1932

Abstract

Inflammation of the blood vessels that serve the central nervous system has been increasingly identified as an early and possibly initiating event among neurodegenerative conditions such as Alzheimer's disease and related dementias. However, the causal relevance of vascular inflammation to major retinal degenerative diseases is unresolved. Here, we describe how genetics, aging-associated changes, and environmental factors contribute to vascular inflammation in age-related macular degeneration, diabetic retinopathy, and glaucoma. We highlight the importance of mouse models in studying the underlying mechanisms and possible treatments for these diseases. We conclude that data support vascular inflammation playing a central if not primary role in retinal degenerative diseases, and this association should be a focus of future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034416
2019-09-15
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091517-034416.html?itemId=/content/journals/10.1146/annurev-vision-091517-034416&mimeType=html&fmt=ahah

Literature Cited

  1. Abu-Amero K, Kondkar AA, Chalam KV 2015. An updated review on the genetics of primary open angle glaucoma. Int. J. Mol. Sci. 16:28886–911
    [Google Scholar]
  2. Akinyemi RO, Mukaetova-Ladinska EB, Attems J, Ihara M, Kalaria RN 2013. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer's disease and vascular dementia. Curr. Alzheimer Res. 10:642–53
    [Google Scholar]
  3. Al-Zamil WM, Yassin SA. 2017. Recent developments in age-related macular degeneration: a review. Clin. Interv. Aging 12:1313–30
    [Google Scholar]
  4. Altmann C, Schmidt MHH. 2018. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int. J. Mol. Sci. 19:110
    [Google Scholar]
  5. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT et al. 2010. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog. Retin. Eye Res. 29:95–112
    [Google Scholar]
  6. Anderson DR, Drance SM, Schulzer M 2003. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am. J. Ophthalmol. 136:820–29
    [Google Scholar]
  7. Assar ME, Angulo J, Rodriguez-Manas L 2016. Diabetes and ageing-induced vascular inflammation. J. Physiol. 594:2125–46
    [Google Scholar]
  8. Balasubbramanian D, Gelston CAL, Mitchell BM, Chatterjee P 2017. Toll-like receptor activation, vascular endothelial function, and hypertensive disorders of pregnancy. Pharmacol. Res. 121:14–21
    [Google Scholar]
  9. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R et al. 2012. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485:512–16
    [Google Scholar]
  10. Beltran-Valero de Bernabe D, Voit T, Longman C, Steinbrecher A, Straub V et al. 2004. Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker–Warburg syndrome. J. Med. Genet. 41:e61
    [Google Scholar]
  11. Biesemeier A, Taubitz T, Julien S, Yoeruek E, Schraermeyer U 2014. Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol. Aging 35:2562–73
    [Google Scholar]
  12. Bosco A, Crish SD, Steele MR, Romero CO, Inman DM et al. 2012. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLOS ONE 7:e43602
    [Google Scholar]
  13. Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR et al. 2015. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis. Model. Mech. 8:443–55
    [Google Scholar]
  14. Bosco A, Steele MR, Vetter ML 2011. Early microglia activation in a mouse model of chronic glaucoma. J. Comp. Neurol. 519:599–620
    [Google Scholar]
  15. Cai S, Yang Q, Hou M, Han Q, Zhang H et al. 2018. α-Melanocyte-stimulating hormone protects early diabetic retina from blood-retinal barrier breakdown and vascular leakage via MC4R. Cell Physiol. Biochem. 45:505–22
    [Google Scholar]
  16. Caillon A, Paradis P, Schiffrin EL 2019. Role of immune cells in hypertension. Br. J. Pharmacol. 176:1818–28
    [Google Scholar]
  17. Callahan MK, Ransohoff RM. 2004. Analysis of leukocyte extravasation across the blood–brain barrier: conceptual and technical aspects. Curr. Allergy Asthma Rep. 4:65–73
    [Google Scholar]
  18. Capozzi ME, Gordon AY, Penn JS, Jayagopal A 2013. Molecular imaging of retinal disease. J. Ocul. Pharmacol. Ther. 29:275–86
    [Google Scholar]
  19. Catapano AL, Pirillo A, Norata GD 2017. Vascular inflammation and low-density lipoproteins: is cholesterol the link? A lesson from the clinical trials. Br. J. Pharmacol. 174:3973–85
    [Google Scholar]
  20. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF et al. 2012. Biology of intracranial aneurysms: role of inflammation. J. Cereb. Blood Flow Metab. 32:1659–76
    [Google Scholar]
  21. Chan-Ling T, Hughes S, Baxter L, Rosinova E, McGregor I et al. 2007. Inflammation and breakdown of the blood-retinal barrier during “physiological aging” in the rat retina: a model for CNS aging. Microcirculation 14:63–76
    [Google Scholar]
  22. Chapman SB, Aslan S, Spence JS, Defina LF, Keebler MW et al. 2013. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front. Aging Neurosci. 5:75
    [Google Scholar]
  23. Chen JJ, Rosas HD, Salat DH 2011. Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage 55:468–78
    [Google Scholar]
  24. Chen M, Muckersie E, Forrester JV, Xu H 2010. Immune activation in retinal aging: a gene expression study. Invest. Ophthalmol. Vis. Sci. 51:5888–96
    [Google Scholar]
  25. Chen M, Xu H. 2015. Parainflammation, chronic inflammation, and age-related macular degeneration. J. Leukoc. Biol. 98:713–25
    [Google Scholar]
  26. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH 2010. Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br. J. Ophthalmol. 94:918–25
    [Google Scholar]
  27. Chirco KR, Sohn EH, Stone EM, Tucker BA, Mullins RF 2017. Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye 31:10–25
    [Google Scholar]
  28. Christensen DRG, Brown FE, Cree AJ, Ratnayaka JA, Lotery AJ 2017. Sorsby fundus dystrophy—a review of pathology and disease mechanisms. Exp. Eye Res. 165:35–46
    [Google Scholar]
  29. Ciavarella D, Tepedino M, Chimenti C, Troiano G, Mazzotta M et al. 2018. Correlation between body mass index and obstructive sleep apnea severity indexes—a retrospective study. Am. J. Otolaryngol. 39:388–91
    [Google Scholar]
  30. Combs CK, Karlo JC, Kao SC, Landreth GE 2001. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21:1179–88
    [Google Scholar]
  31. Congrains A, Kamide K, Ohishi M, Rakugi H 2013. ANRIL: molecular mechanisms and implications in human health. Int. J. Mol. Sci. 14:1278–92
    [Google Scholar]
  32. Corbitt H, Morris SA, Gravholt CH, Mortensen KH, Tippner-Hedges R et al. 2018. TIMP3 and TIMP1 are risk genes for bicuspid aortic valve and aortopathy in Turner syndrome. PLOS Genet 14:e1007692
    [Google Scholar]
  33. Crooks KR, Allingham RR, Qin X, Liu Y, Gibson JR et al. 2011. Genome-wide linkage scan for primary open angle glaucoma: influences of ancestry and age at diagnosis. PLOS ONE 6:e21967
    [Google Scholar]
  34. Curcio CA. 2018. Soft drusen in age-related macular degeneration: biology and targeting via the oil spill strategies. Invest. Ophthalmol. Vis. Sci. 59:AMD160–81
    [Google Scholar]
  35. Dansingani KK, Gal-Or O, Sadda SR, Yannuzzi LA, Freund KB 2018. Understanding aneurysmal type 1 neovascularization (polypoidal choroidal vasculopathy): a lesson in the taxonomy of ‘expanded spectra’—a review. Clin. Exp. Ophthalmol. 46:189–200
    [Google Scholar]
  36. Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M et al. 2018. Mechanisms of macular edema: beyond the surface. Prog. Retin. Eye Res. 63:20–68
    [Google Scholar]
  37. Davalos D, Akassoglou K. 2012. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 34:43–62
    [Google Scholar]
  38. Dave JM, Mirabella T, Weatherbee SD, Greif DM 2018. Pericyte ALK5/TIMP3 axis contributes to endothelial morphogenesis in the developing brain. Dev. Cell 44:665–78.e6
    [Google Scholar]
  39. Dieguez HH, Romeo HE, Gonzalez Fleitas MF, Aranda ML, Milne GA et al. 2018. Superior cervical gangliectomy induces non-exudative age-related macular degeneration in mice. Dis. Model. Mech. 11:dmm031641
    [Google Scholar]
  40. Du W, Wong C, Song Y, Shen H, Mori D et al. 2016. Age-associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell 15:766–77
    [Google Scholar]
  41. Ebrahem Q, Qi JH, Sugimoto M, Ali M, Sears JE et al. 2011. Increased neovascularization in mice lacking tissue inhibitor of metalloproteinases-3. Invest. Ophthalmol. Vis. Sci. 52:6117–23
    [Google Scholar]
  42. Echevarria FD, Formichella CR, Sappington RM 2017. Interleukin-6 deficiency attenuates retinal ganglion cell axonopathy and glaucoma-related vision loss. Front. Neurosci. 11:318
    [Google Scholar]
  43. Eglitis MA, Mezey E. 1997. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. PNAS 94:4080–85
    [Google Scholar]
  44. Fernandes KA, Harder JM, Williams PA, Rausch RL, Kiernan AE et al. 2015. Using genetic mouse models to gain insight into glaucoma: past results and future possibilities. Exp. Eye Res. 141:42–56
    [Google Scholar]
  45. Findl O, Rainer G, Dallinger S, Dorner G, Polak K et al. 2000. Assessment of optic disk blood flow in patients with open-angle glaucoma. Am. J. Ophthalmol. 130:589–96
    [Google Scholar]
  46. Fingert JH, Miller K, Hedberg-Buenz A, Roos BR, Lewis CJ et al. 2017. Transgenic TBK1 mice have features of normal tension glaucoma. Hum. Mol. Genet. 26:124–32
    [Google Scholar]
  47. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK et al. 2002. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21:359–93
    [Google Scholar]
  48. Fletcher EL, Jobling AI, Greferath U, Mills SA, Waugh M et al. 2014. Studying age-related macular degeneration using animal models. Optom. Vis. Sci. 91:878–86
    [Google Scholar]
  49. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S 2017. Inflammaging and ‘garb-aging.’. Trends Endocrinol. Metab. 28:199–212
    [Google Scholar]
  50. Friedman E. 1997. A hemodynamic model of the pathogenesis of age-related macular degeneration. Am. J. Ophthalmol. 124:677–82
    [Google Scholar]
  51. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y et al. 2013. Seven new loci associated with age-related macular degeneration. Nat. Genet. 45:433–39e2
    [Google Scholar]
  52. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S et al. 2016. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48:134–43
    [Google Scholar]
  53. Gaedt Thorlund M, Borg Madsen M, Green A, Sjolie AK, Grauslund J 2013. Is smoking a risk factor for proliferative diabetic retinopathy in type 1 diabetes?. Ophthalmologica 230:50–54
    [Google Scholar]
  54. Gao S, Jakobs TC. 2016. Mice homozygous for a deletion in the glaucoma susceptibility locus INK4 show increased vulnerability of retinal ganglion cells to elevated intraocular pressure. Am. J. Pathol. 186:985–1005
    [Google Scholar]
  55. Geerlings MJ, de Jong EK, den Hollander AI 2017. The complement system in age-related macular degeneration: a review of rare genetic variants and implications for personalized treatment. Mol. Immunol. 84:65–76
    [Google Scholar]
  56. Gelfand BD, Ambati J. 2016. A revised hemodynamic theory of age-related macular degeneration. Trends Mol. Med. 22:656–70
    [Google Scholar]
  57. Geng Y, Dubra A, Yin L, Merigan WH, Sharma R et al. 2012. Adaptive optics retinal imaging in the living mouse eye. Biomed. Opt. Express 3:715–34
    [Google Scholar]
  58. Gimbrone MA Jr., Garcia-Cardena G. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118:620–36
    [Google Scholar]
  59. Giri R, Selvaraj S, Miller CA, Hofman F, Yan SD et al. 2002. Effect of endothelial cell polarity on β-amyloid-induced migration of monocytes across normal and AD endothelium. Am. J. Physiol. Cell Physiol. 283:C895–904
    [Google Scholar]
  60. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–34
    [Google Scholar]
  61. Graham PS, Kaidonis G, Abhary S, Gillies MC, Daniell M et al. 2018. Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy. BMC Med. Genet. 19:71
    [Google Scholar]
  62. Grassi MA, Tikhomirov A, Ramalingam S, Below JE, Cox NJ, Nicolae DL 2011. Genome-wide meta-analysis for severe diabetic retinopathy. Hum. Mol. Genet. 20:2472–81
    [Google Scholar]
  63. Grassmann F, Heid IM, Weber BH, Int. AMG Genom. Consort. 2017. Recombinant haplotypes narrow the ARMS2/HTRA1 association signal for age-related macular degeneration. Genetics 205:919–24
    [Google Scholar]
  64. Grunwald JE, Piltz J, Hariprasad SM, DuPont J 1998. Optic nerve and choroidal circulation in glaucoma. Invest. Ophthalmol. Vis. Sci. 39:2329–36
    [Google Scholar]
  65. Gu X, Reagan A, Yen A, Bhatti F, Cohen AW, Elliott MH 2014. Spatial and temporal localization of caveolin-1 protein in the developing retina. Adv. Exp. Med. Biol. 801:15–21
    [Google Scholar]
  66. Guillonneau X, Eandi CM, Paques M, Sahel JA, Sapieha P, Sennlaub F 2017. On phagocytes and macular degeneration. Prog. Retin. Eye Res. 61:98–128
    [Google Scholar]
  67. Gupta N, Brown KE, Milam AH 2003. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp. Eye Res. 76:463–71
    [Google Scholar]
  68. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF 2001. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog. Retin. Eye Res. 20:705–32
    [Google Scholar]
  69. Hammes HP, Kerner W, Hofer S, Kordonouri O, Raile K et al. 2011. Diabetic retinopathy in type 1 diabetes—a contemporary analysis of 8,784 patients. Diabetologia 54:1977–84
    [Google Scholar]
  70. Hansen DV, Hanson JE, Sheng M 2018. Microglia in Alzheimer's disease. J. Cell Biol. 217:459–72
    [Google Scholar]
  71. Hartge MM, Unger T, Kintscher U 2007. The endothelium and vascular inflammation in diabetes. Diabetes Vasc. Dis. Res. 4:84–88
    [Google Scholar]
  72. Hayreh SS. 2001. The blood supply of the optic nerve head and the evaluation of it—myth and reality. Prog. Retin. Eye Res. 20:563–93
    [Google Scholar]
  73. Hohsfield LA, Humpel C. 2015. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of β-amyloid plaques in an Alzheimer mouse model. PLOS ONE 10:e0121930
    [Google Scholar]
  74. Hossain M, Sathe T, Fazio V, Mazzone P, Weksler B et al. 2009. Tobacco smoke: a critical etiological factor for vascular impairment at the blood–brain barrier. Brain Res 1287:192–205
    [Google Scholar]
  75. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I et al. 2011. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121:1429–44
    [Google Scholar]
  76. Howell GR, MacNicoll KH, Braine CE, Soto I, Macalinao DG et al. 2014. Combinatorial targeting of early pathways profoundly inhibits neurodegeneration in a mouse model of glaucoma. Neurobiol. Dis. 71:44–52
    [Google Scholar]
  77. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG et al. 2012. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J. Clin. Invest. 122:1246–61
    [Google Scholar]
  78. Huang W, Wang W, Zhou M, Zhang X 2014. Association of single-nucleotide polymorphism rs4236601 near caveolin 1 and 2 with primary open-angle glaucoma: a meta-analysis. Clin. Exp. Ophthalmol. 42:515–21
    [Google Scholar]
  79. Hussain S, Barbarite E, Chaudhry NS, Gupta K, Dellarole A et al. 2015. Search for biomarkers of intracranial aneurysms: a systematic review. World Neurosurg 84:1473–83
    [Google Scholar]
  80. Hysi PG, Cheng CY, Springelkamp H, Macgregor S, Bailey JNC et al. 2014. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet. 46:1126–30
    [Google Scholar]
  81. Imanaka-Yoshida K. 2016. Extracellular matrix remodeling in vascular development and disease. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology T Nakanishi, RR Markwald, HS Baldwin, BB Keller, D Srivastava, H Yamagishi 221–26 Tokyo: Springer
    [Google Scholar]
  82. Inman DM, Horner PJ. 2007. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 55:942–53
    [Google Scholar]
  83. Ito YA, Belforte N, Cueva Vargas JL, Di Polo A 2016. A magnetic microbead occlusion model to induce ocular hypertension-dependent glaucoma in mice. J. Vis. Exp. 109:e53731
    [Google Scholar]
  84. Janssen A, Hoellenriegel J, Fogarasi M, Schrewe H, Seeliger M et al. 2008. Abnormal vessel formation in the choroid of mice lacking tissue inhibitor of metalloprotease-3. Invest. Ophthalmol. Vis. Sci. 49:2812–22
    [Google Scholar]
  85. John SWM, Smith RS, Savinova OV, Hawes NL, Chang B et al. 1998. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest. Ophthalmol. Vis. Sci. 39:951–62
    [Google Scholar]
  86. Johnson EC, Morrison JC. 2009. Friend or foe? Resolving the impact of glial responses in glaucoma. J. Glaucoma 18:341–53
    [Google Scholar]
  87. Kang JH, Loomis SJ, Yaspan BL, Bailey JC, Weinreb RN et al. 2014. Vascular tone pathway polymorphisms in relation to primary open-angle glaucoma. Eye 28:662–71
    [Google Scholar]
  88. Karch CM, Ezerskiy LA, Bertelsen S, Alzheimer Dis. Genet Consort., Goate AM 2016. Alzheimer's disease risk polymorphisms regulate gene expression in the ZCWPW1 and the CELF1 loci. PLOS ONE 11:e0148717
    [Google Scholar]
  89. Keenan TD, Goldacre R, Goldacre MJ 2017. Associations between obstructive sleep apnoea, primary open angle glaucoma and age-related macular degeneration: record linkage study. Br. J. Ophthalmol. 101:155–59
    [Google Scholar]
  90. Kempen JH, O'Colmain BJ, Leske MC, Haffner SM, Klein R et al. 2004. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 122:552–63
    [Google Scholar]
  91. Kim S, Kim K, Heo DW, Kim JS, Park CK et al. 2015. Expression-associated polymorphisms of CAV1-CAV2 affect intraocular pressure and high-tension glaucoma risk. Mol. Vis. 21:548–54
    [Google Scholar]
  92. Kompass KS, Agapova OA, Li W, Kaufman PL, Rasmussen CA, Hernandez MR 2008. Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension. BMC Neurosci 9:93
    [Google Scholar]
  93. Lansac G, Dong W, Dubois CM, Benlarbi N, Afonso C et al. 2006. Lipopolysaccharide mediated regulation of neuroendocrine associated proprotein convertases and neuropeptide precursor processing in the rat spleen. J. Neuroimmunol. 171:57–71
    [Google Scholar]
  94. Lee VK, Hosking BM, Holeniewska J, Kubala EC, Lundh von Leithner P et al. 2018. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. Diabetologia 61:2422–32
    [Google Scholar]
  95. Liao SM, Zheng W, Zhu J, Lewis CA, Delgado O et al. 2017. Specific correlation between the major chromosome 10q26 haplotype conferring risk for age-related macular degeneration and the expression of HTRA1. Mol. Vis 23:318–33
    [Google Scholar]
  96. Lin MK, Yang J, Hsu CW, Gore A, Bassuk AG et al. 2018. HTRA1, an age-related macular degeneration protease, processes extracellular matrix proteins EFEMP1 and TSP1. Aging Cell 17:e12710
    [Google Scholar]
  97. Liu Y, Yang J, Tao L, Lv H, Jiang X et al. 2017. Risk factors of diabetic retinopathy and sight-threatening diabetic retinopathy: a cross-sectional study of 13,473 patients with type 2 diabetes mellitus in mainland China. BMJ Open 7:e016280
    [Google Scholar]
  98. Lokki AI, Kaartokallio T, Holmberg V, Onkamo P, Koskinen LLE et al. 2017. Analysis of complement C3 gene reveals susceptibility to severe preeclampsia. Front. Immunol. 8:589
    [Google Scholar]
  99. Loomis SJ, Kang JH, Weinreb RN, Yaspan BL, Cooke Bailey JN et al. 2014. Association of CAV1/CAV2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss. Ophthalmology 121:508–16
    [Google Scholar]
  100. Lopes J, Adiguzel E, Gu S, Liu SL, Hou G et al. 2013. Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. Am. J. Pathol. 182:2241–53
    [Google Scholar]
  101. Lu J, Ma X, Zhou J, Zhang L, Mo Y et al. 2018. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 41:2370–76
    [Google Scholar]
  102. Luo C, Yang X, Kain AD, Powell DW, Kuehn MH, Tezel G 2010. Glaucomatous tissue stress and the regulation of immune response through glial Toll-like receptor signaling. Invest. Ophthalmol. Vis. Sci. 51:5697–707
    [Google Scholar]
  103. Lynch SK, Abramoff MD. 2017. Diabetic retinopathy is a neurodegenerative disorder. Vis. Res. 139:101–7
    [Google Scholar]
  104. Malek G, Johnson LV, Mace BE, Saloupis P, Schmechel DE et al. 2005. Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. PNAS 102:11900–5
    [Google Scholar]
  105. Margeta MA, Lad EM, Proia AD 2018. CD163+ macrophages infiltrate axon bundles of postmortem optic nerves with glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 256:2449–56
    [Google Scholar]
  106. McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA 2017. The translational significance of the neurovascular unit. J. Biol. Chem. 292:762–70
    [Google Scholar]
  107. McLeod DS, Bhutto I, Edwards MM, Silver RE, Seddon JM, Lutty GA 2016. Distribution and quantification of choroidal macrophages in human eyes with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 57:5843–55
    [Google Scholar]
  108. McVicar CM, Ward M, Colhoun LM, Guduric-Fuchs J, Bierhaus A et al. 2015. Role of the receptor for advanced glycation end products (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 58:1129–37
    [Google Scholar]
  109. Meri S. 2013. Complement activation in diseases presenting with thrombotic microangiopathy. Eur. J. Intern. Med. 24:496–502
    [Google Scholar]
  110. Miller R, Aaron W, Toneff T, Vishnuvardhan D, Beinfeld MC, Hook VY 2003. Obliteration of α-melanocyte-stimulating hormone derived from POMC in pituitary and brains of PC2-deficient mice. J. Neurochem. 86:556–63
    [Google Scholar]
  111. Moran EP, Wang Z, Chen J, Sapieha P, Smith LE, Ma JX 2016. Neurovascular cross talk in diabetic retinopathy: pathophysiological roles and therapeutic implications. Am. J. Physiol. Heart Circ. Physiol. 311:H738–49
    [Google Scholar]
  112. Moreira-Neto CA, Moult EM, Fujimoto JG, Waheed NK, Ferrara D 2018. Choriocapillaris loss in advanced age-related macular degeneration. J. Ophthalmol. 2018:8125267
    [Google Scholar]
  113. Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T et al. 2006. Tumor necrosis factor-α mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 26:12633–41
    [Google Scholar]
  114. Nanthapisal S, Eleftheriou D, Gilmour K, Leone V, Ramnath R et al. 2018. Cutaneous vasculitis and recurrent infection caused by deficiency in complement factor I. Front. Immunol. 9:735
    [Google Scholar]
  115. Nentwich MM, Ulbig MW. 2015. Diabetic retinopathy—ocular complications of diabetes mellitus. World J. Diabetes 6:489–99
    [Google Scholar]
  116. Niccoli T, Partridge L. 2012. Ageing as a risk factor for disease. Curr. Biol. 22:R741–52
    [Google Scholar]
  117. Nozaki H, Nishizawa M, Onodera O 2014. Features of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 45:3447–53
    [Google Scholar]
  118. Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J et al. 2004. HtrA1 serine protease inhibits signaling mediated by TGFβ family proteins. Development 131:1041–53
    [Google Scholar]
  119. Olivares AM, Althoff K, Chen GF, Wu S, Morrisson MA et al. 2017. Animal models of diabetic retinopathy. Curr. Diabetes Rep. 17:93
    [Google Scholar]
  120. Paneni F, Diaz Canestro C, Libby P, Luscher TF, Camici GG 2017. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 69:1952–67
    [Google Scholar]
  121. Park HY, Jung KI, Na KS, Park SH, Park CK 2012. Visual field characteristics in normal-tension glaucoma patients with autonomic dysfunction and abnormal peripheral microcirculation. Am. J. Ophthalmol. 154:466–75.e1
    [Google Scholar]
  122. Pasquale LR. 2016. Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr. Opin. Ophthalmol. 27:94–101
    [Google Scholar]
  123. Penfold PL, Madigan MC, Gillies MC, Provis JM 2001. Immunological and aetiological aspects of macular degeneration. Prog. Retin. Eye Res. 20:385–414
    [Google Scholar]
  124. Polak K, Luksch A, Frank B, Jandrasits K, Polska E, Schmetterer L 2003. Regulation of human retinal blood flow by endothelin-1. Exp. Eye Res. 76:633–40
    [Google Scholar]
  125. Qu J, Jakobs TC. 2013. The time course of gene expression during reactive gliosis in the optic nerve. PLOS ONE 8:e67094
    [Google Scholar]
  126. Quigley HA. 1993. Open-angle glaucoma. New Engl. J. Med. 328:1097–106
    [Google Scholar]
  127. Quigley HA. 2011. Glaucoma. Lancet 377:1367–77
    [Google Scholar]
  128. Quigley HA, Broman AT. 2006. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90:262–67
    [Google Scholar]
  129. Rahman MM, Laher I. 2007. Structural and functional alteration of blood vessels caused by cigarette smoking: an overview of molecular mechanisms. Curr. Vasc. Pharmacol. 5:276–92
    [Google Scholar]
  130. Ramkumar HL, Zhang J, Chan CC 2010. Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog. Retin. Eye Res. 29:169–90
    [Google Scholar]
  131. Ransohoff RM, Brown MA. 2012. Innate immunity in the central nervous system. J. Clin. Invest. 122:1164–71
    [Google Scholar]
  132. Ransohoff RM, Kivisakk P, Kidd G 2003. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3:569–81
    [Google Scholar]
  133. Reagan AM, Gu X, Paudel S, Ashpole NM, Zalles M et al. 2018. Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency. Neurobiol. Aging 71:1–12
    [Google Scholar]
  134. Resch H, Garhofer G, Fuchsjager-Mayrl G, Hommer A, Schmetterer L 2009. Endothelial dysfunction in glaucoma. Acta Ophthalmol 87:4–12
    [Google Scholar]
  135. Rezaie T, Child A, Hitchings R, Brice G, Miller L et al. 2002. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–79
    [Google Scholar]
  136. Rhee SY, Kim YS. 2018. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab. J. 42:188–95
    [Google Scholar]
  137. Rinne P, Lyytikainen LP, Raitoharju E, Kadiri JJ, Kholova I et al. 2018. Pro-opiomelanocortin and its processing enzymes associate with plaque stability in human atherosclerosis—Tampere Vascular Study. Sci. Rep. 8:15078
    [Google Scholar]
  138. Rosenberg GA. 2014. Blood–brain barrier permeability in aging and Alzheimer's disease. J. Prev. Alzheimers Dis. 1:138–39
    [Google Scholar]
  139. Sappington RM, Carlson BJ, Crish SD, Calkins DJ 2010. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest. Ophthalmol. Vis. Sci. 51:207–16
    [Google Scholar]
  140. Sarfarazi M, Child A, Stoilova D, Brice G, Desai T et al. 1998. Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am. J. Hum. Genet. 62:641–52
    [Google Scholar]
  141. Schmetterer L, Findl O, Strenn K, Jilma B, Graselli U et al. 1997. Effects of endothelin-1 (ET-1) on ocular hemodynamics. Curr. Eye Res. 16:687–92
    [Google Scholar]
  142. Schreur V, van Asten F, Ng H, Weeda J, Groenewoud JMM et al. 2018. Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus. Acta Ophthalmol 96:459–64
    [Google Scholar]
  143. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A et al. 2013. Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17:549–61
    [Google Scholar]
  144. Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W et al. 2016. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. PNAS 113:E2655–64
    [Google Scholar]
  145. Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE et al. 2015. APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction. PLOS Biol 13:e1002279
    [Google Scholar]
  146. Steinberg JS, Fleckenstein M, Holz FG, Schmitz-Valckenberg S 2015. Foveal sparing of reticular drusen in eyes with early and intermediate age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 56:4267–74
    [Google Scholar]
  147. Steinle JJ, Sharma S, Smith CP, McFayden-Ketchum LS 2009. Normal aging involves modulation of specific inflammatory markers in the rat retina and choroid. J. Gerontol. A Biol. Sci. Med. Sci. 64:325–31
    [Google Scholar]
  148. Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA et al. 2013. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33:13460–74
    [Google Scholar]
  149. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR et al. 1997. Identification of a gene that causes primary open angle glaucoma. Science 275:668–70
    [Google Scholar]
  150. Strenn K, Matulla B, Wolzt M, Findl O, Bekes MC et al. 1998. Reversal of endothelin-1-induced ocular hemodynamic effects by low-dose nifedipine in humans. Clin. Pharmacol. Ther. 63:54–63
    [Google Scholar]
  151. Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M et al. 2009. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–30
    [Google Scholar]
  152. Teague HL, Ahlman MA, Alavi A, Wagner DD, Lichtman AH et al. 2017. Unraveling vascular inflammation: from immunology to imaging. J. Am. Coll. Cardiol. 70:1403–12
    [Google Scholar]
  153. Tezel G, Thornton IL, Tong MG, Luo C, Yang X et al. 2012. Immunoproteomic analysis of potential serum biomarker candidates in human glaucoma. Invest. Ophthalmol. Vis. Sci. 53:8222–31
    [Google Scholar]
  154. Thomas H, Cowin AJ, Mills SJ 2017. The importance of pericytes in healing: wounds and other pathologies. Int. J. Mol. Sci. 18:E1129
    [Google Scholar]
  155. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A et al. 2010. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat. Genet. 42:906–9
    [Google Scholar]
  156. Tikka S, Baumann M, Siitonen M, Pasanen P, Poyhonen M et al. 2014. CADASIL and CARASIL. Brain Pathol 24:525–44
    [Google Scholar]
  157. Turpeinen H, Ortutay Z, Pesu M 2013. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr. Genom. 14:453–67
    [Google Scholar]
  158. van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E et al. 2018. A new perspective on lipid research in age-related macular degeneration. Prog. Retin. Eye Res. 67:56–86
    [Google Scholar]
  159. Verdura E, Herve D, Scharrer E, del Mar Amador M, Guyant-Marechal L et al. 2015. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain 138:2347–58
    [Google Scholar]
  160. Vergnes L, Lee JM, Chin RG, Auwerx J, Reue K 2013. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab 17:916–28
    [Google Scholar]
  161. Wang R, Wiggs JL. 2014. Common and rare genetic risk factors for glaucoma. Cold Spring Harb. Perspect. Med. 4:a017244
    [Google Scholar]
  162. Wang Y, van der Tuin S, Tjeerdema N, van Dam AD, Rensen SS et al. 2015. Plasma cholesteryl ester transfer protein is predominantly derived from Kupffer cells. Hepatology 62:1710–22
    [Google Scholar]
  163. West SD, Turnbull C. 2018. Obstructive sleep apnoea. Eye 32:889–903
    [Google Scholar]
  164. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C et al. 2011. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum. Mol. Genet. 20:4707–13
    [Google Scholar]
  165. Williams PA, Braine CE, Foxworth NE, Cochran KE, John SWM 2017. GlyCAM1 negatively regulates monocyte entry into the optic nerve head and contributes to radiation-based protection in glaucoma. J. Neuroinflammation 14:93
    [Google Scholar]
  166. Wong WL, Su X, Li X, Cheung CM, Klein R et al. 2014. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2:e106–16
    [Google Scholar]
  167. Xu H, Chen M, Manivannan A, Lois N, Forrester JV 2008. Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68
    [Google Scholar]
  168. Xu WQ, Wang YS. 2016. The role of Toll-like receptors in retinal ischemic diseases. Int. J. Ophthalmol. 9:1343–51
    [Google Scholar]
  169. Xu X, Wang B, Ren C, Hu J, Greenberg DA et al. 2017. Age-related impairment of vascular structure and functions. Aging Dis 8:590–610
    [Google Scholar]
  170. Yamazaki Y, Drance SM. 1997. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am. J. Ophthalmol. 124:287–95
    [Google Scholar]
  171. Yang J, Fritsche LG, Zhou X, Abecasis G, Int. Age-Related Macular Degener. Genomics Consort. 2017. A scalable Bayesian method for integrating functional information in genome-wide association studies. Am. J. Hum. Genet 101:404–16
    [Google Scholar]
  172. Yang X, Luo C, Cai J, Powell DW, Yu D et al. 2011. Neurodegenerative and inflammatory pathway components linked to TNF-α/TNFR1 signaling in the glaucomatous human retina. Invest. Ophthalmol. Vis. Sci. 52:8442–54
    [Google Scholar]
  173. Zellner A, Scharrer E, Arzberger T, Oka C, Domenga-Denier V et al. 2018. CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathol 136:111–25
    [Google Scholar]
  174. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:11929–47
    [Google Scholar]
  175. Zheng Y, He M, Congdon N 2012. The worldwide epidemic of diabetic retinopathy. Indian J. Ophthalmol. 60:428–31
    [Google Scholar]
  176. Zubenko GS, Hughes HB III, Zubenko WN 2010. D10S1423 identifies a susceptibility locus for Alzheimer's disease (AD7) in a prospective, longitudinal, double-blind study of asymptomatic individuals: results at 14 years. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B:359–64
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034416
Loading
/content/journals/10.1146/annurev-vision-091517-034416
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error