1932

Abstract

The thalamocortical pathway is the main route of communication between the eye and the cerebral cortex. During embryonic development, thalamocortical afferents travel to L4 and are sorted by receptive field position, eye of origin, and contrast polarity (i.e., preference for light or dark stimuli). In primates and carnivores, this sorting involves numerous afferents, most of which sample a limited region of the binocular field. Devoting abundant thalamocortical resources to process a limited visual field has a clear advantage: It allows many stimulus combinations to be sampled at each spatial location. Moreover, the sampling efficiency can be further enhanced by organizing the afferents in a cortical grid for eye input and contrast polarity. We argue that thalamocortical interactions within this eye–polarity grid can be used to represent multiple stimulus combinations found in nature and to build an accurate cortical map for multidimensional stimulus space.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034122
2018-09-15
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034122.html?itemId=/content/journals/10.1146/annurev-vision-091517-034122&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DL, Horton JC 2003.a A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J. Neurosci. 23:3771–89
    [Google Scholar]
  2. Adams DL, Horton JC 2003.b Capricious expression of cortical columns in the primate brain. Nat. Neurosci. 6:113–14
    [Google Scholar]
  3. Adams DL, Sincich LC, Horton JC 2007. Complete pattern of ocular dominance columns in human primary visual cortex. J. Neurosci. 27:10391–403
    [Google Scholar]
  4. Albus K, Wolf W 1984. Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis. J. Physiol. 348:153–85
    [Google Scholar]
  5. Allendoerfer KL, Shatz CJ 1994. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17:185–218
    [Google Scholar]
  6. Alonso JM, Swadlow HA 2005. Thalamocortical specificity and the synthesis of sensory cortical receptive fields. J. Neurophysiol. 94:26–32
    [Google Scholar]
  7. Alonso JM, Usrey WM, Reid RC 1996. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815–19
    [Google Scholar]
  8. Alonso JM, Usrey WM, Reid RC 2001. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21:4002–15
    [Google Scholar]
  9. Anderson PA, Olavarria J, Van Sluyters RC 1988. The overall pattern of ocular dominance bands in cat visual cortex. J. Neurosci. 8:2183–200
    [Google Scholar]
  10. Azzopardi P, Cowey A 1993. Preferential representation of the fovea in the primary visual cortex. Nature 361:719–21
    [Google Scholar]
  11. Azzopardi P, Cowey A 1996. The overrepresentation of the fovea and adjacent retina in the striate cortex and dorsal lateral geniculate nucleus of the macaque monkey. Neuroscience 72:627–39
    [Google Scholar]
  12. Berman NE, Payne BR 1989. Modular organization of ON and OFF responses in the cat lateral geniculate nucleus. Neuroscience 32:721–37
    [Google Scholar]
  13. Bisti S, Gargini C, Chalupa LM 1998. Blockade of glutamate-mediated activity in the developing retina perturbs the functional segregation of ON and OFF pathways. J. Neurosci. 18:5019–25
    [Google Scholar]
  14. Blasdel G, Campbell D 2001. Functional retinotopy of monkey visual cortex. J. Neurosci. 21:8286–301
    [Google Scholar]
  15. Blasdel GG, Lund JS 1983. Termination of afferent axons in macaque striate cortex. J. Neurosci. 3:1389–413
    [Google Scholar]
  16. Bodnarenko SR, Jeyarasasingam G, Chalupa LM 1995. Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J. Neurosci. 15:7037–45
    [Google Scholar]
  17. Bonhoeffer T, Grinvald A 1991. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–31
    [Google Scholar]
  18. Bosking WH, Crowley JC, Fitzpatrick D 2002. Spatial coding of position and orientation in primary visual cortex. Nat. Neurosci. 5:874–82
    [Google Scholar]
  19. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D 1997. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17:2112–27
    [Google Scholar]
  20. Boss VC, Schmidt JT 1984. Activity and the formation of ocular dominance patches in dually innervated tectum of goldfish. J. Neurosci. 4:2891–905
    [Google Scholar]
  21. Bovolenta P, Mason C 1987. Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets. J. Neurosci. 7:1447–60
    [Google Scholar]
  22. Bowling DB, Wieniawa-Narkiewicz E 1986. The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat's lateral geniculate nucleus. J. Physiol. 375:561–72
    [Google Scholar]
  23. Briggs F, Usrey WM 2011. Corticogeniculate feedback and visual processing in the primate. J. Physiol. 589:33–40
    [Google Scholar]
  24. Bunt AH, Hendrickson AE, Lund JS, Lund RD, Fuchs AF 1975. Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique. J. Comp. Neurol. 164:265–85
    [Google Scholar]
  25. Callaway EM 1998. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21:47–74
    [Google Scholar]
  26. Cang J, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA 2005. Ephrin-As guide the formation of functional maps in the visual cortex. Neuron 48:577–89
    [Google Scholar]
  27. Casagrande VA, Xu X 2004. Parallel visual pathways: a comparative perspective. The Visual Neurosciences L Chalupa, JS Werner 494–506 Cambridge, MA: MIT Press
    [Google Scholar]
  28. Chatterjee S, Callaway EM 2003. Parallel colour-opponent pathways to primary visual cortex. Nature 426:668–71
    [Google Scholar]
  29. Chichilnisky EJ, Kalmar RS 2002. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22:2737–47
    [Google Scholar]
  30. Chklovskii DB, Schikorski T, Stevens CF 2002. Wiring optimization in cortical circuits. Neuron 34:341–47
    [Google Scholar]
  31. Constantine-Paton M, Law MI 1978. Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–41
    [Google Scholar]
  32. Conway JL, Schiller PH 1983. Laminar organization of tree shrew dorsal lateral geniculate nucleus. J. Neurophysiol. 50:1330–42
    [Google Scholar]
  33. Cooper EA, Norcia AM 2015. Predicting cortical dark/bright asymmetries from natural image statistics and early visual transforms. PLOS Comput. Biol. 11:e1004268
    [Google Scholar]
  34. Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN et al. 2015. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518:399–403
    [Google Scholar]
  35. Crair MC, Gillespie DC, Stryker MP 1998. The role of visual experience in the development of columns in cat visual cortex. Science 279:566–70
    [Google Scholar]
  36. Crowley JC, Katz LC 1999. Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2:1125–30
    [Google Scholar]
  37. Curcio CA, Allen KA 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:5–25
    [Google Scholar]
  38. Dacey DM, Petersen MR 1992. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. PNAS 89:9666–70
    [Google Scholar]
  39. Daniel PM, Whitteridge D 1961. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159:203–21
    [Google Scholar]
  40. Das A, Gilbert CD 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387:594–98
    [Google Scholar]
  41. Dhande OS, Stafford BK, Lim JA, Huberman AD 2015. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1:291–328
    [Google Scholar]
  42. Dodgson NA 2004. Variation and extrema of human interpupillary distance. Stereoscopic Displays and Virtual Reality Systems XI AJ Woods, JO Merritt, SA Benton, MT Bolas 36–46 San Jose, CA: Proc. SPIE
    [Google Scholar]
  43. Drager UC, Olsen JF 1981. Ganglion cell distribution in the retina of the mouse. Investig. Ophthalmol. Vis. Sci. 20:285–93
    [Google Scholar]
  44. Ellis EM, Gauvain G, Sivyer B, Murphy GJ 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:602–10
    [Google Scholar]
  45. Enroth-Cugell C, Robson JG 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–52
    [Google Scholar]
  46. Erwin E, Miller KD 1998. Correlation-based development of ocularly matched orientation and ocular dominance maps: determination of required input activities. J. Neurosci. 18:9870–95
    [Google Scholar]
  47. Ferster D 1987. Origin of orientation-selective EPSPs in simple cells of cat visual cortex. J. Neurosci. 7:1780–91
    [Google Scholar]
  48. Ferster D, Chung S, Wheat H 1996. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380:249–52
    [Google Scholar]
  49. Freund TF, Martin KA, Somogyi P, Whitteridge D 1985. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. J. Comp. Neurol. 242:275–91
    [Google Scholar]
  50. Fukuda T, Kosaka T, Singer W, Galuske RA 2006. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26:3434–43
    [Google Scholar]
  51. Ghosh A, Shatz CJ 1992. Pathfinding and target selection by developing geniculocortical axons. J. Neurosci. 12:39–55
    [Google Scholar]
  52. Gilbert CD, Wiesel TN 1979. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–25
    [Google Scholar]
  53. Gilbert CD, Wiesel TN 1989. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9:2432–42
    [Google Scholar]
  54. Hendry SH, Reid RC 2000. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23:127–53
    [Google Scholar]
  55. Hevner RF 2000. Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. J. Neuropathol. Exp. Neurol. 59:385–92
    [Google Scholar]
  56. Hirsch JA, Alonso JM, Reid RC, Martinez LM 1998. Synaptic integration in striate cortical simple cells. J. Neurosci. 18:9517–28
    [Google Scholar]
  57. Hitzenberger CK 1991. Optical measurement of the axial eye length by laser Doppler interferometry. Investig. Ophthalmol. Vis. Sci. 32:616–24
    [Google Scholar]
  58. Hoerder-Suabedissen A, Molnar Z 2015. Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16:133–46
    [Google Scholar]
  59. Horton JC, Hedley-Whyte ET 1984. Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos. Trans. R. Soc. B 304:255–72
    [Google Scholar]
  60. Hubel DH 1975. An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis). Brain Res 96:41–50
    [Google Scholar]
  61. Hubel DH, Wiesel TN 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  62. Hubel DH, Wiesel TN 1972. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146:421–50
    [Google Scholar]
  63. Hubel DH, Wiesel TN 1977. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. B 198:1–59
    [Google Scholar]
  64. Hubel DH, Wiesel TN, LeVay S 1977. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. B 278:377–409
    [Google Scholar]
  65. Hubener M, Shoham D, Grinvald A, Bonhoeffer T 1997. Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17:9270–84
    [Google Scholar]
  66. Huberman AD, Dehay C, Berland M, Chalupa LM, Kennedy H 2005.a Early and rapid targeting of eye-specific axonal projections to the dorsal lateral geniculate nucleus in the fetal macaque. J. Neurosci. 25:4014–23
    [Google Scholar]
  67. Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B 2005.b Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat. Neurosci. 8:1013–21
    [Google Scholar]
  68. Hughes A 1971. Topographical relationships between the anatomy and physiology of the rabbit visual system. Doc. Ophthalmol. 30:33–159
    [Google Scholar]
  69. Hughes A 1975. A quantitative analysis of the cat retinal ganglion cell topography. J. Comp. Neurol. 163:107–28
    [Google Scholar]
  70. Humphrey AL, Sur M, Uhlrich DJ, Sherman SM 1985. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol. 233:159–89
    [Google Scholar]
  71. Illing RB, Wassle H 1981. The retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. J. Comp. Neurol. 202:265–85
    [Google Scholar]
  72. Issa NP, Trepel C, Stryker MP 2000. Spatial frequency maps in cat visual cortex. J. Neurosci. 20:8504–14
    [Google Scholar]
  73. Ji W, Gamanut R, Bista P, D'Souza RD, Wang Q, Burkhalter A 2015. Modularity in the organization of mouse primary visual cortex. Neuron 87:632–43
    [Google Scholar]
  74. Jin J, Wang Y, Lashgari R, Swadlow HA, Alonso JM 2011.a Faster thalamocortical processing for dark than light visual targets. J. Neurosci. 31:17471–79
    [Google Scholar]
  75. Jin J, Wang Y, Swadlow HA, Alonso JM 2011.b Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat. Neurosci. 14:232–38
    [Google Scholar]
  76. Jin JZ, Weng C, Yeh CI, Gordon JA, Ruthazer ES et al. 2008. On and off domains of geniculate afferents in cat primary visual cortex. Nat. Neurosci. 11:88–94
    [Google Scholar]
  77. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A 2010. ON and OFF pathways in Drosophila motion vision. Nature 468:300–4
    [Google Scholar]
  78. Kanold PO, Shatz CJ 2006. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 51:627–38
    [Google Scholar]
  79. Kaplan E, Shapley RM 1982. X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol. 330:125–43
    [Google Scholar]
  80. Kara P, Boyd JD 2009. A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458:627–31
    [Google Scholar]
  81. Karnani MM, Agetsuma M, Yuste R 2014. A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr. Opin. Neurobiol. 26:96–102
    [Google Scholar]
  82. Kaschube M, Schnabel M, Lowel S, Coppola DM, White LE, Wolf F 2010. Universality in the evolution of orientation columns in the visual cortex. Science 330:1113–16
    [Google Scholar]
  83. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91
    [Google Scholar]
  84. Koch E, Jin J, Alonso JM, Zaidi Q 2016. Functional implications of orientation maps in primary visual cortex. Nat. Commun. 7:13529
    [Google Scholar]
  85. Komban SJ, Kremkow J, Jin J, Wang Y, Lashgari R et al. 2014. Neuronal and perceptual differences in the temporal processing of darks and lights. Neuron 82:224–34
    [Google Scholar]
  86. Kremkow J, Jin J, Komban SJ, Wang Y, Lashgari R et al. 2014. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights. PNAS 111:3170–75
    [Google Scholar]
  87. Kremkow J, Jin J, Wang Y, Alonso JM 2016. Principles underlying sensory map topography in primary visual cortex. Nature 533:52–57
    [Google Scholar]
  88. Kretz R, Rager G, Norton TT 1986. Laminar organization of ON and OFF regions and ocular dominance in the striate cortex of the tree shrew (Tupaia belangeri). J. Comp. Neurol. 251:135–45
    [Google Scholar]
  89. Laing RJ, Turecek J, Takahata T, Olavarria JF 2015. Identification of eye-specific domains and their relation to callosal connections in primary visual cortex of long Evans rats. Cereb. Cortex 25:3314–29
    [Google Scholar]
  90. Law MI, Zahs KR, Stryker MP 1988. Organization of primary visual cortex (area 17) in the ferret. J. Comp. Neurol. 278:157–80
    [Google Scholar]
  91. Lee KS, Huang X, Fitzpatrick D 2016. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature 533:90–94
    [Google Scholar]
  92. LeVay S, McConnell SK 1982. ON and OFF layers in the lateral geniculate nucleus of the mink. Nature 300:350–51
    [Google Scholar]
  93. LeVay S, Stryker MP, Shatz CJ 1978. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179:223–44
    [Google Scholar]
  94. Lien AD, Scanziani M 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:1315–23
    [Google Scholar]
  95. Lund RD, Mustari MJ 1977. Development of the geniculocortical pathway in rats. J. Comp. Neurol. 173:289–306
    [Google Scholar]
  96. Marin-Padilla M 1971. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z. Anat. Entwickl. 134:117–45
    [Google Scholar]
  97. Martin PR 1986. The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Exp. Brain Res. 62:77–88
    [Google Scholar]
  98. Mazade R, Alonso JM 2017. Thalamocortical processing in vision. Vis. Neurosci. 34:e007
    [Google Scholar]
  99. McConnell SK, LeVay S 1984. Segregation of on- and off-center afferents in mink visual cortex. PNAS 81:1590–93
    [Google Scholar]
  100. Merlin S, Horng S, Marotte LR, Sur M, Sawatari A, Leamey CA 2013. Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex. Cereb. Cortex 23:763–74
    [Google Scholar]
  101. Mitchison G 1991. Neuronal branching patterns and the economy of cortical wiring. Proc. Biol. Sci. 245:151–58
    [Google Scholar]
  102. Morgenstern NA, Bourg J, Petreanu L 2016. Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus. Nat. Neurosci. 19:1034–40
    [Google Scholar]
  103. Mrzljak L, Uylings HB, Kostovic I, Van Eden CG 1988. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J. Comp. Neurol. 271:355–86
    [Google Scholar]
  104. Nauhaus I, Nielsen KJ 2014. Building maps from maps in primary visual cortex. Curr. Opin. Neurobiol. 24:1–6
    [Google Scholar]
  105. Nauhaus I, Nielsen KJ, Callaway EM 2016. Efficient receptive field tiling in primate V1. Neuron 91:893–904
    [Google Scholar]
  106. Nauhaus I, Nielsen KJ, Disney AA, Callaway EM 2012. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat. Neurosci. 15:1683–90
    [Google Scholar]
  107. Obermayer K, Blasdel GG 1993. Geometry of orientation and ocular dominance columns in monkey striate cortex. J. Neurosci. 13:4114–29
    [Google Scholar]
  108. Paik SB, Ringach DL 2011. Retinal origin of orientation maps in visual cortex. Nat. Neurosci. 14:919–25
    [Google Scholar]
  109. Perry VH, Cowey A 1984. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–37
    [Google Scholar]
  110. Peters A, Payne BR 1993. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3:69–78
    [Google Scholar]
  111. Raczkowski D, Fitzpatrick D 1990. Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew's striate cortex. J. Comp. Neurol. 302:500–14
    [Google Scholar]
  112. Rakic P 1976. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–71
    [Google Scholar]
  113. Rakic P 1977. Prenatal development of the visual system in rhesus monkey. Philos. Trans. R. Soc. B 278:245–60
    [Google Scholar]
  114. Rakic P 1995. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–88
    [Google Scholar]
  115. Ramón y Cajal S 1995. Histology of the Nervous System of Man and Vertebrates New York: Oxford Univ. Press
  116. Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V 2010. Retina is structured to process an excess of darkness in natural scenes. PNAS 107:17368–73
    [Google Scholar]
  117. Reese BE, Cowey A 1988. Segregation of functionally distinct axons in the monkey's optic tract. Nature 331:350–51
    [Google Scholar]
  118. Reid RC, Alonso JM 1995. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–84
    [Google Scholar]
  119. Ruthazer ES, Baker GE, Stryker MP 1999. Development and organization of ocular dominance bands in primary visual cortex of the sable ferret. J. Comp. Neurol. 407:151–65
    [Google Scholar]
  120. Salinas KJ, Figueroa Velez DX, Zeitoun JH, Kim H, Gandhi SP 2017. Contralateral bias of high spatial frequency tuning and cardinal direction selectivity in mouse visual cortex. J. Neurosci. 37:10125–38
    [Google Scholar]
  121. Sarnaik R, Wang BS, Cang J 2014. Experience-dependent and independent binocular correspondence of receptive field subregions in mouse visual cortex. Cereb. Cortex 24:1658–70
    [Google Scholar]
  122. Schiller PH, Malpeli JG 1978. Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J. Neurophysiol. 41:788–97
    [Google Scholar]
  123. Schmidt KE, Stephan M, Singer W, Lowel S 2002. Spatial analysis of ocular dominance patterns in monocularly deprived cats. Cereb. Cortex 12:783–96
    [Google Scholar]
  124. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD 2017. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40:499–538
    [Google Scholar]
  125. Sedigh-Sarvestani M, Vigeland L, Fernandez-Lamo I, Taylor MM, Palmer LA, Contreras D 2017. Intracellular, in vivo, dynamics of thalamocortical synapses in visual cortex. J. Neurosci. 37:5250–62
    [Google Scholar]
  126. Shatz CJ 1983. The prenatal development of the cat's retinogeniculate pathway. J. Neurosci. 3:482–99
    [Google Scholar]
  127. Shatz CJ, Kirkwood PA 1984. Prenatal development of functional connections in the cat's retinogeniculate pathway. J. Neurosci. 4:1378–97
    [Google Scholar]
  128. Shatz CJ, Luskin MB 1986. The relationship between the geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J. Neurosci. 6:3655–68
    [Google Scholar]
  129. Shatz CJ, Stryker MP 1978. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. 281:267–83
    [Google Scholar]
  130. Sherman SM, Guillery RW 1996. Functional organization of thalamocortical relays. J. Neurophysiol. 76:1367–95
    [Google Scholar]
  131. Sherman SM, Guillery RW 1998. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators. .” PNAS 95:7121–26
    [Google Scholar]
  132. Shmuel A, Grinvald A 1996. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 16:6945–64
    [Google Scholar]
  133. Smith GB, Whitney DE, Fitzpatrick D 2015. Modular representation of luminance polarity in the superficial layers of primary visual cortex. Neuron 88:805–18
    [Google Scholar]
  134. Speer CM, Mikula S, Huberman AD, Chapman B 2010. The developmental remodeling of eye-specific afferents in the ferret dorsal lateral geniculate nucleus. Anat. Rec. 293:1–24
    [Google Scholar]
  135. Stanley GB, Jin J, Wang Y, Desbordes G, Wang Q et al. 2012. Visual orientation and directional selectivity through thalamic synchrony. J. Neurosci. 32:9073–88
    [Google Scholar]
  136. Stevens CF 2001. An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411:193–95
    [Google Scholar]
  137. Stryker MP, Zahs KR 1983. On and off sublaminae in the lateral geniculate nucleus of the ferret. J. Neurosci. 3:1943–51
    [Google Scholar]
  138. Takahata T, Miyashita M, Tanaka S, Kaas JH 2014. Identification of ocular dominance domains in New World owl monkeys by immediate-early gene expression. PNAS 111:4297–302
    [Google Scholar]
  139. Tanaka K 1985. Organization of geniculate inputs to visual cortical cells in the cat. Vis. Res. 25:357–64
    [Google Scholar]
  140. Tootell RB, Switkes E, Silverman MS, Hamilton SL 1988. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8:1531–68
    [Google Scholar]
  141. Traquair HM 1938. The normal field of vision. An Introduction to Clinical Perimetry H Kimpton 4–5 London: Henry Kimpton
    [Google Scholar]
  142. Tusa RJ, Palmer LA, Rosenquist AC 1978. The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neurol. 177:213–35
    [Google Scholar]
  143. Uylings HBM 2001. The human cerebral cortex in development. Handbook of Brain and Behavior in Human Development AF Kalverboer, A Gramsbergen 63–80 Amsterdam: Kluwer Academic
    [Google Scholar]
  144. Van Essen DC, Newsome WT, Maunsell JH 1984. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vis. Res. 24:429–48
    [Google Scholar]
  145. Vaney DI, Peichl L, Wassle H, Illing RB 1981. Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Res 212:447–53
    [Google Scholar]
  146. Wang Y, Jin J, Kremkow J, Lashgari R, Komban SJ, Alonso JM 2015. Columnar organization of spatial phase in visual cortex. Nat. Neurosci. 18:97–103
    [Google Scholar]
  147. Wassle H, Boycott BB, Illing RB 1981. Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. B 212:177–95
    [Google Scholar]
  148. Wassle H, Illing RB 1980. The retinal projection to the superior colliculus in the cat: a quantitative study with HRP. J. Comp. Neurol. 190:333–56
    [Google Scholar]
  149. Weliky M, Bosking WH, Fitzpatrick D 1996. A systematic map of direction preference in primary visual cortex. Nature 379:725–28
    [Google Scholar]
  150. Wiesel TN, Hubel DH 1963. Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J. Neurophysiol. 26:978–93
    [Google Scholar]
  151. Xing D, Yeh CI, Shapley RM 2010. Generation of black-dominant responses in V1 cortex. J. Neurosci. 30:13504–12
    [Google Scholar]
  152. Yeh CI, Xing D, Shapley RM 2009. “Black” responses dominate macaque primary visual cortex V1. J. Neurosci. 29:11753–60
    [Google Scholar]
  153. Yu H, Farley BJ, Jin DZ, Sur M 2005. The coordinated mapping of visual space and response features in visual cortex. Neuron 47:267–80
    [Google Scholar]
  154. Zahs KR, Stryker MP 1988. Segregation of ON and OFF afferents to ferret visual cortex. J. Neurophysiol. 59:1410–29
    [Google Scholar]
  155. Zemon V, Gordon J, Welch J 1988. Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis. Neurosci. 1:145–50
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034122
Loading
/content/journals/10.1146/annurev-vision-091517-034122
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error