1932

Abstract

The jawless fish that were ancestral to all living vertebrates had four spectral cone types that were probably served by chromatic-opponent retinal circuits. Subsequent evolution of photoreceptor spectral sensitivities is documented for many vertebrate lineages, giving insight into the ecological adaptation of color vision. Beyond the photoreceptors, retinal color processing is best understood in mammals, especially the blueON system, which opposes short- against long-wavelength receptor responses. For other vertebrates that often have three or four types of cone pigment, new findings from zebrafish are extending older work on teleost fish and reptiles to reveal rich color circuitry. Here, horizontal cells establish diverse and complex spectral responses even in photoreceptor outputs. Cone-selective connections to bipolar cells then set up color-opponent synaptic layers in the inner retina, which lead to a large variety of color-opponent channels for transmission to the brain via retinal ganglion cells.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: The Retinal Basis of Vertebrate Color Vision
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014926
2019-09-15
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014926.html?itemId=/content/journals/10.1146/annurev-vision-091718-014926&mimeType=html&fmt=ahah

Literature Cited

  1. Allen A, Storchi R, Martial F, Bedford R, Lucas R 2017. Melanopsin contributions to the representation of images in the early visual system. Curr. Biol. 27:1623–32
    [Google Scholar]
  2. Allison WT, Barthel LK, Skebo KM, Takechi M, Kawamura S, Raymond PA 2010. Ontogeny of cone photoreceptor mosaics in zebrafish. J. Comp. Neurol. 518:4182–95
    [Google Scholar]
  3. Applebury M, Antoch M, Baxter L, Chun LL, Falk J et al. 2000. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:513–23
    [Google Scholar]
  4. Appudurai AM, Hart NS, Zurr I, Collin SP 2016. Morphology, characterization and distribution of retinal photoreceptors in the South American (Lepidosiren paradoxa) and spotted African (Protopterus dolloi) lungfishes. Front. Ecol. Evol. 4:78
    [Google Scholar]
  5. Arnold K, Neumeyer C. 1987. Wavelength discrimination in the turtle Pseudemys scripta elegans. Vis. Res 27:1501–11
    [Google Scholar]
  6. Arshavsky VY, Lamb TD, Pugh EN 2002. G proteins and phototransduction. Annu. Rev. Physiol. 64:153–87
    [Google Scholar]
  7. Atick JJ, Li Z, Redlich AN 1992. Understanding retinal color coding from first principles. Neural Comput 4:559–72
    [Google Scholar]
  8. Autrum H, Zwehl VV. 1964. Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. Vgl. Physiol. 48:357–84
    [Google Scholar]
  9. Baddeley RJ, Osorio D, Jones CD 2007. Generalization of color by chickens: experimental observations and a Bayesian model. Am. Nat. 169:S27–41
    [Google Scholar]
  10. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–50
    [Google Scholar]
  11. Baden T, Schubert T, Berens P, Euler T 2018. The functional organization of vertebrate retinal circuits for vision. Oxford Research Encyclopedia of Neuroscience New York: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190264086.013.68
    [Crossref] [Google Scholar]
  12. Baden T, Schubert T, Chang L, Wei T, Zaichuk M et al. 2013. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80:1206–17
    [Google Scholar]
  13. Barlow HB. 1961. Possible principles underlying the transformation of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT Press
    [Google Scholar]
  14. Barlow HB. 1982. What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vis. Res. 22:635–43
    [Google Scholar]
  15. Becker D, Bonness V, Mobbs P 1998. Cell coupling in the retina: patterns and purpose. Cell Biol. Int. 22:781–92
    [Google Scholar]
  16. Behrens C, Schubert T, Haverkamp S, Euler T, Berens P et al. 2016. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 5:1206–17
    [Google Scholar]
  17. Benson NC, Manning JR, Brainard DH 2014. Unsupervised learning of cone spectral classes from natural images. PLOS Comp. Biol. 10:e1003652
    [Google Scholar]
  18. Bloch S, Martinoya C. 1982. Comparing frontal and lateral viewing in the pigeon. I. Tachistoscopic visual acuity as a function of distance. Behav. Brain Res. 5:231–44
    [Google Scholar]
  19. Bowmaker JK. 1984. Microspectrophotometry of vertebrate photoreceptors. A brief review. Vis. Res. 24:1641–50
    [Google Scholar]
  20. Bowmaker JK. 2008. Evolution of vertebrate visual pigments. Vis. Res. 48:2022–41
    [Google Scholar]
  21. Bowmaker JK, Heath LA, Wilkie SE, Hunt DM 1997. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vis. Res. 37:2183–94
    [Google Scholar]
  22. Bowmaker JK, Loew ER, Ott M 2005. The cone photoreceptors and visual pigments of chameleons. J. Comp. Physiol. A 191:925–32
    [Google Scholar]
  23. Boycott BB, Wässle H. 1991. Morphological classification of bipolar cells of the primate retina. Eur. J. Neurosci. 3:1069–88
    [Google Scholar]
  24. Brainard DH. 2015. Color and the cone mosaic. Annu. Rev. Vis. Sci. 1:519–46
    [Google Scholar]
  25. Breuninger T, Puller C, Haverkamp S, Euler T 2011. Chromatic bipolar cell pathways in the mouse retina. J. Neurosci. 31:6504–17
    [Google Scholar]
  26. Buchsbaum G, Gottschalk A. 1983. Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. R. Soc. B 220:89–113
    [Google Scholar]
  27. Calkins DJ, Tsukamoto Y, Sterling P 1998. Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina. J. Neurosci. 18:3373–85
    [Google Scholar]
  28. Caves EM, Green PA, Zipple MN, Peters S, Johnsen S, Nowicki S 2018. Categorical perception of colour signals in a songbird. Nature 560:365–67
    [Google Scholar]
  29. Champ CM, Vorobyev M, Marshall NJ 2016. Colour thresholds in a coral reef fish. R. Soc. Open Sci. 3:160399
    [Google Scholar]
  30. Chang L, Breuninger T, Euler T 2013. Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77:559–71
    [Google Scholar]
  31. Chaparro A, Huang AEP, Kronauer RE, Eskew RT 1993. Colour is what the eye sees best. Nature 361:348–50
    [Google Scholar]
  32. Chapot CA, Behrens C, Rogerson LE, Baden T, Pop S et al. 2017a. Local signals in mouse horizontal cell dendrites. Curr. Biol. 27:3603–15
    [Google Scholar]
  33. Chapot CA, Euler T, Schubert T 2017b. How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J. Physiol. 595:5495–506
    [Google Scholar]
  34. Cheney KL, Newport C, McClure EC, Marshall NJ 2013. Colour vision and response bias in a coral reef fish. J. Exp. Biol. 216:2967–73
    [Google Scholar]
  35. Chichilnisky EJ, Baylor DA. 1999. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat. Neurosci. 2:889–93
    [Google Scholar]
  36. Chinen A, Hamaoka T, Yamada Y, Kawamura S 2003. Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163:663–75
    [Google Scholar]
  37. Chittka L, Faruq S, Skorupski P, Werner A 2014. Colour constancy in insects. J. Comp. Physiol. A 200:435–48
    [Google Scholar]
  38. Clarke GL. 1936. On the depth at which fish can see. Ecology 17:452–56
    [Google Scholar]
  39. Collin SP, Davies WL, Hart NS, Hunt DM 2009. The evolution of early vertebrate photoreceptors. Philos. Trans. R. Soc. B 364:2925–40
    [Google Scholar]
  40. Connaughton VP, Nelson R. 2010. Spectral responses in zebrafish horizontal cells include a tetraphasic response and a novel UV-dominated triphasic response. J. Neurophysiol. 104:2407–22
    [Google Scholar]
  41. Connaughton VP, Nelson R. 2015. Ultraviolet dominates ganglion cell responses in larval zebrafish. Invest. Ophthalmol. Vis. Sci. 56:3251
    [Google Scholar]
  42. Cook JE, Becker DL. 1995. Gap junctions in the vertebrate retina. Microsc. Res. Tech. 31:408–19
    [Google Scholar]
  43. Cortesi F, Musilová Z, Stieb SM, Hart NS, Siebeck UE et al. 2015. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. PNAS 112:1493–98
    [Google Scholar]
  44. Cronin H. 1991. The Ant and the Peacock: Altruism and Sexual Selection from Darwin to Today New York: Cambridge Univ. Press
    [Google Scholar]
  45. Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, Dacey DM 2009. Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J. Neurosci. 29:8372–87
    [Google Scholar]
  46. Crook JD, Manookin MB, Packer OS, Dacey DM 2011. Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. J. Neurosci. 31:1762–72
    [Google Scholar]
  47. Dacey DM. 2000. Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23:743–75
    [Google Scholar]
  48. Dacey DM, Lee BB. 1994. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–35
    [Google Scholar]
  49. Dacheux RF, Raviola E. 1982. Horizontal cells in the retina of the rabbit. J. Neurosci. 2:1486–93
    [Google Scholar]
  50. Dalton BE, Loew ER, Cronin TW, Carleton KL 2014. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field. Proc. R. Soc. B 281:20141980
    [Google Scholar]
  51. Darwin C. 1859. On the Origin of Species by Means of Natural Selection London: John Murray
    [Google Scholar]
  52. Davies WIL, Collin SP, Hunt DM 2012. Molecular ecology and adaptation of visual photopigments in craniates. Mol. Ecol. 21:3121–58
    [Google Scholar]
  53. Denman DJ, Luviano JA, Ollerenshaw DR, Cross S, Williams D et al. 2018. Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7:e331209
    [Google Scholar]
  54. Derrington AM, Krauskopf J, Lennie P 1984. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357:241–65
    [Google Scholar]
  55. Doi E, Inui T, Lee TW, Wachtier T, Sejnowski TJ 2003. Spatiochromatic receptive field properties derived from information-theoretic analyses of cone mosaic responses to natural scenes. Neural Comput 15:397–417
    [Google Scholar]
  56. D'Orazi FD, Zhao XF, Wong RO, Yoshimatsu T 2016. Mismatch of synaptic patterns between neurons produced in regeneration and during development of the vertebrate retina. Curr. Biol. 26:2268–79
    [Google Scholar]
  57. Dörr S, Neumeyer C. 2000. Color constancy in goldfish: the limits. J. Comp. Physiol. A 186:885–96
    [Google Scholar]
  58. Engström K. 1960. Cone types and cone arrangements in the retina of some cyprinids. Acta Zool 41:277–95
    [Google Scholar]
  59. Enright JM, Toomey MB, Sato SY, Temple SE, Allen JR et al. 2015. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting vitamin A1 into A2. Curr. Biol. 25:3048–57
    [Google Scholar]
  60. Euler T, Haverkamp S, Schubert T, Baden T 2014. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15:507–19
    [Google Scholar]
  61. Field GD, Gauthier JL, Sher A, Greschner M, Machado TA et al. 2010. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467:673–77
    [Google Scholar]
  62. Field GD, Greschner M, Gauthier JL, Rangel C, Shlens J et al. 2009. High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nat. Neurosci. 12:1159–64
    [Google Scholar]
  63. Gegenfurtner KR, Kiper DC. 2003. Color vision. Annu. Rev. Neurosci. 26:181–206
    [Google Scholar]
  64. Goldsmith TH, Butler BK. 2003. The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus. J. Comp. Physiol. A 189:135–42
    [Google Scholar]
  65. Goodchild AK, Chan TL, Grünert U 1996. Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis. Neurosci. 13:833–45
    [Google Scholar]
  66. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K 2000. In search of the visual pigment template. Vis. Neurosci. 17:509–28
    [Google Scholar]
  67. Griebel U, Peichl L. 2003. Colour vision in aquatic mammals—facts and open questions. Aquat. Mamm. 291:18–30
    [Google Scholar]
  68. Hailman JP. 1976. Oil droplets in the eyes of adult anuran amphibians: a comparative survey. J. Morphol. 148:453–68
    [Google Scholar]
  69. Hart NS. 2001. The visual ecology of avian photoreceptors. Prog. Retinal Eye Res. 20:675–703
    [Google Scholar]
  70. Hart NS, Hunt DM. 2007. Avian visual pigments: characteristics, spectral tuning, and evolution. Am. Nat. 169:S7–26
    [Google Scholar]
  71. Hart NS, Vorobyev M. 2005. Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J. Comp. Physiol. A 191:381–92
    [Google Scholar]
  72. Hofer H, Carroll J, Neitz J, Neitz M, Williams DR 2005. Organization of the human trichromatic cone mosaic. J. Neurosci. 25:9669–79
    [Google Scholar]
  73. Jackman SL, Babai N, Chambers JJ, Thoreson WB, Kramer RH 2011. A positive feedback synapse from retinal horizontal cells to cone photoreceptors. PLOS Biol 9:e1001057
    [Google Scholar]
  74. Jacobs G. 1981. Comparative Color Vision New York: Academic
    [Google Scholar]
  75. Jacobs G, Williams G, Cahill H, Nathans J 2007. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315:1723–25
    [Google Scholar]
  76. Jiao Y, Lau T, Hatzikirou H, Meyer-Hermann M, Corbo JC, Torquato S 2014. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E 89:022721
    [Google Scholar]
  77. Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532:236–39
    [Google Scholar]
  78. Jones CD, Osorio D. 2004. Discrimination of oriented visual textures by poultry chicks. Vis. Res. 44:83–89
    [Google Scholar]
  79. Jones CD, Osorio D, Baddeley RJ 2001. Colour categorization by domestic chicks. Proc. R. Soc. B 268:2077–84
    [Google Scholar]
  80. Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R 2001. Hemichannel-mediated inhibition in the outer retina. Science 292:1178–80
    [Google Scholar]
  81. Kamermans M, van Dijk BW, Spekreijse H 1991. Color opponency in cone-driven horizontal cells in carp retina: aspecific pathways between cones and horizontal cells. J. Gen. Physiol. 97:819–43
    [Google Scholar]
  82. Kelber A, Osorio D. 2010. From spectral information to animal colour vision: experiments and concepts. Proc. R. Soc. B 277:1617–25
    [Google Scholar]
  83. Kelber A, Vorobyev M, Osorio D 2003. Animal colour vision—behavioural tests and physiological concepts. Biol. Rev. 78:81–118
    [Google Scholar]
  84. Kemmler R, Schultz K, Dedek K, Euler T, Schubert T 2014. Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J. Neurosci. 34:11826–43
    [Google Scholar]
  85. Klaassen LJ, de Graaff W, van Asselt JB, Klooster J, Kamermans M 2016. Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J. Neurophysiol. 116:2799–814
    [Google Scholar]
  86. Korenyak DA, Govardovskii VI. 2013. Photoreceptors and visual pigments in three species of newts. J. Evol. Biochem. Physiol. 49:399–407
    [Google Scholar]
  87. Kram YA, Mantey S, Corbo JC, Hart N, Bowmaker J et al. 2010. Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLOS ONE 5:e8992
    [Google Scholar]
  88. Krauskopf J, Williams DR, Heeley DW 1982. Cardinal directions of color space. Vis. Res. 22:1123–31
    [Google Scholar]
  89. Lagman D, Daza DO, Widmark J, Abalo XM, Sundström G, Larhammar D 2013. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. BMC Evol. Biol. 13:238
    [Google Scholar]
  90. Lee BB, Cooper B, Cao D 2018. The spatial structure of cone-opponent receptive fields in macaque retina. Vis. Res. 151:141–51
    [Google Scholar]
  91. Lee BB, Martin PR, Grünert U 2010. Retinal connectivity and primate vision. Prog. Retinal Eye Res. 29:622–39
    [Google Scholar]
  92. Lee BB, Pokorny J, Smith VC, Martin PR, Valberg A 1990. Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. J. Opt. Soc. Am. A 7:2223–36
    [Google Scholar]
  93. Li W, DeVries SH. 2006. Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nat. Neurosci. 9:669–75
    [Google Scholar]
  94. Li YN, Matsui JI, Dowling JE 2009. Specificity of the horizontal cell-photoreceptor connections in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 516:442–53
    [Google Scholar]
  95. Lind O, Henze MJ, Kelber A, Osorio D 2017. Coevolution of coloration and colour vision. ? Philos. Trans. R. Soc. B 372:20160338
    [Google Scholar]
  96. Loew ER, Fleishman LJ, Foster RG, Provencio I 2002. Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J. Exp. Biol. 205:927–38
    [Google Scholar]
  97. Loew ER, Govardovskii VI. 2001. Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. Vis. Neurosci 18:753–57
    [Google Scholar]
  98. Lubbock J. 1882. Ants, Bees and Wasps. A Record of Observations on the Habits of the Social Hymenoptera London: Kegan Paul, Trench
    [Google Scholar]
  99. Lubbock SJ. 1889. On the Senses, Instincts, and Intelligence of Animals, with Special Reference to Insects London: Kegan Paul, Trench
    [Google Scholar]
  100. Luk HL, Bhattacharyya N, Montisci F, Morrow JM, Melaccio F et al. 2016. Modulation of thermal noise and spectral sensitivity in Lake Baikal cottoid fish rhodopsins. Sci. Rep. 6:38425
    [Google Scholar]
  101. Makous W. 2007. Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 318:316
    [Google Scholar]
  102. Maloney LT. 1986. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J. Opt. Soc. Am. A 3:1673–83
    [Google Scholar]
  103. Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA et al. 2009. Gene therapy for red-green colour blindness in adult primates. Nature 461:784–87
    [Google Scholar]
  104. Manning JR, Brainard DH. 2009. Optimal design of photoreceptor mosaics: why we do not see color at night. Vis. Neurosci. 26:5–19
    [Google Scholar]
  105. Marshak DW, Mills SL. 2014. Short-wavelength cone-opponent retinal ganglion cells in mammals. Vis. Neurosci. 31:165–75
    [Google Scholar]
  106. Martin PR, Grunert U. 1999. Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: comparison of New World and Old World monkeys. J. Comp. Neurol. 406:1–14
    [Google Scholar]
  107. Matthews T, Osorio D, Cavallaro A, Chittka L 2018. The importance of spatial visual scene parameters in predicting optimal cone sensitivities in routinely trichromatic frugivorous Old-World primates. Front. Comp. Neurosci. 12:15
    [Google Scholar]
  108. Meier A, Nelson R, Connaughton VP 2018. Color processing in zebrafish retina. Front. Cell Neurosci. 12:327
    [Google Scholar]
  109. Meredith RW, Gatesy J, Emerling CA, York VM, Springer MS 2013. Rod monochromacy and the coevolution of cetacean retinal opsins. PLOS Genet 9:e1003432
    [Google Scholar]
  110. Mills SL, Tian L-M, Hoshi H, Whitaker CM, Massey SC 2014. Three distinct blue-green color pathways in a mammalian retina. J. Neurosci. 34:1760–68
    [Google Scholar]
  111. Mollon JD. 1989. Tho’ she kneel'd in that place where they grew…” The uses and origins of primate colour vision. J. Exp. Biol. 146:21–38
    [Google Scholar]
  112. Mollon JD. 2003. Thomas Young and the trichromatic theory of colour vision. Normal and Defective Colour Vision JD Mollon, J Pokorny, K Knoblauch, pp. xix–xxxii Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  113. Morshedian A, Fain GL. 2015. Single-photon sensitivity of lamprey rods with cone-like outer segments. Curr. Biol. 25:484–87
    [Google Scholar]
  114. Mullen KT, Losada MA. 1994. Evidence for separate pathways for color and luminance detection mechanisms. J. Opt. Soc. Am. A 11:3136–51
    [Google Scholar]
  115. Nathans J, Thomas D, Hogness D 1986. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202
    [Google Scholar]
  116. Neumeyer C. 1986. Wavelength discrimination in the goldfish. J. Comp. Physiol. A 158:203–13
    [Google Scholar]
  117. Neumeyer C. 1992. Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J. Comp. Physiol. A 171:639–49
    [Google Scholar]
  118. Neumeyer C, Arnold K. 1989. Tetrachromatic color vision in the goldfish becomes trichromatic under white adaptation light of moderate intensity. Vis. Res. 29:1719–27
    [Google Scholar]
  119. Nikonov SS, Kholodenko R, Lem J, Pugh EN 2006. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol. 127:359–74
    [Google Scholar]
  120. Ödeen A, Håstad O. 2003. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol. Biol. Evol. 20:855–61
    [Google Scholar]
  121. Okano T, Yoshizawa T, Fukada Y 1994. Pinopsin is a chicken pineal photoreceptive molecule. Nature 372:94–97
    [Google Scholar]
  122. Olsson P, Lind O, Kelber A 2015. Bird colour vision: behavioural thresholds reveal receptor noise. J. Exp. Biol. 218:184–93
    [Google Scholar]
  123. Olsson P, Lind O, Kelber A 2018. Chromatic and achromatic vision: parameter choice and limitations for reliable model predictions. Behav. Ecol. 29:273–82
    [Google Scholar]
  124. Olsson P, Wilby D, Kelber A 2016. Quantitative studies of animal colour constancy: using the chicken as model. Proc. R. Soc. B 283:20160411
    [Google Scholar]
  125. Oppermann D, Schramme J, Neumeyer C 2016. Rod-cone based color vision in seals under photopic conditions. Vis. Res. 125:30–40
    [Google Scholar]
  126. Orger MB, Baier H. 2005. Channeling of red and green cone inputs to the zebrafish optomotor response. Vis. Neurosci. 22:275–81
    [Google Scholar]
  127. Osorio D, Ruderman DL, Cronin TW 1998. Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones. J. Opt. Soc. Am. A 15:16–22
    [Google Scholar]
  128. Osorio D, Vorobyev M. 1996. Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. B 263:593–99
    [Google Scholar]
  129. Osorio D, Vorobyev M. 2008. A review of the evolution of animal colour vision and visual communication signals. Vis. Res. 48:2042–51
    [Google Scholar]
  130. Osorio D, Vorobyev M, Jones CD 1999. Colour vision in domestic chicks. J. Exp. Biol. 202:2951–59
    [Google Scholar]
  131. Packer OS, Verweij J, Li PH, Schnapf JL, Dacey DM 2010. Blue-yellow opponency in primate S cone photoreceptors. J. Neurosci. 30:568–72
    [Google Scholar]
  132. Palacios AG, Varela FJ, Srivastava R, Goldsmith TH 1998. Spectral sensitivity of cones in the goldfish, Carassius auratus. Vis. Res. 38:2135–46
    [Google Scholar]
  133. Párraga CA, Brelstaff G, Troscianko T, Moorehead IR 1998. Color and luminance information in natural scenes. J. Opt. Soc. Am. A 15:563–69
    [Google Scholar]
  134. Parry JWL, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker JK 2005. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr. Biol. 15:1734–39
    [Google Scholar]
  135. Patel JS, Brown CJ, Ytreberg FM, Stenkamp DL 2018. Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations. PLOS Comput. Biol. 14:e1005974
    [Google Scholar]
  136. Peichl L. 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle?. Anat. Rec. A 287:1001–12
    [Google Scholar]
  137. Perlman I, Weiner E, Kolb H 2009. Retinal horizontal cells. Encyclopedia of Neuroscience LR Squire 233–43 New York: Academic
    [Google Scholar]
  138. Pignatelli V, Champ C, Marshall J, Vorobyev M 2010. Double cones are used for colour discrimination in the reef fish, Rhinecanthus aculeatus. Biol. Lett. 6:20091010
    [Google Scholar]
  139. Porter ML, Cronin TW, McClellan DA, Crandall KA 2007. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Mol. Biol. Evol. 24:253–68
    [Google Scholar]
  140. Potier S, Mitkus M, Kelber A 2018. High resolution of colour vision, but low contrast sensitivity in a diurnal raptor. Proc. R. Soc. B 6:20181036
    [Google Scholar]
  141. Prum RO. 2012. Aesthetic evolution by mate choice: Darwin's really dangerous idea. Philos. Trans. R. Soc. B 367:2253–65
    [Google Scholar]
  142. Raymond PA, Barthel LK, Rounsifer ME, Sullivan SA, Knight JK 1993. Expression of rod and cone visual pigments in goldfish and zebrafish: A rhodopsin-like gene is expressed in cones. Neuron 10:1161–74
    [Google Scholar]
  143. Reitner A, Sharpe LT, Zrenner E 1991. Is colour vision possible with only rods and blue-sensitive cones?. Nature 352:798–800
    [Google Scholar]
  144. Remy M, Emmerton J. 1989. Behavioral spectral sensitivities of different retinal areas in pigeons. Behav. Neurosci. 103:170–77
    [Google Scholar]
  145. Rister J, Desplan C. 2011. The retinal mosaics of opsin expression in invertebrates and vertebrates. Dev. Neurobiol. 71:1212–26
    [Google Scholar]
  146. Rocha FAF, Saito CA, Silveira LCL, De Souza JM, Ventura DF 2008. Twelve chromatically opponent ganglion cell types in turtle retina. Vis. Neurosci. 25:307–15
    [Google Scholar]
  147. Roehlich P, Van Veen T, Szél A 1994. Two different visual pigments in one retinal cone cell. Neuron 13:1159–66
    [Google Scholar]
  148. Roorda A, Williams DR. 1999. The arrangement of the three cone classes in the living human eye. Nature 397:520–22
    [Google Scholar]
  149. Ruderman DL, Cronin TW, Chiao CC 1998. Statistics of cone responses to natural images: implications for visual coding. J. Opt. Soc. Am. A 15:2036–45
    [Google Scholar]
  150. Shand J, Davies WL, Thomas N, Balmer L, Cowing JA et al. 2008. The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J. Exp. Biol. 211:1495–503
    [Google Scholar]
  151. Sher A, DeVries SH. 2012. A non-canonical pathway for mammalian blue–green color vision. Nat. Neurosci. 15:952–53
    [Google Scholar]
  152. Siebeck UE, Marshall NJ. 2001. Ocular media transmission of coral reef fish—can coral reef fish see ultraviolet light?. Vis. Res. 41:133–49
    [Google Scholar]
  153. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216
    [Google Scholar]
  154. Song PI, Matsui JI, Dowling JE 2008. Morphological types and connectivity of horizontal cells found in the adult zebrafish (Danio rerio) retina. J. Comp. Neurol. 506:328–38
    [Google Scholar]
  155. Spady TC, Parry JWL, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL 2006. Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol. Biol. Evol. 23:1538–47
    [Google Scholar]
  156. Spitschan M, Bock AS, Ryan J, Frazzetta G, Brainard DH, Aguirre GK 2017. The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience. PNAS 114:12291–96
    [Google Scholar]
  157. Srinivasan MV, Laughlin SB, Dubs A 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. B 216:427–59
    [Google Scholar]
  158. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM et al. 2018. The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97:150–63
    [Google Scholar]
  159. Stell WK. 1978. Inputs to bipolar cell dendrites in goldfish retina. Sens. Process. 2:339–49
    [Google Scholar]
  160. Stockman A, Brainard DH. 2010. Color vision mechanisms. The Optical Society of America Handbook of Optics Vol. 3: Vision and Vision Optics M Bass, C Decusatis, JM Enoch, V Lakshminarayanan, G Li et al. 111–104 New York: McGraw-Hill. , 3rd ed..
    [Google Scholar]
  161. Szél A, Röhlich P, Caffé AR, Juliusson B, Aguirre G, Van Veen T 1992. Unique topographic separation of two spectral classes of cones in the mouse retina. J. Comp. Neurol. 325:327–42
    [Google Scholar]
  162. Szikra T, Trenholm S, Drinnenberg A, Jüttner J, Raics Z et al. 2014. Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nat. Neurosci. 17:1728–35
    [Google Scholar]
  163. Tan Z, Sun W, Chen T-W, Kim D, Ji N 2015. Neuronal representation of ultraviolet visual stimuli in mouse primary visual cortex. Sci. Rep. 5:12597
    [Google Scholar]
  164. Theiss SM, Davies WIL, Collin SP, Hunt DM, Hart NS 2012. Cone monochromacy and visual pigment spectral tuning in wobbegong sharks. Biol. Lett. 8:1019–22
    [Google Scholar]
  165. Thoreson WB, Babai N, Bartoletti TM 2008. Feedback from horizontal cells to rod photoreceptors in vertebrate retina. J. Neurosci. 28:5691–95
    [Google Scholar]
  166. Tikidji-Hamburyan A, Reinhard K, Seitter H, Hovhannisyan A, Procyk CA et al. 2015. Retinal output changes qualitatively with every change in ambient illuminance. Nat. Neurosci. 18:66–74
    [Google Scholar]
  167. Toomey MB, Collins AM, Frederiksen R, Cornwall MC, Timlin JA, Corbo JC 2015. A complex carotenoid palette tunes avian colour vision. J. R. Soc. Interface 12:20150563
    [Google Scholar]
  168. Toomey MB, Lind O, Frederiksen R, Curley RW, Riedl KM et al. 2016. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds. eLife 5:e15675
    [Google Scholar]
  169. Torvund MM, Ma TS, Connaughton VP, Ono F, Nelson RF 2017. Cone signals in monostratified and bistratified amacrine cells of adult zebrafish retina. J. Comp. Neurol. 525:1532–57
    [Google Scholar]
  170. Twig G, Levy H, Perlman I 2003. Color opponency in horizontal cells of the vertebrate retina. Prog. Retinal Eye Res. 22:31–68
    [Google Scholar]
  171. Twig G, Perlman I. 2004. Homogeneity and diversity of color-opponent horizontal cells in the turtle retina: consequences for potential wavelength discrimination. J. Vis. 4:5403–14
    [Google Scholar]
  172. Ventura DF, Zana Y, Souza JM de, DeVoe RD 2001. Ultraviolet colour opponency in the turtle retina. J. Exp. Biol. 204:2527–34
    [Google Scholar]
  173. Verweij J, Kamermans M, Spekreijse H 1996. Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vis. Res. 36:3943–53
    [Google Scholar]
  174. Von Schantz M, Argamaso-Hernan SM, Szél Á, Foster RG 1997. Photopigments and photoentrainment in the Syrian golden hamster. Brain Res 770:131–38
    [Google Scholar]
  175. Vorobyev M, Osorio D. 1998. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B 265:351–58
    [Google Scholar]
  176. Vorobyev M, Osorio D, Bennett AT, Marshall NJ, Cuthill IC 1998. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A 183:621–33
    [Google Scholar]
  177. Wachtler T, Doi E, Lee TW, Sejnowski TJ 2007. Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. J. Vis. 7:86
    [Google Scholar]
  178. Wallace AR. 1879. Colour in nature. Nature 19:501–5
    [Google Scholar]
  179. Wässle H, Puller C, Müller F, Haverkamp S 2009. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29:106–17
    [Google Scholar]
  180. Werblin FS, Dowling JE. 1969. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32:339–55
    [Google Scholar]
  181. Wilby D, Roberts NW. 2017. Optical influence of oil droplets on cone photoreceptor sensitivity. J. Exp. Biol. 220:1997–2004
    [Google Scholar]
  182. Wilkie SE, Robinson PR, Cronin TW, Poopalasundaram S, Bowmaker JK, Hunt DM 2000. Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry 39:7895–901
    [Google Scholar]
  183. Williams DR, MacLeod DI, Hayhoe MM 1981. Foveal tritanopia. Vis. Res. 21:1341–56
    [Google Scholar]
  184. Wong KY, Dowling JE. 2005. Retinal bipolar cell input mechanisms in giant danio. III. on-off bipolar cells and their color-opponent mechanisms. J. Neurophysiol. 94:265–72
    [Google Scholar]
  185. Wyszecki G, Stiles WS. 1982. Color Science New York: Wiley
    [Google Scholar]
  186. Yazulla S. 1976. Cone input to bipolar cells in the turtle retina. Vis. Res. 16:737–41
    [Google Scholar]
  187. Yin L, Smith RG, Sterling P, Brainard DH 2009. Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. J. Neurosci. 29:2706–24
    [Google Scholar]
  188. Yokoyama S. 2000. Molecular evolution of vertebrate visual pigments. Prog. Retinal Eye Res. 19:385–419
    [Google Scholar]
  189. Yovanovich CAM, Koskela SM, Nevala N, Kondrashev SL, Kelber A, Donner K 2017. The dual rod system of amphibians supports colour discrimination at the absolute visual threshold. Philos. Trans. R. Soc. B 372:20160066
    [Google Scholar]
  190. Zana Y, Ventura DF, De Souza JM, Devoe RD 2001. Tetrachromatic input to turtle horizontal cells. Vis. Neurosci. 18:759–65
    [Google Scholar]
  191. Zele AJ, Feigl D, Adhikari P, Maynard ML, Cao D 2018. Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Sci. Rep. 8:3842
    [Google Scholar]
  192. Zimmermann MJY, Nevala NE, Yoshimatsu T, Osorio D, Nilsson D-E et al. 2018. Zebrafish differentially process color across visual space to match natural scenes. Curr. Biol. 28:2018–2032.E5
    [Google Scholar]
  193. Zrenner E, Gouras P. 1981. Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells. Vis. Res. 21:1605–9
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014926
Loading
/content/journals/10.1146/annurev-vision-091718-014926
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error