1932

Abstract

Refractive errors are the product of a mismatch between the axial length of the eye and its optical power, creating blurred vision. Uncorrected refractive errors are the second leading cause of worldwide blindness. One refractive error currently attracting significant scientific interest is myopia, mostly owing to the recent rise in its prevalence worldwide and associated ocular disease burden. This increase in myopia prevalence has also been rapid, suggesting environmental influences in addition to any genetic influences on eye growth. This review defines refractive errors, describes their prevalence, and presents evidence for the influence of genetic and environmental factors related to refractive error development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-015027
2019-09-15
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-015027.html?itemId=/content/journals/10.1146/annurev-vision-091718-015027&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarez AA, Wildsoet CF. 2013. Quantifying light exposure patterns in young adult students. J. Mod. Opt. 60:141200–8
    [Google Scholar]
  2. Angi MR, Clementi M, Sardei C, Piattelli E, Bisantis C 1993. Heritability of myopic refractive errors in identical and fraternal twins. Graefe's Arch. Clin. Exp. Ophthalmol. 231:10580–85
    [Google Scholar]
  3. Ashby R, Ohlendorf A, Schaeffel F 2009. The effect of ambient illuminance on the development of deprivation myopia in chicks. Investig. Ophthalmol. Vis. Sci. 50:115348–54
    [Google Scholar]
  4. Ashby RS, Schaeffel F. 2010. The effect of bright light on lens compensation in chicks. Investig. Ophthalmol. Vis. Sci. 51:105247–53
    [Google Scholar]
  5. Atkinson J, Anker S, Bobier W, Braddick O, Durden K et al. 2000. Normal emmetropization in infants with spectacle correction for hyperopia. Investig. Ophthalmol. Vis. Sci. 41:123726–31
    [Google Scholar]
  6. Backhouse S, Collins AV, Phillips JR 2013. Influence of periodic versus continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol. Opt. 33:5563–72
    [Google Scholar]
  7. Berntsen DA, Sinnott LT, Mutti DO, Zadnik K 2011. Accommodative lag and juvenile-onset myopia progression in children wearing refractive correction. Vis. Res. 51:91039–46
    [Google Scholar]
  8. Boomsma D, Busjahn A, Peltonen L 2002. Classical twin studies and beyond. Nat. Rev. Genet. 3:872–82
    [Google Scholar]
  9. Borchert MS, Varma R, Cotter SA, Tarczy-Hornoch K, McKean-Cowdin R et al. 2011. Risk factors for hyperopia and myopia in preschool children: the multi-ethnic pediatric eye disease and Baltimore pediatric eye disease studies. Ophthalmology 118:101966–73
    [Google Scholar]
  10. Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA 2018. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol. Opt. 38:3217–45
    [Google Scholar]
  11. Chan MV, Harb EN, Tran A, Wildsoet CF 2016. Subjective questionnaires overestimate habitual outdoor activity in young adults. Investig. Ophthalmol. Vis. Sci. 57:122492
    [Google Scholar]
  12. Charman WN. 2011. Myopia, posture and the visual environment. Ophthalmic Physiol. Opt. 31:5494–501
    [Google Scholar]
  13. Chen Y, Wang W, Han X, Yan W, He M 2016. What twin studies have taught us about myopia. Asia Pac. J. Ophthalmol. 5:6411–14
    [Google Scholar]
  14. Cheng D, Woo GC, Drobe B, Schmid KL 2014. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol 132:3258–64
    [Google Scholar]
  15. Choi JA, Han K, Park YM, La TY 2014. Low serum 25-hydroxyvitamin D is associated with myopia in Korean adolescents. Investig. Ophthalmol. Vis. Sci. 55:42041–47
    [Google Scholar]
  16. Cohn H. 1883. Die Hygeine des Auges: In den Schulen Vienna: Urban & Schwarzenberg
    [Google Scholar]
  17. Cordain L, Eaton SB, Miller JB, Lindeberg S, Jensen C 2002. An evolutionary analysis of the aetiology and pathogenesis of juvenile-onset myopia. Acta Ophthalmol. Scand. 80:2125–35
    [Google Scholar]
  18. Cui D, Trier K, Ribel-Madsen SM 2013. Effect of day length on eye growth, myopia progression, and change of corneal power in myopic children. Ophthalmology 120:51074–79
    [Google Scholar]
  19. Day FR, Forouhi NG, Ong KK, Perry JRB 2015. Season of birth is associated with birth weight, pubertal timing, adult body size and educational attainment: a UK Biobank study. Heliyon 1:2e00031
    [Google Scholar]
  20. Dennis JA, Mollborn S. 2013. Young maternal age and low birth weight risk: an exploration of racial/ethnic disparities in the birth outcomes of mothers in the United States. Soc. Sci. J. 50:4625–34
    [Google Scholar]
  21. Diether S, Schaeffel F. 1997. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vis. Res. 37:659–68
    [Google Scholar]
  22. Dirani M, Chamberlain M, Garoufalis P, Chen C, Guymer RH, Baird PN 2006. Refractive errors in twin studies. Twin Res. Hum. Genet. 9:4566–72
    [Google Scholar]
  23. Dirani M, Tong L, Gazzard G, Zhang X, Chia A et al. 2009. Outdoor activity and myopia in Singapore teenage children. Br. J. Ophthalmol. 93:8997–1000
    [Google Scholar]
  24. Dobson V, Harvey EM, Miller JM 2007. Spherical equivalent refractive error in preschool children from a population with a high prevalence of astigmatism. Optom. Vis. Sci. 84:2124–30
    [Google Scholar]
  25. Dong F, Zhi Z, Pan M, Xie R, Qin X et al. 2011. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol. Vis. 17:2824–34
    [Google Scholar]
  26. Drobe B, de Saint-André R 1995. The pre-myopic syndrome. Ophthalmic Physiol. Opt. 15:5375–78
    [Google Scholar]
  27. El-Shazly AA. 2012. Passive smoking exposure might be associated with hypermetropia. Ophthalmic Physiol. Opt. 32:4304–7
    [Google Scholar]
  28. Fan DSP, Cheung EYY, Lai RYK, Kwok AKH, Lam DSC 2004a. Myopia progression among preschool Chinese children in Hong Kong. Ann. Acad. Med. Singapore 33:139–43
    [Google Scholar]
  29. Fan DSP, Rao SK, Cheung EYY, Islam M, Chew S, Lam DSC 2004b. Astigmatism in Chinese preschool children: prevalence, change, and effect on refractive development. Br. J. Ophthalmol. 88:7938–41
    [Google Scholar]
  30. Fan Q, Verhoeven VJM, Wojciechowski R, Barathi VA, Hysi PG et al. 2016. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nat. Commun. 7:11008
    [Google Scholar]
  31. Feldkaemper M, Schaeffel F. 2013. An updated view on the role of dopamine in myopia. Exp. Eye Res. 114:106–19
    [Google Scholar]
  32. Fledelius HC. 1986. Myopia and diabetes mellitus with special reference to adult-onset myopia. Acta Ophthalmol 64:133–38
    [Google Scholar]
  33. Flitcroft DI. 2012. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog. Retin. Eye Res. 31:6622–60
    [Google Scholar]
  34. Flitcroft DI, Loughman J, Wildsoet CF, Williams C, Guggenheim JA 2018. Novel myopia genes and pathways identified from syndromic forms of myopia. Investig. Ophthalmol. Vis. Sci. 59:1338–48
    [Google Scholar]
  35. Foulds WS, Barathi VA, Luu CD 2013. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Investig. Ophthalmol. Vis. Sci. 54:138004–12
    [Google Scholar]
  36. Fujiwara M, Hasebe S, Nakanishi R, Tanigawa K, Ohtsuki H 2012. Seasonal variation in myopia progression and axial elongation: an evaluation of Japanese children participating in a myopia control trial. Jpn. J. Ophthalmol. 56:4401–6
    [Google Scholar]
  37. Gawne TJ, Siegwart JT, Ward AH, Norton TT 2017. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp. Eye Res. 155:75–84
    [Google Scholar]
  38. Gawne TJ, Ward AH, Norton TT 2018. Juvenile tree shrews do not maintain emmetropia in narrow-band blue light. Optom. Vis. Sci. 95:10911–12
    [Google Scholar]
  39. Gilmartin B. 1998. Autonomic correlates of near-vision in emmetropia and myopia. See Rosenfield & Gilmartin 1998 117–46
  40. Goldschmidt E, Jacobsen N. 2014. Genetic and environmental effects on myopia development and progression. Eye 28:2126–33
    [Google Scholar]
  41. Goss D. 1989. Meridional analysis of with-the-rule astigmatism in Oklahoma Indians. Optom. Vis. Sci. 66:5281–87
    [Google Scholar]
  42. Goss DA. 1991. Clinical accommodation and heterophoria findings preceding juvenile onset of myopia. Optom. Vis. Sci. 68:2110–16
    [Google Scholar]
  43. Guggenheim JA, Northstone K, McMahon G, Ness AR, Deere K et al. 2012. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Investig. Ophthalmol. Vis. Sci. 53:62856–65
    [Google Scholar]
  44. Guggenheim JA, McMahon G, Northstone K, Mandel Y, Kaiserman I et al. 2013. Birth order and myopia. Ophthalmol. Epidemiol. 20:6375–84
    [Google Scholar]
  45. Guggenheim JA, Williams C, Northstone K, Howe LD, Tilling K et al. 2014. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Investig. Ophthalmol. Vis. Sci. 55:8550–58
    [Google Scholar]
  46. Guo Y, Liu LJ, Tang P, Lv YY, Feng Y et al. 2017. Outdoor activity and myopia progression in 4-year follow-up of Chinese primary school children: the Beijing Children Eye Study. PLOS ONE 12:4e0175921
    [Google Scholar]
  47. Gwiazda JE. 2011. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Investig. Ophthalmol. Vis. Sci. 52:52749–57
    [Google Scholar]
  48. Gwiazda JE, Deng L, Manny R, Norton TT, Norton T et al. 2014. Seasonal variations in the progression of myopia in children enrolled in the Correction of Myopia Evaluation Trial. Investig. Ophthalmol. Vis. Sci. 55:2752–58
    [Google Scholar]
  49. Gwiazda JE, Hyman L, Norton TT, Hussein MEM, Marsh-Tootle W et al. 2004. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Investig. Ophthalmol. Vis. Sci. 45:2143–51
    [Google Scholar]
  50. Gwiazda JE, Thorn F, Held R 2005. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom. Vis. Sci. 82:4273–78
    [Google Scholar]
  51. Hagen LA, Gjelle JVB, Arnegard S, Pedersen HR, Gilson SJ, Baraas RC 2018. Prevalence and possible factors of myopia in Norwegian adolescents. Sci. Rep. 8:113479
    [Google Scholar]
  52. Hammond C, Gilbert CE, Spector TD, Snieder H 2001. Genes and environment in refractive error: the Twin Eye Study. Investig. Ophthalmol. Vis. Sci. 42:61232–36
    [Google Scholar]
  53. Harb EN. 2010. Hyperopia. Encyclopedia of the Eye DA Dartt 257–62 Oxford, UK: Academic. , 1st ed..
    [Google Scholar]
  54. Harb EN, Chan M, Tran A, Wildsoet CF 2016. Characteristics of indoor and outdoor light exposure differ with refractive status in young adults. Investig. Ophthalmol. Vis. Sci. 57:122473 (Abstr.)
    [Google Scholar]
  55. Harb EN, Thorn F, Troilo D 2006. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vis. Res. 46:162581–92
    [Google Scholar]
  56. Harb EN, Wildsoet CF. 2016. The relationship between vitamin D and myopia: an analysis of NHANES data Presented at the Annual Meeting of the American Academy of Optometry, Prog. 160036 (Abstr.), Orlando, FL. https://www.aaopt.org/detail/knowledge-base-article/relationship-between-vitamin-d-and-myopia-analysis-nhanes-data
    [Google Scholar]
  57. Hartwig A, Gowen E, Charman WN, Radhakrishnan H 2011. Working distance and eye and head movements during near work in myopes and non-myopes. Clin. Exp. Optom. 94:6536–44
    [Google Scholar]
  58. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M 2018. Global and regional estimates of prevalence of refractive errors: systematic review and meta-analysis. J. Curr. Ophthalmol. 30:13–22
    [Google Scholar]
  59. He M, Xiang F, Zeng Y, Mai J, Chen Q et al. 2015. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314:111142–48
    [Google Scholar]
  60. Heidary G, Ying GS, Maguire MG, Young TL 2005. The association of astigmatism and spherical refractive error in a high myopia cohort. Optom. Vis. Sci. 82:4244–47
    [Google Scholar]
  61. Hess RF, Schmid KL, Dumoulin SO, Field DJ, Brinkworth DR 2006. What image properties regulate eye growth. ? Curr. Biol. 16:7687–91
    [Google Scholar]
  62. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS et al. 2016. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:51036–42
    [Google Scholar]
  63. Holliday R. 2006. Epigenetics: a historical overview. Epigenetics 1:276–80
    [Google Scholar]
  64. Huang H-M, Chang DS-T, Wu P-C 2015. The association between near work activities and myopia in children—a systematic review and meta-analysis. PLOS ONE 10:10e0140419
    [Google Scholar]
  65. Huang J, Hung LF, Smith EL 2011. Effects of foveal ablation of the pattern of peripheral refractive errors in normal and form-deprived infant rhesus monkeys (Macaca mulatta). Investig. Ophthalmol. Vis. Sci. 52:96428–34
    [Google Scholar]
  66. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I et al. 2016. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology 123:4697–708
    [Google Scholar]
  67. Hung LF, Arumugam B, She Z, Ostrin L, Smith EL 2018. Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys. Exp. Eye Res. 176:147–60
    [Google Scholar]
  68. Hyman L. 2013. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Investig. Ophthalmol. Vis. Sci. 54:7871–83
    [Google Scholar]
  69. Ip JM, Saw S-MM, Rose KA, Morgan IG, Kifley A et al. 2008. Role of near work in myopia: findings in a sample of Australian school children. Investig. Ophthalmol. Vis. Sci. 49:72903–10
    [Google Scholar]
  70. Iyer JV, Low WC, Dirani M, Saw SM 2012. Parental smoking and childhood refractive error: the STARS study. Eye 26:101324–28
    [Google Scholar]
  71. Jablonksi W. 1922. Ein Beitrag zur Vererbung der Refraktion menschlicher Augen. Arch. Augenheilk. 91:308–28
    [Google Scholar]
  72. Jin JX, Hua WJ, Jiang X, Wu XY, Yang JW et al. 2015. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun Eye Care Study. BMC Ophthalmol 15:173–84
    [Google Scholar]
  73. Jirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8:4253–62
    [Google Scholar]
  74. Jones-Jordan LA, Mitchell GL, Cotter SA, Kleinstein RN, Manny RE et al. 2011. Visual activity before and after the onset of juvenile myopia. Investig. Ophthalmol. Vis. Sci. 52:31841–50
    [Google Scholar]
  75. Jones-Jordan LA, Sinnott LT, Manny RE, Cotter SA, Kleinstein RN et al. 2010. Early childhood refractive error and parental history of myopia as predictors of myopia. Investig. Ophthalmol. Vis. Sci. 51:1115–21
    [Google Scholar]
  76. Jones-Jordan LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML et al. 2007. Parental history of myopia, sports and outdoor activities, and future myopia. Investig. Ophthalmol. Vis. Sci. 48:83524–32
    [Google Scholar]
  77. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL et al. 2013. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLOS Genet 9:2e1003299
    [Google Scholar]
  78. Kinge B, Midelfart A, Jacobsen G, Rystad J 2000. The influence of near-work on development of myopia among university students. A three-year longitudinal study among engineering students in Norway. Acta Ophthalmol. Scand. 78:126–29
    [Google Scholar]
  79. Kiorpes L, Wallman J. 1995. Does experimentally-induced amblyopia cause hyperopia in monkeys. ? Vis. Res. 35:91289–97
    [Google Scholar]
  80. Kleinstein RN, Jones LA, Hullett S, Kwon S, Lee RJ et al. 2003. Refractive error and ethnicity in children. Arch. Ophthalmol. 121:81141–47
    [Google Scholar]
  81. Koomson NY, Amedo AO, Opoku-Baah C, Ampeh PB, Ankamah E, Bonsu K 2016. Relationship between reduced accommodative lag and myopia progression. Optom. Vis. Sci. 93:7683–91
    [Google Scholar]
  82. Kruger PB, Nowbotsing S, Aggarwala KR, Mathews S 1995. Small amounts of chromatic aberration influence dynamic accommodation. Optom. Vis. Sci. 72:9656–66
    [Google Scholar]
  83. Lam DSC, Fan DSP, Lam RF, Rao SK, Chong KS et al. 2008. The effect of parental history of myopia on children's eye size and growth: results of a longitudinal study. Investig. Ophthalmol. Vis. Sci. 49:3873–76
    [Google Scholar]
  84. Lan W, Feldkaemper M, Schaeffel F 2014. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light. PLOS ONE 9:10e110906
    [Google Scholar]
  85. Lan W, Yang Z, Feldkaemper M, Schaeffel F 2016. Changes in dopamine and ZENK during suppression of myopia in chicks by intense illuminance. Exp. Eye Res. 145:118–24
    [Google Scholar]
  86. Laval J. 1938. Vitamin D and myopia. Arch. Ophthalmol. 19:147–53
    [Google Scholar]
  87. Liu R, Qian YF, He JC, Hu M, Zhou XT et al. 2011. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp. Eye Res. 92:6447–53
    [Google Scholar]
  88. Luo X, Li B, Li T, Di Y, Zheng C et al. 2017. Myopia induced by flickering light in guinea pig eyes is associated with increased rather than decreased dopamine release. Mol. Vis. 23:666–79
    [Google Scholar]
  89. Ma Q, Xu W, Zhou X, Cui C, Pan CW 2014. The relationship of season of birth with refractive error in very young children in eastern China. PLOS ONE 9:6e100472
    [Google Scholar]
  90. Mandel Y, Grotto I, El-Yaniv R, Belkin M, Israeli E et al. 2008. Season of birth, natural light, and myopia. Ophthalmology 115:4686–92
    [Google Scholar]
  91. Mäntyjärvi M. 1988. Myopia and diabetes: a review. Acta Ophthalmol 66:S18582–85
    [Google Scholar]
  92. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB 2001. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch. Ophthalmol. 119:111625–28
    [Google Scholar]
  93. McMahon G, Zayats T, Chen Y-P, Prashar A, Williams C, Guggenheim JA 2009. Season of birth, daylight hours at birth, and high myopia. Ophthalmology 116:3468–73
    [Google Scholar]
  94. Mirshahi A, Ponto KA, Hoehn R, Zwiener I, Zeller T et al. 2014. Myopia and level of education: results from the Gutenberg Health Study. Ophthalmology 121:102047–52
    [Google Scholar]
  95. Mohindra I, Nagaraj S. 1977. Astigmatism in Zuni and Navajo Indians. Am. J. Optom. Physiol. Opt. 54:2121–24
    [Google Scholar]
  96. Mutti DO. 2007. To emmetropize or not to emmetropize? The question for hyperopic development. Optom. Vis. Sci. 84:297–102
    [Google Scholar]
  97. Mutti DO, Cooper ME, O'Brien S, Jones LA, Marazita ML et al. 2007. Candidate gene and locus analysis of myopia. Mol. Vis. 13:1012–19
    [Google Scholar]
  98. Mutti DO, Marks AR. 2011. Blood levels of vitamin D in teens and young adults with myopia. Optom. Vis. Sci. 88:3377–82
    [Google Scholar]
  99. Mutti DO, Mitchell GL, Hayes JR, Jones LA, Moeschberger ML et al. 2006. Accommodative lag before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 47:3837–46
    [Google Scholar]
  100. Mutti DO, Mitchell GL, Jones LA, Friedman NE, Frane SL et al. 2005. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Investig. Ophthalmol. Vis. Sci. 46:93074–80
    [Google Scholar]
  101. Mutti DO, Zadnik K, Fusaro RE, Friedman NE, Sholtz RI, Adams AJ 1998. Optical and structural development of the crystalline lens in childhood. Investig. Ophthalmol. Vis. Sci 39:1120–33
    [Google Scholar]
  102. Naidoo KS, Leasher J, Bourne RR, Flaxman SR, Jonas JB et al. 2016. Global vision impairment and blindness due to uncorrected refractive error, 1990–2010. Optom. Vis. Sci. 93:3227–34
    [Google Scholar]
  103. Nakatsuka C, Hasebe S, Nonaka F, Ohtsuki H 2005. Accommodative lag under habitual seeing conditions: comparison between myopic and emmetropic children. Jpn. J. Ophthalmol. 49:3189–94
    [Google Scholar]
  104. Nickla DL, Thai P, Zanzerkia Trahan R, Totonelly K 2017. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: effects on rhythms in axial length and choroid thickness in chicks. Exp. Eye Res. 154:104–15
    [Google Scholar]
  105. Nickla DL, Totonelly K. 2011. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp. Eye Res. 93:5782–85
    [Google Scholar]
  106. Nickla DL, Totonelly K. 2016. Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks. Exp. Eye Res. 146:189–95
    [Google Scholar]
  107. Norton TT, Siegwart JT. 2013. Light levels, refractive development, and myopia—a speculative review. Exp. Eye Res. 114:48–57
    [Google Scholar]
  108. Ostrin LA, Sajjadi A, Benoit JS 2018. Objectively measured light exposure during school and summer in children. Optom. Vis. Sci. 95:4332–42
    [Google Scholar]
  109. Pan CW, Qian DJ, Saw SM 2017. Time outdoors, blood vitamin D status and myopia: a review. Photochem. Photobiol. Sci. 16:3426–32
    [Google Scholar]
  110. Pan CW, Ramamurthy D, Saw SM 2012. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol. Opt. 32:13–16
    [Google Scholar]
  111. Phillips JR, Backhouse S, Collins AV 2012. Myopia, light and circadian rhythms. Advances in Ophthalmology S Rumelt 141–66 London: InTechOpen
    [Google Scholar]
  112. Qian Y-F, Liu R, Dai J-H, Chen M-J, Zhou X-T, Chu R-Y 2013. Transfer from blue light or green light to white light partially reverses changes in ocular refraction and anatomy of developing guinea pigs. J. Vis. 13:1116
    [Google Scholar]
  113. Rabin J, Van Sluyters RC, Malach R 1981. Emmetropization: a vision-dependent phenomenon. Investig. Ophthalmol. Vis. Sci. 20:4561–64
    [Google Scholar]
  114. Rahi JS, Cumberland PM, Peckham CS 2011. Myopia over the lifecourse: prevalence and early life influences in the 1958 British birth cohort. Ophthalmology 118:5797–804
    [Google Scholar]
  115. Ramamurthy D, Lin Chua SY, Saw S-M 2015. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin. Exp. Optom. 98:6497–506
    [Google Scholar]
  116. Read SA, Collins MJ, Carney LG 2007. A review of astigmatism and its possible genesis. Clin. Exp. Optom. 90:15–19
    [Google Scholar]
  117. Read SA, Collins MJ, Vincent SJ 2014. Light exposure and physical activity in myopic and emmetropic children. Optom. Vis. Sci. 91:3330–41
    [Google Scholar]
  118. Read SA, Collins MJ, Vincent SJ 2015. Light exposure and eye growth in childhood. Investig. Ophthalmol. Vis. Sci. 56:116779–87
    [Google Scholar]
  119. Rezvan F, Yekta A, Hashemi H, Mehravaran S, Ostadimoghaddam H et al. 2011. The association between astigmatism and spherical refractive error in a clinical population. Iran. J. Ophthalmol. 23:437–42
    [Google Scholar]
  120. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S et al. 2008. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:81279–85
    [Google Scholar]
  121. Rosenfield M, Gilmartin B, eds. 1998. Myopia and Nearwork Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  122. Rudnicka AR, Owen CG, Richards M, Wadsworth MEJ, Strachan DP 2008. Effect of breastfeeding and sociodemographic factors on visual outcome in childhood and adolescence. Am. J. Clin. Nutr. 87:51392–99
    [Google Scholar]
  123. Saw SM, Gazzard G, Shin-Yen EC, Chua WH 2005. Myopia and associated pathological complications. Ophthalmic Physiol. Opt. 25:5381–91
    [Google Scholar]
  124. Saw SM, Shih-Yen EC, Koh A, Tan D 2002. Interventions to retard myopia progression in children. Ophthalmology 109:415–21
    [Google Scholar]
  125. Shah RL, Huang Y, Guggenheim JA, Williams C 2017. Time outdoors at specific ages during early childhood and the risk of incident myopia. Investig. Ophthalmol. Vis. Sci. 58:21158–66
    [Google Scholar]
  126. Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, MacKey DA, Foster PJ 2012. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology 119:102141–51
    [Google Scholar]
  127. Siegwart JT, Herman CK, Norton TT 2011. Vitamin D3 supplement did not affect the development of myopia produced with form deprivation or a minus lens in tree shrews. Investig. Ophthalmol. Vis. Sci. 52:146298
    [Google Scholar]
  128. Sjølie AK, Goldschmidt E. 1985. Myopia in insulin treated diabetes. Acta Ophthalmol 63:S17389
    [Google Scholar]
  129. Smith EL, Huang J, Hung LF, Blasdel TL, Humbird TL, Bockhorst KH 2009a. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Investig. Ophthalmol. Vis. Sci. 50:115057–69
    [Google Scholar]
  130. Smith EL, Hung LF, Arumugam B, Holden BA, Neitz M, Neitz J 2015. Effects of long-wavelength lighting on refractive development in infant rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 56:116490–500
    [Google Scholar]
  131. Smith EL, Hung LF, Arumugam B, Huang J 2013. Negative lens-induced myopia in infant monkeys: effects of high ambient lighting. Investig. Ophthalmol. Vis. Sci. 54:42959–69
    [Google Scholar]
  132. Smith EL, Hung LF, Arumugam B, Smith EL, Hung LF, Arumugam B 2014. Visual regulation of refractive development: insights from animal studies. Eye 28:2180–88
    [Google Scholar]
  133. Smith EL, Hung LF, Huang J 2009b. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vis. Res. 49:192386–92
    [Google Scholar]
  134. Smith EL, Hung LF, Huang J 2012. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 53:1421–28
    [Google Scholar]
  135. Sorsby A, Benjamin B, Sheridan M, Stone J, Leary GA 1961. Refraction and its components during the growth of the eye from the age of three. Memo. Med. Res. Counc. 301:1–67
    [Google Scholar]
  136. Stone RA, Cohen Y, McGlinn AM, Davison S, Casavant S et al. 2016. Development of experimental myopia in chicks in a natural environment. Investig. Ophthalmol. Vis. Sci. 57:114779–89
    [Google Scholar]
  137. Stone RA, Lin T, Laties AM, Iuvone PM 1989. Retinal dopamine and form-deprivation myopia. PNAS 86:2704–6
    [Google Scholar]
  138. Suhr Thykjær A, Lundberg K, Grauslund J 2017. Physical activity in relation to development and progression of myopia—a systematic review. Acta Ophthalmol 95:7651–59
    [Google Scholar]
  139. Tan NWH, Saw SM, Lam DSC, Cheng HM, Rajan U et al. 2000. Temporal variations in myopia progression in Singaporean children within an academic year. Optom. Vis. Sci. 77:9465–72
    [Google Scholar]
  140. Thorn F, Cruz AAV, Machado AJ, Carvalho RAC 2005. Refractive status of indigenous people in the northwestern Amazon region of Brazil. Optom. Vis. Sci. 82:4267–72
    [Google Scholar]
  141. Thorne HC, Jones KH, Peters SP, Archer SN, Dijk DJ 2009. Daily and seasonal variation in the spectral composition of light exposure in humans. Chronobiol. Int. 26:5854–66
    [Google Scholar]
  142. Tideman JWL, Polling JR, Voortman T, Jaddoe VWV, Uitterlinden AG et al. 2016. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur. J. Epidemiol. 31:5491–99
    [Google Scholar]
  143. Troilo D, Gottlieb MD, Wallman J 1987. Visual deprivation causes myopia in chicks with optic nerve section. Curr. Eye Res. 6:8993–99
    [Google Scholar]
  144. Tsai M-YY, Lin LL-KK, Lee V, Chen C-JJ, Shih Y-FF 2009. Estimation of heritability in myopic twin studies. Jpn. J. Ophthalmol. 53:6615–22
    [Google Scholar]
  145. Verhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA et al. 2013. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat. Genet. 45:3314–18
    [Google Scholar]
  146. Verkicharla PK, Ramamurthy D, Nguyen QD, Zhang X, Pu S-H et al. 2017. Development of the FitSight Fitness Tracker to increase time outdoors to prevent myopia. Transl. Vis. Sci. Technol. 6:320
    [Google Scholar]
  147. Vitale S, Sperduto RD, Ferris FL 2009. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch. Ophthalmol. 127:1632–39
    [Google Scholar]
  148. Walline JJ. 2016. Myopia control: a review. Eye Contact Lens 42:13–8
    [Google Scholar]
  149. Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD 2011. Interventions to slow progression of myopia in children. Cochrane Database Syst. Rev. 12:CD004916
    [Google Scholar]
  150. Wallman J, Winawer J. 2004. Homeostasis of eye growth and the question of myopia. Neuron 43:4447–68
    [Google Scholar]
  151. Wang D, Ding X, Liu B, Zhang J, He M 2011. Longitudinal changes of axial length and height are associated and concomitant in children. Investig. Ophthalmol. Vis. Sci. 52:117949–53
    [Google Scholar]
  152. Wang J, He X-G, Xu X 2018. The measurement of time spent outdoors in child myopia research: a systematic review. Int. J. Ophthalmol. 11:61045–52
    [Google Scholar]
  153. Wang M 2008. Irregular Astigmatism: Diagnosis and Treatment Thorofare, NJ: SLACK Inc.
    [Google Scholar]
  154. Weizhong L, Zhikuan Y, Wen L, Xiang C, Jian G 2008. A longitudinal study on the relationship between myopia development and near accommodation lag in myopic children. Ophthalmic Physiol. Opt. 28:157–61
    [Google Scholar]
  155. Wen G, Tarczy-Hornoch K, Mckean-Cowdin R, Cotter SA, Borchert M et al. 2013. Prevalence of myopia, hyperopia, and astigmatism in non-Hispanic white and Asian children: multi-ethnic pediatric eye disease study. Ophthalmology 120:102109–16
    [Google Scholar]
  156. Wildsoet CF. 1997. Active emmetropization—evidence for its existence and ramifications for clinical practice. Ophthalmic Physiol. Opt. 17:4279–90
    [Google Scholar]
  157. Wildsoet CF. 1998. Structural correlates of myopia. See Rosenfield & Gilmartin 1998 31–56
  158. Wildsoet CF. 2003. Neural pathways subserving negative lens-induced emmetropization in chicks—insights from selective lesions of the optic nerve and ciliary nerve. Curr. Eye Res. 27:6371–85
    [Google Scholar]
  159. Wildsoet CF, Pettigrew JD. 1988. Experimental myopia and anamalous eye growth patterns unaffected by optic nerve section in chickens: evidence for local control of eye growth. Clin. Vis. Sci. 3:299–107
    [Google Scholar]
  160. Williams C, Miller LL, Gazzard G, Saw SM 2008. A comparison of measures of reading and intelligence as risk factors for the development of myopia in a UK cohort of children. Br. J. Ophthalmol. 92:81117–21
    [Google Scholar]
  161. Williams KM, Hysi PG, Yonova-Doing E, Mahroo OA, Snieder H, Hammond CJ 2017. Phenotypic and genotypic correlation between myopia and intelligence. Sci. Rep. 7:45977
    [Google Scholar]
  162. Wojciechowski R, Hysi PG. 2013. Focusing in on the complex genetics of myopia. PLOS Genet 9:42–5
    [Google Scholar]
  163. Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN et al. 2018. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 125:81239–50
    [Google Scholar]
  164. Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK 2013. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120:51080–85
    [Google Scholar]
  165. Xiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H et al. 2017. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol 95:6551–66
    [Google Scholar]
  166. Young FA, Leary GA, Baldwin WR, West DC, Box RA et al. 1969. The transmission of refractive errors within Eskimo families. Optom. Vis. Sci. 46:9676–85
    [Google Scholar]
  167. Zhang J, Hur YM, Huang W, Ding X, Feng K, He M 2011. Shared genetic determinants of axial length and height in children: the Guangzhou twin eye study. Arch. Ophthalmol. 129:163–68
    [Google Scholar]
  168. Zhao J, Pan X, Sui R, Munoz SR, Sperduto RD, Ellwein LB 2000. Refractive error study in children: results from Shunyi District, China. Am. J. Ophthalmol. 129:4427–35
    [Google Scholar]
  169. Zheng H, Tse DY, Tang X, To C, Lam TC 2018. The interactions between bright light and competing defocus during emmetropization in chicks. Investig. Ophthalmol. Vis. Sci. 59:72932–43
    [Google Scholar]
  170. Zhou X, Pardue MT, Iuvone PM, Qu J 2017. Dopamine signaling and myopia development: What are the key challenges. ? Prog. Retin. Eye Res. 61:60–71
    [Google Scholar]
  171. Zylbermann R, Landau D, Berson D 1993. The influence of study habits on myopia in Jewish teenagers. J. Pediatr. Ophthalmol. Strabismus 30:5319–22
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-015027
Loading
/content/journals/10.1146/annurev-vision-091718-015027
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error