1932

Abstract

Rods and cones are retinal photoreceptor neurons required for our visual sensation. Because of their highly polarized structures and well-characterized processes of G protein–coupled receptor–mediated phototransduction signaling, these photoreceptors have been excellent models for studying the compartmentalization and sorting of proteins. Rods and cones have a modified ciliary compartment called the outer segment (OS) as well as non-OS compartments. The distinct membrane protein compositions between OS and non-OS compartments suggest that the OS is separated from the rest of the cellular compartments by multiple barriers or gates that are selectively permissive to specific cargoes. This review discusses the mechanisms of protein sorting and compartmentalization in photoreceptor neurons. Proper sorting and compartmentalization of membrane proteins are required for signal transduction and transmission. This review also discusses the roles of compartmentalized signaling, which is compromised in various retinal ciliopathies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014843
2019-09-15
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014843.html?itemId=/content/journals/10.1146/annurev-vision-091718-014843&mimeType=html&fmt=ahah

Literature Cited

  1. Abd El-Aziz MM, Barragan I, O'Driscoll CA, Goodstadt L, Prigmore E et al. 2008. EYS, encoding an ortholog of Drosophila spacemaker, is mutated in autosomal recessive retinitis pigmentosa. Nat. Genet. 40:1285–87
    [Google Scholar]
  2. Agrawal SA, Burgoyne T, Eblimit A, Bellingham J, Parfitt DA et al. 2017. REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking. Hum. Mol. Genet. 26:2667–77
    [Google Scholar]
  3. Alfinito PD, Townes-Anderson E. 2002. Activation of mislocalized opsin kills rod cells: a novel mechanism for rod cell death in retinal disease. PNAS 99:5655–60
    [Google Scholar]
  4. Anderson DH, Fisher SK, Steinberg RH 1978. Mammalian cones: disc shedding, phagocytosis, and renewal. Investig. Ophthalmol. Vis. Sci. 17:117–33
    [Google Scholar]
  5. Arikawa K, Molday LL, Molday RS, Williams DS 1992. Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J. Cell Biol. 116:659–67
    [Google Scholar]
  6. Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M et al. 2016. Mutations in REEP6 cause autosomal-recessive retinitis pigmentosa. Am. J. Hum. Genet. 99:1305–15
    [Google Scholar]
  7. Azadi S, Molday LL, Molday RS 2010. RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells. PNAS 107:21158–63
    [Google Scholar]
  8. Baker SA, Haeri M, Yoo P, Gospe SM III, Skiba NP et al. 2008. The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. J. Cell Biol. 183:485–98
    [Google Scholar]
  9. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L et al. 2009. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41:1032–36
    [Google Scholar]
  10. Boldt K, Mans DA, Won J, van Reeuwijk J, Vogt A et al. 2011. Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J. Clin. Investig. 121:2169–80
    [Google Scholar]
  11. Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E et al. 2015. Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome. Hum. Mol. Genet. 24:230–42
    [Google Scholar]
  12. Burgoyne T, Meschede IP, Burden JJ, Bailly M, Seabra MC, Futter CE 2015. Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment. PNAS 112:15922–27
    [Google Scholar]
  13. Caretta A, Saibil H. 1989. Visualization of cyclic nucleotide binding sites in the vertebrate retina by fluorescence microscopy. J. Cell Biol. 108:1517–22
    [Google Scholar]
  14. Caruso G, Bisegna P, Shen L, Andreucci D, Hamm HE, DiBenedetto E 2006. Modeling the role of incisures in vertebrate phototransduction. Biophys. J. 91:1192–212
    [Google Scholar]
  15. Cheng CL, Molday RS. 2013. Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments. J. Cell Sci. 126:5725–34
    [Google Scholar]
  16. Chuang JZ, Zhao Y, Sung CH 2007. SARA-regulated vesicular targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 130:535–47
    [Google Scholar]
  17. Concepcion F, Chen J. 2010. Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: a mouse model of Q344ter-induced retinal degeneration. PLOS ONE 5:e10904
    [Google Scholar]
  18. Conley SM, Stuck MW, Watson JN, Zulliger R, Burnett JL, Naash MI 2019. Prph2 initiates outer segment morphogenesis but maturation requires Prph2/Rom1 oligomerization. Hum. Mol. Genet. 28:459–75
    [Google Scholar]
  19. Connell GJ, Molday RS. 1990. Molecular cloning, primary structure, and orientation of the vertebrate photoreceptor cell protein peripherin in the rod outer segment disk membrane. Biochemistry 29:4691–98
    [Google Scholar]
  20. Crouse JA, Lopes VS, Sanagustin JT, Keady BT, Williams DS, Pazour GJ 2014. Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton 71:302–10
    [Google Scholar]
  21. Datta P, Allamargot C, Hudson JS, Andersen EK, Bhattarai S et al. 2015. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet–Biedl syndrome. PNAS 112:E4400–9
    [Google Scholar]
  22. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL 2001. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11:1586–90
    [Google Scholar]
  23. den Hollander AI, Koenekoop RK, Mohamed MD, Arts HH, Boldt K et al. 2007. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat. Genet. 39:889–95
    [Google Scholar]
  24. Deretic D, Papermaster DS. 1991. Polarized sorting of rhodopsin on post-Golgi membranes in frog retinal photoreceptor cells. J. Cell Biol. 113:1281–93
    [Google Scholar]
  25. Deretic D, Williams AH, Ransom N, Morel V, Hargrave PA, Arendt A 2005. Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). PNAS 102:3301–6
    [Google Scholar]
  26. Dharmat R, Eblimit A, Robichaux MA, Zhang Z, Nguyen TT et al. 2018. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J. Cell Biol. 217:2851–65
    [Google Scholar]
  27. Ding JD, Salinas RY, Arshavsky VY 2015. Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J. Cell Biol. 211:495–502
    [Google Scholar]
  28. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW et al. 2010. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat. Cell Biol. 12:703–10
    [Google Scholar]
  29. Dowling JE. 1987. The Retina: An Approachable Part of the Brain Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  30. Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH et al. 2001. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am. J. Hum. Genet. 68:1295–98
    [Google Scholar]
  31. Dutta N, Seo S. 2016. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner. Biol. Open 5:1283–89
    [Google Scholar]
  32. Edward DP, Lim K, Sawaguchi S, Tso MO 1993. An immunohistochemical study of opsin in photoreceptor cells following light-induced retinal degeneration in the rat. Graefes Arch. Clin. Exp. Ophthalmol. 231:289–94
    [Google Scholar]
  33. Endicott SJ, Brueckner M. 2018. NUP98 sets the size-exclusion diffusion limit through the ciliary base. Curr. Biol. 28:1643–50.e3
    [Google Scholar]
  34. Fariss RN, Molday RS, Fisher SK, Matsumoto B 1997. Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. J. Comp. Neurol. 387:148–56
    [Google Scholar]
  35. Friedrich U, Stöhr H, Hilfinger D, Loenhardt T, Schachner M et al. 2011. The Na/K-ATPase is obligatory for membrane anchorage of retinoschisin, the protein involved in the pathogenesis of X-linked juvenile retinoschisis. Hum. Mol. Genet. 20:1132–42
    [Google Scholar]
  36. Ghossoub R, Hu Q, Failler M, Rouyez MC, Spitzbarth B et al. 2013. Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J. Cell Sci. 126:2583–94
    [Google Scholar]
  37. Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T et al. 2012. Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151:1029–41
    [Google Scholar]
  38. Gopalakrishna KN, Doddapuneni K, Boyd KK, Masuho I, Martemyanov KA, Artemyev NO 2011. Interaction of transducin with uncoordinated 119 protein (UNC119): implications for the model of transducin trafficking in rod photoreceptors. J. Biol. Chem. 286:28954–62
    [Google Scholar]
  39. Hamm HE, Bownds MD. 1986. Protein complement of rod outer segments of frog retina. Biochemistry 25:4512–23
    [Google Scholar]
  40. Han Z, Anderson DW, Papermaster DS 2012. Prominin-1 localizes to the open rims of outer segment lamellae in Xenopus laevis rod and cone photoreceptors. Investig. Ophthalmol. Vis. Sci. 53:361–73
    [Google Scholar]
  41. Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W 2016. Arf-like protein 3 (ARL3) regulates protein trafficking and ciliogenesis in mouse photoreceptors. J. Biol. Chem. 291:7142–55
    [Google Scholar]
  42. Hanke-Gogokhia C, Wu Z, Sharif A, Yazigi H, Frederick JM, Baehr W 2017. The guanine nucleotide exchange factor Arf-like protein 13b is essential for assembly of the mouse photoreceptor transition zone and outer segment. J. Biol. Chem. 292:21442–56
    [Google Scholar]
  43. Hoffmeister H, Babinger K, Gurster S, Cedzich A, Meese C et al. 2011. Polycystin-2 takes different routes to the somatic and ciliary plasma membrane. J. Cell Biol. 192:631–45
    [Google Scholar]
  44. Hsu Y, Garrison JE, Kim G, Schmitz AR, Searby CC et al. 2017. BBSome function is required for both the morphogenesis and maintenance of the photoreceptor outer segment. PLOS Genet 13:e1007057
    [Google Scholar]
  45. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV et al. 2010. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–39
    [Google Scholar]
  46. Jastrzebska B, Tsybovsky Y, Palczewski K 2010. Complexes between photoactivated rhodopsin and transducin: progress and questions. Biochem. J. 428:1–10
    [Google Scholar]
  47. Jin H, White SR, Shida T, Schulz S, Aguiar M et al. 2010. The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141:1208–19
    [Google Scholar]
  48. Kandachar V, Tam BM, Moritz OL, Deretic D 2018. TI-VAMP/VAMP7-SNARE-Rab-GTPase interaction network within a ciliary membrane targeting complex. J. Cell Sci. 131:jcs222034
    [Google Scholar]
  49. Karan S, Tam BM, Moritz OL, Baehr W 2011. Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments. Vis. Res. 51:2304–11
    [Google Scholar]
  50. Kawamura S, Tachibanaki S. 2008. Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp. Biochem. Physiol. A 150:369–77
    [Google Scholar]
  51. Kerov V, Chen D, Moussaif M, Chen YJ, Chen CK, Artemyev NO 2005. Transducin activation state controls its light-dependent translocation in rod photoreceptors. J. Biol. Chem. 280:41069–76
    [Google Scholar]
  52. Kevany BM, Tsybovsky Y, Campuzano ID, Schnier PD, Engel A, Palczewski K 2013. Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J. Biol. Chem. 288:36272–84
    [Google Scholar]
  53. Khan SA, Muhammad N, Khan MA, Kamal A, Rehman ZU, Khan S 2016. Genetics of human Bardet-Biedl syndrome, an updates. Clin. Genet. 90:3–15
    [Google Scholar]
  54. Khattree N, Ritter LM, Goldberg AF 2013. Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis. J. Cell Sci. 126:4659–70
    [Google Scholar]
  55. Kinney MS, Fisher SK. 1978. The photoreceptors and pigment epithelium of the larval Xenopus retina: morphogenesis and outer segment renewal. Proc. R. Soc. B 201:149–67
    [Google Scholar]
  56. Kinoshita J, Iwata N, Kimotsuki T, Yasuda M 2014. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys. Investig. Ophthalmol. Vis. Sci. 55:881–92
    [Google Scholar]
  57. Körschen HG, Beyermann M, Müller F, Heck M, Vantler M et al. 1999. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature 400:761–66
    [Google Scholar]
  58. Landfried B, Samardzija M, Barben M, Schori C, Klee K et al. 2017. Digoxin-induced retinal degeneration depends on rhodopsin. Cell Death Dis 8:e2670
    [Google Scholar]
  59. Lee ES, Burnside B, Flannery JG 2006. Characterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals. Investig. Ophthalmol. Vis. Sci. 47:2150–60
    [Google Scholar]
  60. Lee S, Tan HY, Geneva II, Kruglov A, Calvert PD 2018. Actin filaments partition primary cilia membranes into distinct fluid corrals. J. Cell Biol. 217:2831–49
    [Google Scholar]
  61. Li T, Snyder WK, Olsson JE, Dryja TP 1996. Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. PNAS 93:14176–81
    [Google Scholar]
  62. Li ZY, Kljavin IJ, Milam AH 1995. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 15:5429–38
    [Google Scholar]
  63. Liu X, Udovichenko IP, Brown SD, Steel KP, Williams DS 1999. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19:6267–74
    [Google Scholar]
  64. Lodowski KH, Lee R, Ropelewski P, Nemet I, Tian G, Imanishi Y 2013. Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin. J. Neurosci. 33:13621–38
    [Google Scholar]
  65. Lowe AR, Tang JH, Yassif J, Graf M, Huang WY et al. 2015. Importin-beta modulates the permeability of the nuclear pore complex in a Ran-dependent manner. eLife 4:e04052
    [Google Scholar]
  66. Maerker T, van Wijk E, Overlack N, Kersten FF, McGee J et al. 2008. A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum. Mol. Genet. 17:71–86
    [Google Scholar]
  67. Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E et al. 2009a. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 28:183–92
    [Google Scholar]
  68. Mazelova J, Ransom N, Astuto-Gribble L, Wilson MC, Deretic D 2009b. Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J. Cell Sci. 122:2003–13
    [Google Scholar]
  69. Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A et al. 1996. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat. Genet. 13:35–42
    [Google Scholar]
  70. Menon I, Huber T, Sanyal S, Banerjee S, Barre P et al. 2011. Opsin is a phospholipid flippase. Curr. Biol. 21:149–53
    [Google Scholar]
  71. Milam AH, Li ZY, Fariss RN 1998. Histopathology of the human retina in retinitis pigmentosa. Prog. Retin. Eye Res. 17:175–205
    [Google Scholar]
  72. Min G, Wang H, Sun TT, Kong XP 2006. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-Å resolution. J. Cell Biol. 173:975–83
    [Google Scholar]
  73. Missotten L. 1965. The Ultrastructure of the Human Retina Brussels: Arscia
    [Google Scholar]
  74. Molday RS, Molday LL. 1998. Molecular properties of the cGMP-gated channel of rod photoreceptors. Vis. Res. 38:1315–23
    [Google Scholar]
  75. Moritz OL, Tam BM, Hurd LL, Peränen J, Deretic D, Papermaster DS 2001. Mutant rab8 impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol. Biol. Cell 12:2341–51
    [Google Scholar]
  76. Muradov H, Boyd KK, Haeri M, Kerov V, Knox BE, Artemyev NO 2009. Characterization of human cone phosphodiesterase-6 ectopically expressed in Xenopus laevis rods. J. Biol. Chem. 284:32662–69
    [Google Scholar]
  77. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J et al. 2007. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–13
    [Google Scholar]
  78. Najafi M, Maza NA, Calvert PD 2012. Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia. PNAS 109:203–8
    [Google Scholar]
  79. Nemet I, Ropelewski P, Imanishi Y 2015. Rhodopsin trafficking and mistrafficking: signals, molecular components, and mechanisms. Prog. Mol. Biol. Transl. Sci. 132:39–71
    [Google Scholar]
  80. Nemet I, Tian G, Imanishi Y 2014a. Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane. Channels 8:528–35
    [Google Scholar]
  81. Nemet I, Tian G, Imanishi Y 2014b. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis. J. Neurosci. 34:8164–74
    [Google Scholar]
  82. Nickell S, Park PS, Baumeister W, Palczewski K 2007. Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J. Cell Biol. 177:917–25
    [Google Scholar]
  83. Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W et al. 2008. elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat. Cell Biol. 10:437–44
    [Google Scholar]
  84. Papermaster DS, Dreyer WJ. 1974. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–44
    [Google Scholar]
  85. Papermaster DS, Schneider BG, Besharse JC 1985. Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment. Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas. Investig. Ophthalmol. Vis. Sci. 26:1386–404
    [Google Scholar]
  86. Papermaster DS, Schneider BG, DeFoe D, Besharse JC 1986. Biosynthesis and vectorial transport of opsin on vesicles in retinal rod photoreceptors. J. Histochem. Cytochem. 34:5–16
    [Google Scholar]
  87. Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL et al. 2002. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157:103–13
    [Google Scholar]
  88. Pearring JN, San Agustin JT, Lobanova ES, Gabriel CJ, Lieu EC et al. 2017. Loss of Arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease or retinal degeneration. PLOS Genet 13:e1006740
    [Google Scholar]
  89. Pearring JN, Spencer WJ, Lieu EC, Arshavsky VY 2015. Guanylate cyclase 1 relies on rhodopsin for intracellular stability and ciliary trafficking. eLife 4:e12058
    [Google Scholar]
  90. Peters KR, Palade GE, Schneider BG, Papermaster DS 1983. Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy. J. Cell Biol. 96:265–76
    [Google Scholar]
  91. Poetsch A, Molday LL, Molday RS 2001. The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes. J. Biol. Chem. 276:48009–16
    [Google Scholar]
  92. Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG et al. 1995. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108:Pt 41617–27
    [Google Scholar]
  93. Ramamurthy V, Jolicoeur C, Koutroumbas D, Mühlhans J, Le YZ et al. 2014. Numb regulates the polarized delivery of cyclic nucleotide-gated ion channels in rod photoreceptor cilia. J. Neurosci. 34:13976–87
    [Google Scholar]
  94. Reish NJ, Boitet ER, Bales KL, Gross AK 2014. Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin. J. Neurosci. 34:14854–63
    [Google Scholar]
  95. Ritter LM, Khattree N, Tam B, Moritz OL, Schmitz F, Goldberg AF 2011. In situ visualization of protein interactions in sensory neurons: Glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding. J. Neurosci. 31:11231–43
    [Google Scholar]
  96. Robichaux MA, Potter VL, Zhang Z, He F, Schmid MF, Wensel TG 2017. Defining the layers of a sensory cilium with STORM and cryo-electron nanoscopies. bioRxiv198655 https://doi.org/10.1101/198655
    [Crossref] [Google Scholar]
  97. Rodriguez de Turco EB, Deretic D, Bazan NG, Papermaster DS 1997. Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J. Biol. Chem. 272:10491–97
    [Google Scholar]
  98. Rohlich P. 1975. The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia. Cell Tissue Res 161:421–30
    [Google Scholar]
  99. Roosing S, Rohrschneider K, Beryozkin A, Sharon D, Weisschuh N et al. 2013. Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. Am. J. Hum. Genet. 93:110–17
    [Google Scholar]
  100. Ruggiero L, Connor MP, Chen J, Langen R, Finnemann SC 2012. Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina. PNAS 109:8145–48
    [Google Scholar]
  101. Sakami S, Imanishi Y, Palczewski K 2019. Muller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB J 33:3680–92
    [Google Scholar]
  102. Salinas RY, Baker SA, Gospe SM III, Arshavsky VY 2013. A single valine residue plays an essential role in peripherin/rds targeting to photoreceptor outer segments. PLOS ONE 8:e54292
    [Google Scholar]
  103. Salinas RY, Pearring JN, Ding JD, Spencer WJ, Hao Y, Arshavsky VY 2017. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 216:1489–99
    [Google Scholar]
  104. Schaefer E, Stoetzel C, Scheidecker S, Geoffroy V, Prasad MK et al. 2016. Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet–Biedl syndrome. J. Hum. Genet. 61:447–50
    [Google Scholar]
  105. Schön C, Asteriti S, Koch S, Sothilingam V, Garcia Garrido M et al. 2016. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia. Hum. Mol. Genet. 25:1165–75
    [Google Scholar]
  106. Schwarz N, Novoselova TV, Wait R, Hardcastle AJ, Cheetham ME 2012. The X-linked retinitis pigmentosa protein RP2 facilitates G protein traffic. Hum. Mol. Genet. 21:863–73
    [Google Scholar]
  107. Sedmak T, Wolfrum U. 2011. Intraflagellar transport proteins in ciliogenesis of photoreceptor cells. Biol. Cell 103:449–66
    [Google Scholar]
  108. Shi X, Garcia G III, Van De Weghe JC, McGorty R, Pazour GJ et al. 2017. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 19:1178–88
    [Google Scholar]
  109. Sokolov M, Lyubarsky AL, Strissel KJ, Savchenko AB, Govardovskii VI et al. 2002. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron 34:95–106
    [Google Scholar]
  110. Sokolov M, Strissel KJ, Leskov IB, Michaud NA, Govardovskii VI, Arshavsky VY 2004. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. J. Biol. Chem. 279:19149–56
    [Google Scholar]
  111. Spencer WJ, Pearring JN, Salinas RY, Loiselle DR, Skiba NP, Arshavsky VY 2016. Progressive rod-cone degeneration (PRCD) protein requires N-terminal S-acylation and rhodopsin binding for photoreceptor outer segment localization and maintaining intracellular stability. Biochemistry 55:5028–37
    [Google Scholar]
  112. Steinberg RH, Fisher SK, Anderson DH 1980. Disc morphogenesis in vertebrate photoreceptors. J. Comp. Neurol. 190:501–8
    [Google Scholar]
  113. Steinberg RH, Wood I. 1975. Clefts and microtubules of photoreceptor outer segments in the retina of the domestic cat. J. Ultrastruct. Res. 51:307–403
    [Google Scholar]
  114. Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY 2006. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J. Neurosci. 26:1146–53
    [Google Scholar]
  115. Sung CH, Davenport CM, Nathans J 1993. Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. J. Biol. Chem. 268:26645–49
    [Google Scholar]
  116. Sung CH, Makino C, Baylor D, Nathans J 1994. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J. Neurosci. 14:5818–33
    [Google Scholar]
  117. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH 1999. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97:877–87
    [Google Scholar]
  118. Tam BM, Moritz OL, Hurd LB, Papermaster DS 2000. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. . J. Cell Biol 151:1369–80
    [Google Scholar]
  119. Tam BM, Moritz OL, Papermaster DS 2004. The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. Mol. Biol. Cell 15:2027–37
    [Google Scholar]
  120. Tam BM, Xie G, Oprian DD, Moritz OL 2006. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis. . J. Neurosci 26:203–9
    [Google Scholar]
  121. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP et al. 2013. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev 27:163–68
    [Google Scholar]
  122. Thomas S, Wright KJ, Le Corre S, Micalizzi A, Romani M et al. 2014. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 35:137–46
    [Google Scholar]
  123. Thuenauer R, Hsu YC, Carvajal-Gonzalez JM, Deborde S, Chuang JZ et al. 2014. Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates. PNAS 111:4127–32
    [Google Scholar]
  124. Tian G, Lodowski KH, Lee R, Imanishi Y 2014a. Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis. J. Comp. Neurol 522:3577–89
    [Google Scholar]
  125. Tian G, Ropelewski P, Nemet I, Lee R, Lodowski KH, Imanishi Y 2014b. An unconventional secretory pathway mediates the cilia targeting of peripherin/rds. J. Neurosci. 34:992–1006
    [Google Scholar]
  126. Tolun G, Vijayasarathy C, Huang R, Zeng Y, Li Y et al. 2016. Paired octamer rings of retinoschisin suggest a junctional model for cell-cell adhesion in the retina. PNAS 113:5287–92
    [Google Scholar]
  127. Trimble WS, Grinstein S. 2015. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 208:259–71
    [Google Scholar]
  128. Trivedi D, Colin E, Louie CM, Williams DS 2012. Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2. J. Neurosci. 32:10587–93
    [Google Scholar]
  129. Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K 2013. Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21:854–60
    [Google Scholar]
  130. Veleri S, Nellissery J, Mishra B, Manjunath SH, Brooks MJ et al. 2017. REEP6 mediates trafficking of a subset of clathrin-coated vesicles and is critical for rod photoreceptor function and survival. Hum. Mol. Genet. 26:2218–30
    [Google Scholar]
  131. Volland S, Hughes LC, Kong C, Burgess BL, Linberg KA et al. 2015. Three-dimensional organization of nascent rod outer segment disk membranes. PNAS 112:14870–75
    [Google Scholar]
  132. Wang H, den Hollander AI, Moayedi Y, Abulimiti A, Li Y et al. 2009. Mutations in SPATA7 cause Leber congenital amaurosis and juvenile retinitis pigmentosa. Am. J. Hum. Genet. 84:380–87
    [Google Scholar]
  133. Wang J, Deretic D. 2014. Molecular complexes that direct rhodopsin transport to primary cilia. Prog. Retin. Eye Res. 38:1–19
    [Google Scholar]
  134. Wang J, Deretic D. 2015. The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting. J. Cell Sci. 128:1375–85
    [Google Scholar]
  135. Wang J, Fresquez T, Kandachar V, Deretic D 2017. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking. J. Cell Sci. 130:3975–87
    [Google Scholar]
  136. Wang J, Morita Y, Mazelova J, Deretic D 2012a. The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting. EMBO J 31:4057–71
    [Google Scholar]
  137. Wang J, Zhang N, Beuve A, Townes-Anderson E 2012b. Mislocalized opsin and cAMP signaling: a mechanism for sprouting by rod cells in retinal degeneration. Investig. Ophthalmol. Vis. Sci. 53:6355–69
    [Google Scholar]
  138. Williams DS. 2002. Transport to the photoreceptor outer segment by myosin VIIa and kinesin II. Vis. Res. 42:455–62
    [Google Scholar]
  139. Wolfrum U, Schmitt A. 2000. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil. Cytoskelet. 46:95–107
    [Google Scholar]
  140. Wright KJ, Baye LM, Olivier-Mason A, Mukhopadhyay S, Sang L et al. 2011. An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium. Genes Dev 25:2347–60
    [Google Scholar]
  141. Xu J, Morris L, Thapa A, Ma H, Michalakis S et al. 2013. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function. J. Neurosci. 33:14939–48
    [Google Scholar]
  142. Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T 2002. Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J. Cell Biol. 159:431–40
    [Google Scholar]
  143. Yang TT, Chong WM, Wang WJ, Mazo G, Tanos B et al. 2018. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9:2023
    [Google Scholar]
  144. Yau KW, Baylor DA. 1989. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12:289–327
    [Google Scholar]
  145. Ye F, Nager AR, Nachury MV 2018. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol. 217:1847–68
    [Google Scholar]
  146. Ying G, Boldt K, Ueffing M, Gerstner CD, Frederick JM, Baehr W 2018. The small GTPase RAB28 is required for phagocytosis of cone outer segments by the murine retinal pigmented epithelium. J. Biol. Chem. 293:17546–58
    [Google Scholar]
  147. Ying G, Gerstner CD, Frederick JM, Boye SL, Hauswirth WW, Baehr W 2016. Small GTPases Rab8a and Rab11a are dispensable for rhodopsin transport in mouse photoreceptors. PLOS ONE 11:e0161236
    [Google Scholar]
  148. Young RW. 1976. Visual cells and the concept of renewal. Investig. Ophthalmol. Vis. Sci. 15:700–25
    [Google Scholar]
  149. Yu M, Liu Y, Li J, Natale BN, Cao S et al. 2016. Eyes shut homolog is required for maintaining the ciliary pocket and survival of photoreceptors in zebrafish. Biol. Open 5:1662–73
    [Google Scholar]
  150. Zhang H, Constantine R, Vorobiev S, Chen Y, Seetharaman J et al. 2011. UNC119 is required for G protein trafficking in sensory neurons. Nat. Neurosci. 14:874–80
    [Google Scholar]
  151. Zhang H, Li S, Doan T, Rieke F, Detwiler PB et al. 2007. Deletion of PrBP/δ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. PNAS 104:8857–62
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014843
Loading
/content/journals/10.1146/annurev-vision-091718-014843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error