlying rapid detection of animals in natural scenes. J. Vis. 9:8787
    [Google Scholar]
  42. Elder JH, Zucker SW 1993. The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vis. Res. 33:981–91
    [Google Scholar]
  43. Elder JH, Zucker SW 1994. A measure of closure. Vis. Res. 34:3361–70
    [Google Scholar]
  44. Elder JH, Zucker SW 1996.a Computing contour closure. Computer Vision—ECCV ’96: 4th European Conference on Computer Vision B Buxton, R Cipolla 399–412 New York: Springer Verlag
    [Google Scholar]
  45. Elder JH, Zucker SW 1996.b Scale space localization, blur and contour-based image coding. 1996 IEEE Computer Science Conference on Computer Vision and Pattern Recognition27–34 Los Alamitos, CA: IEEE Comp. Soc. Press
    [Google Scholar]
  46. Elder JH, Zucker SW 1998.a Evidence for boundary-specific grouping. Vis. Res. 38:143–52
    [Google Scholar]
  47. Elder JH, Zucker SW 1998.b Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20:699–716
    [Google Scholar]
  48. Enns J, Di Lollo V 2000. What's new in visual masking. ? Trends Cogn. Sci. 4:345–52
    [Google Scholar]
  49. Erdogan G, Jacobs R 2017. Visual shape perception as Bayesian inference of 3D object-centered shape representations. Psych. Rev. 124:740–61
    [Google Scholar]
  50. Estrada F, Elder JH 2006. Multi-scale contour extraction based on natural image statistics. IEEE Conference on Computer Vision and Pattern Recognition Workshop C Schmid, S Soatto, C Tomasi 183 Los Alamitos, CA: IEEE
    [Google Scholar]
  51. Feldman J 2007. Formation of visual “objects” in the early computation of spatial relations. Percept. Psychophys. 69:816–27
    [Google Scholar]
  52. Feldman J, Singh M 2006. Bayesian estimation of the shape skeleton. PNAS 103:18014–19
    [Google Scholar]
  53. Field D, Hayes A, Hess RF 1993. Contour integration by the human visual system: evidence for a local “association field.”. Vis. Res. 33:173–93
    [Google Scholar]
  54. Garrigan P 2012. The effect of contour closure on shape recognition. Perception 41:221–35
    [Google Scholar]
  55. Geisler WS, Perry JS, Super BJ, Gallogly DP 2001. Edge co-occurence in natural images predicts contour grouping performance. Vis. Res. 41:711–24
    [Google Scholar]
  56. Gilbert CD, Li W 2013. Top-down influences on visual processing. Nat. Rev. Neurosci. 14:350–63
    [Google Scholar]
  57. Gilbert CD, Wiesel TN 1989. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9:2432–43
    [Google Scholar]
  58. Granlund GH 1972. Fourier preprocessing for hand print character recognition. IEEE Trans. Comput. C-21:195–201
    [Google Scholar]
  59. Grenander U, Srivastava A, Saini S 2007. A pattern-theoretic characterization of biological growth. IEEE Trans. Med. Imaging 26:648–59
    [Google Scholar]
  60. Grill-Spector K, Kourtzi Z, Kanwisher N 2001. The lateral occipital complex and its role in object recognition. Vis. Res. 41:1409–22
    [Google Scholar]
  61. Grill-Spector K, Weiner KS 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:536–48
    [Google Scholar]
  62. Habak C, Wilkinson F, Wilson H 2006. Dynamics of shape interaction in human vision. Vis. Res. 46:4305–20
    [Google Scholar]
  63. Halgren E, Mendola J, Chong C, Dale A 2003. Cortical activation to illusory shapes as measured with magnetoencephalography. NeuroImage 18:1001–9
    [Google Scholar]
  64. Hawken MJ, Parker AJ 1991. Spatial receptive field organization in monkey V1 and its relationship to the cone mosaic. Computational Models of Visual Processing MS Landy, JA Movshon 84–93 Cambridge, MA: MIT Press
    [Google Scholar]
  65. He K, Zhang X, Ren S, Sun J 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition770–78 Los Alamitos, CA: IEEE
    [Google Scholar]
  66. Hegde J, van Essen DC 2000. Selectivity for complex shapes in primate visual area V2. J. Neurosci. 20:1–6
    [Google Scholar]
  67. Hess R, Field D 1999. Integration of contours: new insights. Trends Cogn. Sci. 3:480–86
    [Google Scholar]
  68. Hong H, Yamins DLK, Majaj NJ, DiCarlo JJ 2016. Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19:613–30
    [Google Scholar]
  69. Hubel DH, Wiesel TN 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  70. Huffman D 1952. A method for the construction of minimum-redundancy codes. Proc. IRE 40:1098–101
    [Google Scholar]
  71. Jacobs D 1996. Robust and efficient detection of salient convex groups. IEEE Trans. Pattern Anal. Mach. Intell. 18:23–37
    [Google Scholar]
  72. Kanizsa G 1979. Organization in Vision. New York: Praeger
    [Google Scholar]
  73. Kayaert G, Biederman I, de Beeck HPO, Vogels R 2005. Tuning for shape dimensions in macaque inferior temporal cortex. Eur. J. Neurosci. 22:212–24
    [Google Scholar]
  74. Kellman P, Shipley T 1991. A theory of visual interpolation in object perception. Cogn. Psych. 23:142–221
    [Google Scholar]
  75. Khaligh-Razavi SM, Kriegeskorte N 2014. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLOS Comput. Biol. 10:1–29
    [Google Scholar]
  76. Kimia B, Siddiqi K 1995. Parts of visual form: computational aspects. IEEE Trans. Pattern Anal. Mach. Intell. 17:239–51
    [Google Scholar]
  77. Koenderink J 1984. What does the occluding contour tell us about solid shape. ? Perception 13:321–30
    [Google Scholar]
  78. Koffka K 1935. Principles of Gestalt Psychology New York: Harcourt, Brace & World
    [Google Scholar]
  79. Kovacs I, Julesz B 1993. A closed curve is much more than an incomplete one: effect of closure in figure-ground discrimination. PNAS 90:7495–97
    [Google Scholar]
  80. Kriegeskorte N, Mur M, Bandettini P 2008.a Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4
    [Google Scholar]
  81. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J et al. 2008.b Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–41
    [Google Scholar]
  82. Krizhevsky A, Sutskever I, Hinton GE 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems F Pereira, CJC Burges, L Bottou 1–9 https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
    [Google Scholar]
  83. Kuai SG, Li W, Yu C, Kourtzi Z 2017. Contour integration over time: psychophysical and fMRI evidence. Cereb. Cortex 27:3042–51
    [Google Scholar]
  84. Kubilius J, Bracci S, de Beeck HPO 2016. Deep neural networks as a computational model for human shape sensitivity. PLOS Comput. Biol. 12:1–26
    [Google Scholar]
  85. Kubovy M, Wagemans J 1995. Grouping by proximity and multistability in dot lattices: a quantitative Gestalt theory. Psychol. Sci. 6:225–34
    [Google Scholar]
  86. Lamme VAF 1995. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15:1605–15
    [Google Scholar]
  87. Lee TS, Mumford D 2003. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20:1434–48
    [Google Scholar]
  88. Lehky SR, Sereno AB 2007. Comparison of shape encoding in primate dorsal and ventral visual pathways. J. Neurophysiol. 97:307–19
    [Google Scholar]
  89. Levinshtein A, Sminchisescu C, Dickinson S 2010. Optimal contour closure by super-pixel grouping. Proc. Eur. Conf. Comput. Vis. 2:480–93
    [Google Scholar]
  90. Levinshtein A, Sminchisescu C, Dickinson S 2013. Multiscale symmetric part detection and grouping. Int. J. Comput. Vis. 104:117–34
    [Google Scholar]
  91. Leyton M 1988. A process-grammar for shape. Artif. Intell. 34:213–47
    [Google Scholar]
  92. Leyton M 1989. Inferring causal history from shape. Cogn. Sci. 13:357–87
    [Google Scholar]
  93. Lindeberg T 1998. Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30:117–54
    [Google Scholar]
  94. Liu Z, Jacobs DW, Basri R 1999. The role of convexity in perceptual completion. Vis. Res. 39:4244–57
    [Google Scholar]
  95. Logothetis NK, Pauls J, Poggio P 1995. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5:552–63
    [Google Scholar]
  96. Lowe DG 1985. Perceptual Organization and Visual Recognition Boston, MA: Kluwer
    [Google Scholar]
  97. Lowe DG 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:91–110
    [Google Scholar]
  98. Machilsen B, Pauwels M, Wagemans J 2009. The role of vertical mirror symmetry in visual shape detection. J. Vis. 9:1211
    [Google Scholar]
  99. Mahamud S, Thornber KK, Williams LR 1999. Segmentation of salient closed contours from real images. IEEE International Conference on Computer Vision891–97 Los Alamitos, CA: IEEE Comp. Soc.
    [Google Scholar]
  100. Mallat S, Zhang Z 1993. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal. Proc. 41:3397–415
    [Google Scholar]
  101. Maloney R, Mitchison G, Barlow H 1987. Limit to the detection of glass patterns in the presence of noise. J. Opt. Soc. Am. A 4:2236–341
    [Google Scholar]
  102. Marr D, Nishihara H 1978. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. B 200:269–94
    [Google Scholar]
  103. Martin D, Fowlkes C, Malik J 2004. Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26:530–49
    [Google Scholar]
  104. McManus JNJ, Li W, Gilbert CD 2011. Adaptive shape processing in primary visual cortex. PNAS 108:9739–46
    [Google Scholar]
  105. Miller GA 1956. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63:81–97
    [Google Scholar]
  106. Movahedi V, Elder JH 2013. Combining local and global cues for closed contour extraction. Proceedings of the British Machine Vision Conference T Burghardt, D Damen, W Mayol-Cuevas, M Mirmehdi Durham, UK: BMVA Press
    [Google Scholar]
  107. Mumford D 1991. Mathematical theories of shape: Do they model perception. ? Geometr. Methods Comput. Vis. (SPIE) 1570:1–10
    [Google Scholar]
  108. Ojala T, Pietikainen M, Harwood D 1996. A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29:51–59
    [Google Scholar]
  109. Oleskiw T, Elder J, Peyré G 2010. On growth and formlets: sparse multi-scale coding of planar shape. 2010 IEEE Conference on Computer Vision and Pattern Recognition459–66 Los Alamitos, CA: IEEE
    [Google Scholar]
  110. Olshausen BA, Field DJ 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–9
    [Google Scholar]
  111. Or CC-F, Elder JH 2011. Oriented texture detection: ideal observer modelling and classification image analysis. J. Vis. 11:816
    [Google Scholar]
  112. Parent P, Zucker SW 1989. Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11:823–39
    [Google Scholar]
  113. Pasupathy A, Connor C 2001. Shape representation in area V4: position-specific boundary conformation. J. Neurophysiol. 86:2505–19
    [Google Scholar]
  114. Pasupathy A, Connor CE 1999. Responses to contour features in macaque area V4. J. Neurophysiol. 82:2490–502
    [Google Scholar]
  115. Pettet MW 1999. Shape and contour detection. Vis. Res. 39:551–57
    [Google Scholar]
  116. Piech V, Li W, Reeke GN, Gilbert CD 2013. Network model of top-down influences on local gain and contextual interactions in visual cortex. PNAS 110:E4108–17
    [Google Scholar]
  117. Pinto N, Barhomi Y, Cox DD, DiCarlo JJ 2011. Comparing state-of-the-art visual features on invariant object recognition tasks. 2011 Workshop on Applications of Computer Vision463–70 Los Alamitos, CA: IEEE
    [Google Scholar]
  118. Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ 2018. Large-scale, high-resolution comparison 1 of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. J. Neurosci. In press. https://doi.org/10.1523/JNEUROSCI.0388-18.2018
    [Crossref]
  119. Ramalingam N, McManus JNJ, Li W, Gilbert CD 2013. Top-down modulation of lateral interactions in visual cortex. J. Neurosci. 33:1773–89
    [Google Scholar]
  120. Ren X, Fowlkes C, Malik J 2008. Learning probabilistic models for contour completion in natural images. Int. J. Comput. Vis. 77:47–63
    [Google Scholar]
  121. Riesenhuber M, Poggio T 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:1019–25
    [Google Scholar]
  122. Riesenhuber M, Poggio T 2002. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12:162–68
    [Google Scholar]
  123. Ringach DL 2002. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88:455–63
    [Google Scholar]
  124. Sala P, Dickinson S 2015. 3-D volumetric shape abstraction from a single 2-D image. 2015 IEEE International Conference on Computer Vision Workshops796–804 Los Alamitos, CA: IEEE Comp. Soc.
    [Google Scholar]
  125. Sasaki Y 2007. Processing local signals into global patterns. Curr. Opin. Neurobiol. 17:132–39
    [Google Scholar]
  126. Schwartz EL, Desimone R, Albright TD, Gross CG 1983. Shape recognition and inferior temporal neurons. PNAS 80:5776–78
    [Google Scholar]
  127. Seibert D, Yamins DL, Ardila D, Hong H, DiCarlo JJ, Gardner JL 2016. A performance-optimized model of neural responses across the ventral visual stream. bioRxiv 036475. https://doi.org/10.1101/036475
    [Crossref]
  128. Serre T, Oliva A, Poggio T 2007.b A feedforward architecture accounts for rapid categorization. PNAS 104:6424–29
    [Google Scholar]
  129. Serre T, Wolf L, Bileschi S, Risenhuber M, Poggio T 2007.a Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29:411–26
    [Google Scholar]
  130. Sha'ashua A, Ullman S 1988. Structural saliency: the detection of globally salient structures using a locally connected network. Second International Conference on Computer Vision321–27 Washington, DC: IEEE Comp. Soc. Press
    [Google Scholar]
  131. Shepard R, Cermak GW 1973. Perceptual-cognitive explorations of a toroidal set of free-form stimuli. Cogn. Psychol. 4:351–77
    [Google Scholar]
  132. Siddiqi K, Shokoufandeh A, Dickinson S, Zucker S 1999. Shock graphs and shape matching. Int. J. Comput. Vis. 30:1–24
    [Google Scholar]
  133. Stahl J, Wang S 2008. Globally optimal grouping for symmetric closed boundaries by combining boundary and region information. IEEE Trans. Pattern Anal. Mach. Intell. 30:395–411
    [Google Scholar]
  134. Stettler D, Das A, Bennett J, Gilbert C 2002. Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–50
    [Google Scholar]
  135. Thompson D 1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  136. Thorpe S, Fize D, Marlot C 1996. Speed of processing in the human visual system. Nature 381:520–22
    [Google Scholar]
  137. Trinh N, Kimia B 2007. A symmetry-based generative model for shape. 2007 IEEE 11th International Conference on Computer Vision1–8 Los Alamitos, CA: IEEE
    [Google Scholar]
  138. Tversky T, Geisler WS, Perry JS 2004. Contour grouping: Closure effects are explained by good continuation and proximity. Vis. Res. 44:2769–77
    [Google Scholar]
  139. Ungerleider L 1995. Functional brain imaging studies of cortical mechanisms for memory. Science 270:769–75
    [Google Scholar]
  140. Vilankar K, Golden JR, Chandler DM, Field DJ 2014. Local edge statistics provide information regarding occlusion and nonocclusion edges in natural scenes. J. Vis. 14:913
    [Google Scholar]
  141. von der Heydt R, Peterhans E, Baumgartner G 1984. Illusory contours and cortical neuron responses. Science 224:1260–62
    [Google Scholar]
  142. Walsh V, Cowey A 1998. Magnetic stimulation studies of visual cognition. Trends Cogn. Sci. 2:103–10
    [Google Scholar]
  143. Watt RJ, Morgan MJ 1984. Spatial filters and the localization of luminance changes in human vision. Vis. Res. 24:1387–97
    [Google Scholar]
  144. Wilder J, Fründ I, Elder JH 2018. Frequency tuning of natural shape perception revealed by classification image analysis. J. Vis. In press
    [Google Scholar]
  145. Wilkinson F, Wilson HR, Habak C 1998. Detection and recognition of radial frequency patterns. Vis. Res. 38:3555–68
    [Google Scholar]
  146. Williams LR, Jacobs DW 1997. Stochastic completion fields: a neural model of illusory contour shape and salience. Neural Comput 9:837–58
    [Google Scholar]
  147. Wilson HR, Bergen JR 1979. A four mechanism model for threshold spatial vision. Vis. Res. 19:19–32
    [Google Scholar]
  148. Wokke ME, Vandenbroucke ARE, Scholte HS, Lamme VAF 2013. Confuse your illusion: feedback to early visual cortex contributes to perceptual completion. Psychol. Sci. 24:63–71
    [Google Scholar]
  149. Yakubovich A, Elder JH 2014. Building better formlet codes for planar shape. 2014 Canadian Conference on Computer and Robot Vision84–91 Los Alamitos, CA: IEEE
    [Google Scholar]
  150. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:8619–24
    [Google Scholar]
  151. Yoshino A, Kawamoto M, Yoshida T, Kobayashi N, Shigemura J 2006. Activation time course of responses to illusory contours and salient region: a high-density electrical mapping comparison. Brain Res 1071:137–44
    [Google Scholar]
  152. Yuille A, Kersten D 2006. Vision as Bayesian inference: analysis by synthesis. ? Trends Cogn. Sci. 10:301–8
    [Google Scholar]
  153. Zahn CT, Roskies RZ 1972. Fourier descriptors for plane closed curves. IEEE Trans. Comput. C-21:269–81
    [Google Scholar]
  154. Zhou H, Friedman H, von der Heydt R 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20:6594–611
    [Google Scholar]
  155. Zhu SC 1999. Embedding Gestalt laws in Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 21:1170–87
    [Google Scholar]
  156. Zoccolan D, Kouh M, Poggio T, DiCarlo JJ 2007. Trade-off between object selectivity and tolerance in monkey inferotemporal cortex. J. Neurosci. 27:12292–307
    [Google Scholar]
  157. Zucker SW, Hummel R, Rosenfeld A 1977. An application of relaxation labeling to line and curve enhancement. IEEE Trans. Comput. 26:394–403
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034110
Loading
/content/journals/10.1146/annurev-vision-091517-034110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error