1932

Abstract

The perceptual consequences of eye movements are manifold: Each large saccade is accompanied by a drop of sensitivity to luminance-contrast, low-frequency stimuli, impacting both conscious vision and involuntary responses, including pupillary constrictions. They also produce transient distortions of space, time, and number, which cannot be attributed to the mere motion on the retinae. All these are signs that the visual system evokes active processes to predict and counteract the consequences of saccades. We propose that a key mechanism is the reorganization of spatiotemporal visual fields, which transiently increases the temporal and spatial uncertainty of visual representations just before and during saccades. On one hand, this accounts for the spatiotemporal distortions of visual perception; on the other hand, it implements a mechanism for fusing pre- and postsaccadic stimuli. This, together with the active suppression of motion signals, ensures the stability and continuity of our visual experience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034317
2018-09-15
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034317.html?itemId=/content/journals/10.1146/annurev-vision-091517-034317&mimeType=html&fmt=ahah

Literature Cited

  1. Alais D, Burr D 2004. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14:257–62
    [Google Scholar]
  2. Alhazen I 1083 (1989). Book of optics. The Optics of Ibn al-Haytham, transl AI Sabra London: Warburg Inst.
    [Google Scholar]
  3. Allison RS, Schumacher J, Sadr S, Herpers R 2010. Apparent motion during saccadic suppression periods. Exp. Brain Res. 202:155–69
    [Google Scholar]
  4. Anobile G, Arrighi R, Togoli I, Burr DC 2016. A shared numerical representation for action and perception. eLife 5:e16161
    [Google Scholar]
  5. Arrighi R, Togoli I, Burr DC 2014. A generalized sense of number. Proc. R. Soc. B 281:20141791
    [Google Scholar]
  6. Awater H, Lappe M 2006. Mislocalization of perceived saccade target position induced by perisaccadic visual stimulation. J. Neurosci. 26:12–20
    [Google Scholar]
  7. Benedetto A, Binda P 2016. Dissociable saccadic suppression of pupillary and perceptual responses to light. J. Neurophysiol. 115:1243–51
    [Google Scholar]
  8. Benedetto A, Morrone MC 2017. Saccadic suppression is embedded within extended oscillatory modulation of sensitivity. J. Neurosci. 37:3661–70
    [Google Scholar]
  9. Binda P, Bruno A, Burr DC, Morrone MC 2007. Fusion of visual and auditory stimuli during saccades: a Bayesian explanation for perisaccadic distortions. J. Neurosci. 27:8525–32
    [Google Scholar]
  10. Binda P, Cicchini GM, Burr DC, Morrone MC 2009. Spatiotemporal distortions of visual perception at the time of saccades. J. Neurosci. 29:13147–57
    [Google Scholar]
  11. Binda P, Gamlin PD 2017. Renewed attention on the pupil light reflex. Trends Neurosci 40:455–57
    [Google Scholar]
  12. Binda P, Morrone MC, Bremmer F 2012. Saccadic compression of symbolic numerical magnitude. PLOS ONE 7:e49587
    [Google Scholar]
  13. Binda P, Morrone MC, Burr DC 2010. Temporal auditory capture does not affect the time course of saccadic mislocalization of visual stimuli. J. Vis. 10:27
    [Google Scholar]
  14. Binda P, Morrone MC, Ross J, Burr DC 2011. Underestimation of perceived number at the time of saccades. Vis. Res. 51:34–42
    [Google Scholar]
  15. Binda P, Murray SO 2015.a Keeping a large-pupilled eye on high-level visual processing. Trends Cogn. Sci. 19:1–3
    [Google Scholar]
  16. Binda P, Murray SO 2015.b Spatial attention increases the pupillary response to light changes. J. Vis. 15:21
    [Google Scholar]
  17. Binda P, Pereverzeva M, Murray SO 2013. Attention to bright surfaces enhances the pupillary light reflex. J. Neurosci. 33:2199–204
    [Google Scholar]
  18. Binda P, Straßer T, Stingl K, Richter P, Peters T et al. 2017. Pupil response components: attention-light interaction in patients with Parinaud's syndrome. Sci. Rep. 7:10283
    [Google Scholar]
  19. Bodis-Wollner I, Bucher SF, Seelos KC 1999. Cortical activation patterns during voluntary blinks and voluntary saccades. Neurology 53:1800–5
    [Google Scholar]
  20. Boi M, Poletti M, Victor JD, Rucci M 2017. Consequences of the oculomotor cycle for the dynamics of perception. Curr. Biol. 27:1268–77
    [Google Scholar]
  21. Braun DI, Schatz AC, Gegenfurtner KR 2017. Visual sensitivity for luminance and chromatic stimuli during the execution of smooth pursuit and saccadic eye movements. Vis. Res. 136:57–69
    [Google Scholar]
  22. Bridgeman B, Hendry D, Stark L 1975. Failure to detect displacement of visual world during saccadic eye movements. Vis. Res. 15:719–22
    [Google Scholar]
  23. Bruno A, Brambati SM, Perani D, Morrone MC 2006. Development of saccadic suppression in children. J. Neurophysiol. 96:1011–17
    [Google Scholar]
  24. Burr DC 1980. Motion smear. Nature 284:164–65
    [Google Scholar]
  25. Burr DC, Holt J, Johnstone JR, Ross J 1982. Selective depression of motion sensitivity during saccades. J. Physiol. 333:1–15
    [Google Scholar]
  26. Burr DC, Morgan MJ, Morrone MC 1999. Saccadic suppression precedes visual motion analysis. Curr. Biol. 9:1207–9
    [Google Scholar]
  27. Burr DC, Morrone MC 1996. Temporal impulse response functions for luminance and colour during saccades. Vis. Res. 36:2069–78
    [Google Scholar]
  28. Burr DC, Morrone MC 2011. Spatiotopic coding and remapping in humans. Philos. Trans. R. Soc. B 366:504–15
    [Google Scholar]
  29. Burr DC, Morrone MC 2012. Constructing stable spatial maps of the world. Perception 41:1355–72
    [Google Scholar]
  30. Burr DC, Morrone MC, Ross J 1994. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371:511–13
    [Google Scholar]
  31. Burr DC, Morrone MC, Ross J 2001. Separate visual representations for perception and action revealed by saccadic eye movements. Curr. Biol. 11:798–802
    [Google Scholar]
  32. Burr DC, Ross J 1982. Contrast sensitivity at high velocities. Vis. Res. 23:3567–69
    [Google Scholar]
  33. Burr DC, Ross J 2008. A visual sense of number. Curr. Biol. 18:425–28
    [Google Scholar]
  34. Burr DC, Ross J, Binda P, Morrone MC 2010.a Saccades compress space, time and number. Trends Cogn. Sci. 14:528–33
    [Google Scholar]
  35. Burr DC, Thompson P 2011. Motion psychophysics: 1985–2010. Vis. Res. 51:1431–56
    [Google Scholar]
  36. Burr DC, Turi M, Anobile G 2010.b Subitizing but not estimation of numerosity requires attentional resources. J. Vis. 10:620
    [Google Scholar]
  37. Campbell FW, Wurtz RH 1978. Saccadic omission: why we do not see a greyout during a saccadic eye movement. Vis. Res. 18:1297–303
    [Google Scholar]
  38. Castet E, Jeanjean S, Masson GS 2002. Motion perception of saccade-induced retinal translation. PNAS 99:15159–63
    [Google Scholar]
  39. Castet E, Masson GS 2000. Motion perception during saccadic eye movements. Nat. Neurosci. 3:177–83
    [Google Scholar]
  40. Cicchini GM, Anobile G, Burr DC 2016. Spontaneous perception of numerosity in humans. Nat. Commun. 7:12536
    [Google Scholar]
  41. Cicchini M, Binda P, Burr D, Morrone M 2013. Transient spatiotopic integration across saccadic eye movements mediates visual stability. J. Neurophysiol. 109:1117–25
    [Google Scholar]
  42. Crevecoeur F, Kording KP 2017. Saccadic suppression as a perceptual consequence of efficient sensorimotor estimation. eLife 6:e25073
    [Google Scholar]
  43. Deubel H, Schneider WX 1996. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36:1827–37
    [Google Scholar]
  44. Diamond MR, Ross J, Morrone MC 2000. Extraretinal control of saccadic suppression. J. Neurosci. 20:3442–48
    [Google Scholar]
  45. Dodge R 1900. Visual perception during eye movements. Psychol. Rev. 7:454–65
    [Google Scholar]
  46. Dorr M, Bex PJ 2013. Peri-saccadic natural vision. J. Neurosci. 33:1211–17
    [Google Scholar]
  47. Douglas RH, Williamson R, Wagner HJ 2005. The pupillary response of cephalopods. J. Exp. Biol. 208:261–65
    [Google Scholar]
  48. Duhamel JR, Colby CL, Goldberg ME 1992. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92
    [Google Scholar]
  49. Eagleman DM, Sejnowski TJ 2000. Motion integration and postdiction in visual awareness. Science 287:2036–38
    [Google Scholar]
  50. Ebitz RB, Moore T 2017. Selective modulation of the pupil light reflex by microstimulation of prefrontal cortex. J. Neurosci. 37:5008–18
    [Google Scholar]
  51. Engel AK, Fries P, Singer W 2001. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2:704–16
    [Google Scholar]
  52. Fischer B, Biscaldi M, Gezeck S 1997. On the development of voluntary and reflexive components in human saccade generation. Brain Res 754:285–97
    [Google Scholar]
  53. Goodale MA, Milner AD 1992. Separate pathways for perception and action. Trends Neurosci 15:20–25
    [Google Scholar]
  54. Gu X-J, Hu M, Li B, Hu X-T 2014. The role of contrast adaptation in saccadic suppression in humans. PLOS ONE 9:e86542
    [Google Scholar]
  55. Hallett PE, Lightstone AD 1976.a Saccadic eye movements towards stimuli triggered by prior saccades. Vis. Res. 16:99–106
    [Google Scholar]
  56. Hallett PE, Lightstone D 1976.b Saccadic eye movements to flashed targets. Vis. Res. 16:107–14
    [Google Scholar]
  57. Hamker FH, Zirnsak M, Lappe M 2008. About the influence of post-saccadic mechanisms for visual stability on peri-saccadic compression of object location. J. Vis. 8:141
    [Google Scholar]
  58. Hansen RM, Skavenski AA 1977. Accuracy of eye position information for motor control. Vis. Res. 17:919–26
    [Google Scholar]
  59. Hansen RM, Skavenski AA 1985. Accuracy of spatial locations near the time of saccadic eye movments. Vis. Res. 25:1077–82
    [Google Scholar]
  60. Harris LR, Lieberman L 1996. Auditory stimulus detection is not suppressed during saccadic eye movements. Perception 25:999–1004
    [Google Scholar]
  61. Helmholtz HV 1866 (1963). Handbuch der Physiologischen Optik. A Treatise on Physiological Optics JPC Southall New York: Dover:
    [Google Scholar]
  62. Holt EB 1903. Eye movements and central anaesthesia. Psychol. Rev. 4:3–45
    [Google Scholar]
  63. Honda H 1991. The time courses of visual mislocalization and of extra-retinal eye position signals at the time of vertical saccades. Vis. Res. 31:1915–21
    [Google Scholar]
  64. Hupe JM, Lamirel C, Lorenceau J 2009. Pupil dynamics during bistable motion perception. J. Vis. 9:710
    [Google Scholar]
  65. Kaiser M, Lappe M 2004. Perisaccadic mislocalization orthogonal to saccade direction. Neuron 41:293–300
    [Google Scholar]
  66. Kleiser R, Seitz RJ, Krekelberg B 2004. Neural correlates of saccadic suppression in humans. Curr. Biol. 14:386–90
    [Google Scholar]
  67. Knöll J, Binda P, Morrone MC, Bremmer F 2011. Spatiotemporal profile of peri-saccadic contrast sensitivity. J. Vis. 11:1415
    [Google Scholar]
  68. Knöll J, Morrone MC, Bremmer F 2013. Spatio-temporal topography of saccadic overestimation of time. Vis. Res. 83:56–65
    [Google Scholar]
  69. Kowler E 2011. Eye movements: the past 25 years. Vis. Res. 51:1457–83
    [Google Scholar]
  70. Kowler E, Anderson E, Dosher B, Blaser E 1995. The role of attention in the programming of saccades. Vis. Res. 35:1897–916
    [Google Scholar]
  71. Kresevic JL, Marinovic W, Johnston A, Arnold DH 2016. Time order reversals and saccades. Vis. Res. 125:23–29
    [Google Scholar]
  72. Lappe M, Awater H, Krekelberg B 2000. Postsaccadic visual references generate presaccadic compression of space. Nature 403:892–95
    [Google Scholar]
  73. Lappe M, Kuhlmann S, Oerke B, Kaiser M 2006. The fate of object features during perisaccadic mislocalization. J. Vis. 6:1111
    [Google Scholar]
  74. Loewenfeld I 1993. The Pupil: Anatomy, Physiology, and Clinical Applications Detroit, MI: Wayne State Univ. Press
    [Google Scholar]
  75. Lorber M, Zuber BL, Stark L 1965. Suppression of pupillary light reflex in binocular rivalry and saccadic suppression. Nature 208:558–60
    [Google Scholar]
  76. Mateeff S 1978. Saccadic eye movements and localization of visual stimuli. Percept. Psychophys. 24:215–24
    [Google Scholar]
  77. Mathot S, Melmi JB, Castet E 2015.a Intrasaccadic perception triggers pupillary constriction. PeerJ 3:e1150
    [Google Scholar]
  78. Mathot S, van der Linden L, Grainger J, Vitu F 2015.b The pupillary light response reflects eye-movement preparation. J. Exp. Psychol. Hum. Percept. Perform. 41:28–35
    [Google Scholar]
  79. Matin L, Pearce DG 1965. Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148:1485–87
    [Google Scholar]
  80. Matsumiya K, Uchikawa K 2001. Apparent size of an object remains uncompressed during presaccadic compression of visual space. Vis. Res. 41:3039–50
    [Google Scholar]
  81. Maurer D, Lewis TL, Mondloch CJ 2005. Missing sights: consequences for visual cognitive development. Trends Cogn. Sci. 9:144–51
    [Google Scholar]
  82. McFarland JM, Bondy AG, Saunders RC, Cumming BG, Butts DA 2015. Saccadic modulation of stimulus processing in primary visual cortex. Nat. Commun. 6:8110
    [Google Scholar]
  83. Melcher D, Morrone MC 2015. Nonretinotopic visual processing in the brain. Vis. Neurosci. 32:E017
    [Google Scholar]
  84. Mishkin M, Ungerleider LG, Macko KA 1983. Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–17
    [Google Scholar]
  85. Mitrani L, Mateeff S, Yakimoff N 1970. Temporal and spatial characteristics of visual suppression during voluntary saccadic eye movement. Vis. Res. 10:417–22
    [Google Scholar]
  86. Morrone MC, Ma-Wyatt A, Ross J 2005.a Seeing and ballistic pointing at perisaccadic targets. J. Vis. 5:7741–54
    [Google Scholar]
  87. Morrone MC, Ross J, Burr D 2005.b Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8:950–54
    [Google Scholar]
  88. Morrone MC, Ross J, Burr DC 1997. Apparent position of visual targets during real and simulated saccadic eye movements. J. Neurosci. 17:7941–53
    [Google Scholar]
  89. Nakamura K, Colby CL 2002. Updating of the visual representation in monkey striate and extrastriate cortex during saccades. PNAS 99:4026–31
    [Google Scholar]
  90. Niemeier M, Crawford JD, Tweed DB 2003. Optimal transsaccadic integration explains distorted spatial perception. Nature 422:76–80
    [Google Scholar]
  91. Panichi M, Burr D, Morrone MC, Baldassi S 2012. Spatiotemporal dynamics of perisaccadic remapping in humans revealed by classification images. J. Vis. 12:411
    [Google Scholar]
  92. Park J, Schlag-Rey M, Schlag J 2003. Spatial localization precedes temporal determination in visual perception. Vis. Res. 43:1667–74
    [Google Scholar]
  93. Parrish EE, Giaschi DE, Boden C, Dougherty R 2005. The maturation of form and motion perception in school age children. Vis. Res. 45:827–37
    [Google Scholar]
  94. Paus T, Marrett S, Worsley KJ, Evans AC 1995. Extraretinal modulation of cerebral blood flow in the human visual cortex: implications for saccadic suppression. J. Neurophysiol. 74:2179–83
    [Google Scholar]
  95. Pola J 2007. A model of the mechanism for the perceived location of a single flash and two successive flashes presented around the time of a saccade. Vis. Res. 47:2798–813
    [Google Scholar]
  96. Price NS, Ibbotson MR, Ono S, Mustari MJ 2005. Rapid processing of retinal slip during saccades in macaque area MT. J. Neurophysiol. 94:235–46
    [Google Scholar]
  97. Reichardt W 1957. Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems. Zeitschrift Für Naturforschung 12:447–57
    [Google Scholar]
  98. Riggs LA, Merton PA, Morton HB 1974. Suppression of visual phosphenes during saccadic eye movements. Vis. Res. 14:997–1011
    [Google Scholar]
  99. Ross J, Morrone MC, Burr DC 1997. Compression of visual space before saccades. Nature 384:598–601
    [Google Scholar]
  100. Rucci M, Poletti M 2015. Control and functions of fixational eye movements. Annu. Rev. Vis. Sci. 1:499–518
    [Google Scholar]
  101. Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P 2010. Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol. 20:172–76
    [Google Scholar]
  102. Schutz AC, Braun DI, Gegenfurtner KR 2011. Eye movements and perception: a selective review. J. Vis. 11:59
    [Google Scholar]
  103. Shapley RM, Enroth-Cugell C 1984. Visual adaptation and retinal gain controls. Progress in Retinal Research, Vol. 3 NN Osborn, GJ Chadler 263–346 Oxford, UK: Pergamon Press
    [Google Scholar]
  104. Shapley RM, Victor JD 1981. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J. Physiol. 318:161–79
    [Google Scholar]
  105. Sheliga BM, Riggio L, Rizzolatti G 1995. Spatial attention and eye movements. Exp. Brain Res. 105:261–75
    [Google Scholar]
  106. Shioiri S, Cavanagh P 1989. Saccadic suppression of low-level motion. Vis. Res. 29:915–28
    [Google Scholar]
  107. Sogo H, Osaka N 2001. Perception of relation of stimuli locations successively flashed before saccade. Vis. Res. 41:935–42
    [Google Scholar]
  108. Sogo H, Osaka N 2002. Effects of inter-stimulus interval on perceived locations of successively flashed perisaccadic stimuli. Vis. Res. 42:899–908
    [Google Scholar]
  109. Sommer MA, Wurtz RH 2006. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–77
    [Google Scholar]
  110. Sperry RW 1950. Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psych. 43:482–89
    [Google Scholar]
  111. Sun LD, Goldberg ME 2016. Corollary discharge and oculomotor proprioception: cortical mechanisms for spatially accurate vision. Annu. Rev. Vis. Sci. 2:61–84
    [Google Scholar]
  112. Sylvester R, Haynes JD, Rees G 2005. Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation. Curr. Biol. 15:37–41
    [Google Scholar]
  113. Thilo KV, Santoro L, Walsh V, Blakemore C 2003. The site of saccadic suppression. Nat. Neurosci. 7:13–14
    [Google Scholar]
  114. Uchikawa K, Sato M 1995. Saccadic suppression to achromatic and chromatic responses measured by increment-threshold spectral sensitivity. J. Opt. Soc. Am. A 12:661–66
    [Google Scholar]
  115. Vallines I, Greenlee MW 2006. Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1. J. Neurosci. 26:5965–69
    [Google Scholar]
  116. VanRullen R, Koch C 2003. Is perception discrete or continuous. ? Trends Cogn. Sci. 7:207–13
    [Google Scholar]
  117. Volkmann FC, Riggs LA, White KD, Moore RK 1978. Contrast sensitivity during saccadic eye movements. Vis. Res. 18:1193–99
    [Google Scholar]
  118. Von Holst E, Mittelstaedt H 1954. Das Reafferenzprinzip. Naturwissenschaften 37:464–76
    [Google Scholar]
  119. Walsh V 2003. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7:483–88
    [Google Scholar]
  120. Wang C-A, Brien DC, Munoz DP 2015. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. Eur. J. Neurosci. 41:1102–10
    [Google Scholar]
  121. Wang C-A, Munoz DP 2015. A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr. Opin. Neurobiol. 33:134–40
    [Google Scholar]
  122. Wang X, Fung CCA, Guan S, Wu S, Goldberg ME, Zhang M 2016. Perisaccadic receptive field expansion in the lateral intraparietal area. Neuron 90:400–9
    [Google Scholar]
  123. Watanabe J, Noritake A, Maeda T, Tachi S, Nishida S 2005. Perisaccadic perception of continuous flickers. Vis. Res. 45:413–30
    [Google Scholar]
  124. Watson TL, Krekelberg B 2009. The relationship between saccadic suppression and perceptual stability. Curr. Biol. 19:1040–43
    [Google Scholar]
  125. Watson TL, Krekelberg B 2011. An equivalent noise investigation of saccadic suppression. J. Neurosci. 31:6535–41
    [Google Scholar]
  126. Wittenberg M, Bremmer F, Wachtler T 2008. Perceptual evidence for saccadic updating of color stimuli. J. Vis. 8:149
    [Google Scholar]
  127. Woodworth RS 1906. Vision and localization during eye movements. Psychol. Bull. 3:68–70
    [Google Scholar]
  128. Wurtz RH 2008. Neuronal mechanisms of visual stability. Vis. Res. 48:2070–89
    [Google Scholar]
  129. Yabe Y, Goodale MA, Shigemasu H 2014. Temporal order judgments are disrupted more by reflexive than by voluntary saccades. J. Neurophysiol. 111:2103–8
    [Google Scholar]
  130. Yarrow K, Haggard P, Heal R, Brown P, Rothwell JC 2001. Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414:302–5
    [Google Scholar]
  131. Zhang Z-L, Cantor C, Ghose T, Schor CM 2004. Temporal aspects of spatial interactions affecting stereo-matching solutions. Vis. Res. 44:3183–92
    [Google Scholar]
  132. Zhao M, Gersch TM, Schnitzer BS, Dosher BA, Kowler E 2012. Eye movements and attention: the role of pre-saccadic shifts of attention in perception, memory and the control of saccades. Vis. Res. 74:40–60
    [Google Scholar]
  133. Zimmermann E, Born S, Fink GR, Cavanagh P 2014.a Masking produces compression of space and time in the absence of eye movements. J. Neurophysiol. 112:3066–76
    [Google Scholar]
  134. Zimmermann E, Morrone MC, Binda P 2018. Perception during double-step saccades. Sci. Rep. 8:320
    [Google Scholar]
  135. Zimmermann E, Morrone MC, Burr DC 2014.b Buildup of spatial information over time and across eye-movements. Behav. Brain Res. 275:281–87
    [Google Scholar]
  136. Zimmermann E, Morrone MC, Burr DC 2014.c The visual component to saccadic compression. J. Vis. 14:1213
    [Google Scholar]
  137. Zimmermann E, Morrone MC, Burr DC 2015. Visual mislocalization during saccade sequences. Exp. Brain Res. 233:577–85
    [Google Scholar]
  138. Zuber BL, Stark L, Lorber M 1966. Saccadic suppression of the pupillary light reflex. Exp. Neurol. 14:351–70
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034317
Loading
/content/journals/10.1146/annurev-vision-091517-034317
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error