1932

Abstract

Selectivity for many basic properties of visual stimuli, such as orientation, is thought to be organized at the scale of cortical columns, making it difficult or impossible to measure directly with noninvasive human neuroscience measurement. However, computational analyses of neuroimaging data have shown that selectivity for orientation can be recovered by considering the pattern of response across a region of cortex. This suggests that computational analyses can reveal representation encoded at a finer spatial scale than is implied by the spatial resolution limits of measurement techniques. This potentially opens up the possibility to study a much wider range of neural phenomena that are otherwise inaccessible through noninvasive measurement. However, as we review in this article, a large body of evidence suggests an alternative hypothesis to this superresolution account: that orientation information is available at the spatial scale of cortical maps and thus easily measurable at the spatial resolution of standard techniques. In fact, a population model shows that this orientation information need not even come from single-unit selectivity for orientation tuning, but instead can result from population selectivity for spatial frequency. Thus, a categorical error of interpretation can result whereby orientation selectivity can be confused with spatial frequency selectivity. This is similarly problematic for the interpretation of results from numerous studies of more complex representations and cognitive functions that have built upon the computational techniques used to reveal stimulus orientation. We suggest in this review that these interpretational ambiguities can be avoided by treating computational analyses as models of the neural processes that give rise to measurement. Building upon the modeling tradition in vision science using considerations of whether population models meet a set of core criteria is important for creating the foundation for a cumulative and replicable approach to making valid inferences from human neuroscience measurements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093019-111124
2021-09-15
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-093019-111124.html?itemId=/content/journals/10.1146/annurev-vision-093019-111124&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DL, Piserchia V, Economides JR, Horton JC. 2015. Vascular supply of the cerebral cortex is specialized for cell layers but not columns. Cereb. Cortex 25:103673–81
    [Google Scholar]
  2. Adams DL, Sincich LC, Horton JC. 2007. Complete pattern of ocular dominance columns in human primary visual cortex. J. Neurosci. 27:3910391–403
    [Google Scholar]
  3. Adelson EH, Bergen JR. 1985. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. 2:2284–99
    [Google Scholar]
  4. Aghajari S, Vinke LN, Ling S 2020. Population spatial frequency tuning in human early visual cortex. J. Neurophysiol. 123:2773–85
    [Google Scholar]
  5. Albrecht DG, Geisler WS. 1991. Motion selectivity and the contrast-response function of simple cells in the visual cortex. Vis. Neurosci. 7:6531–46
    [Google Scholar]
  6. Alink A, Abdulrahman H, Henson RN. 2018. Forward models demonstrate that repetition suppression is best modelled by local neural scaling. Nat. Commun. 9:3854
    [Google Scholar]
  7. Alink A, Krugliak A, Walther A, Kriegeskorte N 2013. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli. Front. Psychol. 4:493
    [Google Scholar]
  8. Alink A, Walther A, Krugliak A, Kriegeskorte N. 2017. Local opposite orientation preferences in V1: fMRI sensitivity to fine-grained pattern information. Sci. Rep. 7:7128
    [Google Scholar]
  9. Avidan G, Harel M, Hendler T, Ben-Bashat D, Zohary E, Malach R 2002. Contrast sensitivity in human visual areas and its relationship to object recognition. J. Neurophysiol. 87:63102–16
    [Google Scholar]
  10. Bannert MM, Bartels A. 2018. Human V4 activity patterns predict behavioral performance in imagery of object color. J. Neurosci. 38:153657–68
    [Google Scholar]
  11. Barlow HB. 1953. Summation and inhibition in the frog's retina. J. Physiol. 119:169–88
    [Google Scholar]
  12. Beckett A, Peirce JW, Sanchez-Panchuelo R-M, Francis S, Schluppeck D 2012. Contribution of large scale biases in decoding of direction-of-motion from high-resolution fMRI data in human early visual cortex. NeuroImage 63:31623–32
    [Google Scholar]
  13. Bettencourt KC, Xu Y. 2016. Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nat. Neurosci. 19:1150–57
    [Google Scholar]
  14. Birman D, Gardner JL. 2018. A quantitative framework for motion visibility in human cortex. J. Neurophysiol. 120:41824–39
    [Google Scholar]
  15. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. 2013. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16:7889–97
    [Google Scholar]
  16. Bonds AB. 1989. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2:141–55
    [Google Scholar]
  17. Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J et al. 2020. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 582:781084–88
    [Google Scholar]
  18. Boynton GM. 2005. Imaging orientation selectivity: decoding conscious perception in V1. Nat. Neurosci. 8:5541–42
    [Google Scholar]
  19. Broderick W, Benson N, Simoncelli E, Winawer J. 2018. Mapping spatial frequency preferences in the human visual cortex. J. Vis. 18:10253
    [Google Scholar]
  20. Brouwer GJ, Heeger DJ. 2009. Decoding and reconstructing color from responses in human visual cortex. J. Neurosci. 29:4413992–93
    [Google Scholar]
  21. Brouwer GJ, Heeger DJ. 2011. Cross-orientation suppression in human visual cortex. J. Neurophysiol. 106:52108–19
    [Google Scholar]
  22. Byers A, Serences JT. 2014. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex. J. Neurophysiol. 112:51217–27
    [Google Scholar]
  23. Campbell FW, Cleland BG, Cooper GF, Enroth-Cugell C. 1968. The angular selectivity of visual cortical cells to moving gratings. J. Physiol. 198:1237–50
    [Google Scholar]
  24. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:151–62
    [Google Scholar]
  25. Carandini M, Heeger DJ, Movshon JA. 1997. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17:218621–44
    [Google Scholar]
  26. Carlson TA. 2014. Orientation decoding in human visual cortex: new insights from an unbiased perspective. J. Neurosci. 34:248373–83
    [Google Scholar]
  27. Carlson TA, Hogendoorn H, Fonteijn H, Verstraten FAJ. 2011. Spatial coding and invariance in object-selective cortex. Cortex 47:114–22
    [Google Scholar]
  28. Carlson TA, Wardle SG. 2015. Sensible decoding. NeuroImage 110:217–18
    [Google Scholar]
  29. Carrasco M. 2011. Visual attention: the past 25 years. Vis. Res. 51:131484–525
    [Google Scholar]
  30. Cavanaugh JR, Bair W, Movshon JA. 2002a. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol. 88:52530–46
    [Google Scholar]
  31. Cavanaugh JR, Bair W, Movshon JA. 2002b. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88:52547–56
    [Google Scholar]
  32. Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD. 2010. Separate channels for processing form, texture, and color: evidence from fMRI adaptation and visual object agnosia. Cereb. Cortex 20:102319–32
    [Google Scholar]
  33. Chao LL, Haxby JV, Martin A. 1999. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nat. Neurosci. 2:913–19
    [Google Scholar]
  34. Chen N, Bi T, Zhou T, Li S, Liu Z, Fang F. 2015. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning. NeuroImage 115:17–29
    [Google Scholar]
  35. Cheng K, Waggoner RA, Tanaka K. 2001. Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:2359–74
    [Google Scholar]
  36. Chong E, Familiar AM, Shim WM 2016. Reconstructing representations of dynamic visual objects in early visual cortex. PNAS 113:51453–58
    [Google Scholar]
  37. Chong TT-J, Cunnington R, Williams MA, Kanwisher N, Mattingley JB. 2008. fMRI adaptation reveals mirror neurons in human inferior parietal cortex. Curr. Biol. 18:201576–80
    [Google Scholar]
  38. Clifford CWG, Mannion DJ. 2014. Orientation decoding: sense in spirals?. NeuroImage 110:219–22
    [Google Scholar]
  39. Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz G et al. 2000. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:2291–307
    [Google Scholar]
  40. Costagli M, Ueno K, Sun P, Gardner JL, Wan X et al. 2014. Functional signalers of changes in visual stimuli: cortical responses to increments and decrements in motion coherence. Cereb. Cortex 24:1110–18
    [Google Scholar]
  41. Cottaris NP, Jiang H, Ding X, Wandell BA, Brainard DH. 2019. A computational-observer model of spatial contrast sensitivity: effects of wave-front-based optics, cone-mosaic structure, and inference engine. J. Vis. 19:48
    [Google Scholar]
  42. Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB et al. 1991. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312:4610–24
    [Google Scholar]
  43. Das A, Gilbert CD. 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387:6633594–98
    [Google Scholar]
  44. de Beeck HPO. 2010. Against hyperacuity in brain reading: Spatial smoothing does not hurt multivariate fMRI analyses?. NeuroImage 49:31943–48
    [Google Scholar]
  45. de No RL, Fulton JF 1938. Architectonics and structure of the cerebral cortex. Physiology of the Nervous System JF Fulton 291–330 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  46. Dinstein I, Hasson U, Rubin N, Heeger DJ. 2007. Brain areas selective for both observed and executed movements. J. Neurophysiol. 98:31415–27
    [Google Scholar]
  47. Dobbins IG, Schnyer DM, Verfaellie M, Schacter DL. 2004. Cortical activity reductions during repetition priming can result from rapid response learning. Nature 428:6980316–19
    [Google Scholar]
  48. Downing PE, Jiang Y, Shuman M, Kanwisher N. 2001. A cortical area selective for visual processing of the human body. Science 293:55392470–73
    [Google Scholar]
  49. Dumoulin SO, Fracasso A, van der Zwaag W, Siero JCW, Petridou N. 2018. Ultra-high field MRI: advancing systems neuroscience towards mesoscopic human brain function. NeuroImage 168:345–57
    [Google Scholar]
  50. Dumoulin SO, Wandell BA. 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:2647–60
    [Google Scholar]
  51. Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt A. 2009. Deciphering cortical number coding from human brain activity patterns. Curr. Biol. 19:191608–15
    [Google Scholar]
  52. Engel SA, Glover GH, Wandell BA. 1997. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7:2181–92
    [Google Scholar]
  53. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH et al. 1994. fMRI of human visual cortex. Nature 369:6481525
    [Google Scholar]
  54. Epstein R, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:6676598–601
    [Google Scholar]
  55. Ester EF, Anderson DE, Serences JT, Awh E. 2013. A neural measure of precision in visual working memory. J. Cogn. Neurosci. 25:5754–61
    [Google Scholar]
  56. Ester EF, Sprague TC, Serences JT. 2015a. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87:4893–905
    [Google Scholar]
  57. Ester EF, Sprague TC, Serences JT. 2015b. Visual working memory representations are distributed throughout human cortex. J. Vis. 15:121115
    [Google Scholar]
  58. Ester EF, Sutterer DW, Serences JT, Awh E. 2016. Feature-selective attentional modulations in human frontoparietal cortex. J. Neurosci. 36:318188–99
    [Google Scholar]
  59. Fahey PG, Muhammad T, Smith C, Froudarakis E, Cobos E et al. 2019. A global map of orientation tuning in mouse visual cortex. bioRxiv 745323. https://doi.org/10.1101/745323
    [Crossref]
  60. Fang F, Murray SO, Kersten D, He S. 2005. Orientation-tuned fMRI adaptation in human visual cortex. J. Neurophysiol. 94:64188–95
    [Google Scholar]
  61. Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. 2019. Layer-dependent activity in human prefrontal cortex during working memory. Nat. Neurosci. 22:101687–95
    [Google Scholar]
  62. Freeman J, Brouwer GJ, Heeger DJ, Merriam EP. 2011. Orientation decoding depends on maps, not columns. J. Neurosci. 31:134792–804
    [Google Scholar]
  63. Freeman J, Heeger DJ, Merriam EP. 2013. Coarse-scale biases for spirals and orientation in human visual cortex. J. Neurosci. 33:5019695–703
    [Google Scholar]
  64. Furmanski CS, Engel SA. 2000. An oblique effect in human primary visual cortex. Nat. Neurosci. 3:6535–36
    [Google Scholar]
  65. Garcia JO, Srinivasan R, Serences JT. 2013. Near-real-time feature-selective modulations in human cortex. Curr. Biol. 23:6515–22
    [Google Scholar]
  66. Gardner JL. 2010. Is cortical vasculature functionally organized?. NeuroImage 49:31953–56
    [Google Scholar]
  67. Gardner JL, Anzai A, Ohzawa I, Freeman RD. 1999. Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex. Vis. Neurosci. 16:61115–21
    [Google Scholar]
  68. Gardner JL, Liu T. 2019. Inverted encoding models reconstruct an arbitrary model response, not the stimulus. eNeuro 6:2ENEURO.0363-18.2019
    [Google Scholar]
  69. Gardner JL, Merriam EP, Movshon JA, Heeger DJ. 2008. Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J. Neurosci. 28:153988–99
    [Google Scholar]
  70. Gardner JL, Sun P, Waggoner RA, Ueno K, Tanaka K, Cheng K. 2005. Contrast adaptation and representation in human early visual cortex. Neuron 47:4607–20
    [Google Scholar]
  71. Girshick AR, Landy MS, Simoncelli EP. 2011. Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nat. Neurosci. 14:7926–32
    [Google Scholar]
  72. Gonzalez-Castillo J, Saad ZS, Handwerker DA, Inati SJ, Brenowitz N, Bandettini PA 2012. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. PNAS 109:145487–92
    [Google Scholar]
  73. Grill-Spector K, Henson R, Martin A. 2006. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10:114–23
    [Google Scholar]
  74. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. 1999. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:1187–203
    [Google Scholar]
  75. Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:8536–48
    [Google Scholar]
  76. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:6095361–64
    [Google Scholar]
  77. Hallum LE, Landy MS, Heeger DJ. 2011. Human primary visual cortex (V1) is selective for second-order spatial frequency. J. Neurophysiol. 105:52121–31
    [Google Scholar]
  78. Hammett ST, Smith AT, Wall MB, Larsson J. 2013. Implicit representations of luminance and the temporal structure of moving stimuli in multiple regions of human visual cortex revealed by multivariate pattern classification analysis. J. Neurophysiol. 110:3688–99
    [Google Scholar]
  79. Hara Y, Pestilli F, Gardner JL. 2014. Differing effects of attention in single-units and populations are well predicted by heterogeneous tuning and the normalization model of attention. Front. Comput. Neurosci. 8:12
    [Google Scholar]
  80. Harrison RV, Harel N, Panesar J, Mount RJ. 2002. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex 12:3225–33
    [Google Scholar]
  81. Harrison SA, Tong F. 2009. Decoding reveals the contents of visual working memory in early visual areas. Nature 458:7238632–35
    [Google Scholar]
  82. Harvey BM, Klein BP, Petridou N, Dumoulin SO. 2013. Topographic representation of numerosity in the human parietal cortex. Science 341:61501123–26
    [Google Scholar]
  83. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:55392425–30
    [Google Scholar]
  84. Haynes J-D, Rees G 2005. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8:5686–91
    [Google Scholar]
  85. Haynes J-D, Rees G 2006. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7:7523–34
    [Google Scholar]
  86. Heeger DJ. 1992. Half-squaring in responses of cat striate cells. Vis. Neurosci. 9:5427–43
    [Google Scholar]
  87. Heeger DJ. 1993. Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J. Neurophysiol. 70:51885–98
    [Google Scholar]
  88. Heeger DJ, Simoncelli EP, Movshon JA. 1996. Computational models of cortical visual processing. PNAS 93:2623–27
    [Google Scholar]
  89. Henson RN. 2016. Repetition suppression to faces in the fusiform face area: a personal and dynamic journey. Cortex 80:174–84
    [Google Scholar]
  90. Hermes D, Petridou N, Kay KN, Winawer J 2019. An image-computable model for the stimulus selectivity of gamma oscillations. eLife 8:e47035
    [Google Scholar]
  91. Higgins I, Chang L, Langston V, Hassabis D, Summerfield C et al. 2020. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal neurons. arXiv:2006.14304 [q-bio.NC]
  92. Ho T, Brown S, van Maanen L, Forstmann BU, Wagenmakers E-J, Serences JT. 2012. The optimality of sensory processing during the speed-accuracy tradeoff. J. Neurosci. 32:237992–8003
    [Google Scholar]
  93. Horiguchi H, Nakadomari S, Misaki M, Wandell BA. 2009. Two temporal channels in human V1 identified using fMRI. NeuroImage 47:1273–80
    [Google Scholar]
  94. Horiguchi H, Winawer J, Dougherty RF, Wandell BA 2013. Human trichromacy revisited. PNAS 110:3E260–69
    [Google Scholar]
  95. Horton JC, Adams DL. 2005. The cortical column: a structure without a function. Phil. Trans. R. Soc. B 360:1456837–62
    [Google Scholar]
  96. Horton JC, Hedley-Whyte ET. 1984. Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Phil. Trans. R. Soc. Lond. B 304:1119255–72
    [Google Scholar]
  97. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  98. Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A et al. 2017. High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. Neuron 96:61253–63.e7
    [Google Scholar]
  99. Ito M, Tamura H, Fujita I, Tanaka K. 1995. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol. 73:1218–26
    [Google Scholar]
  100. Jehee JFM, Brady DK, Tong F. 2011. Attention improves encoding of task-relevant features in the human visual cortex. J. Neurosci. 31:228210–19
    [Google Scholar]
  101. Jones JP, Palmer LA. 1987. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58:61187–211
    [Google Scholar]
  102. Kamitani Y, Sawahata Y. 2010. Spatial smoothing hurts localization but not information: pitfalls for brain mappers. NeuroImage 49:31949–52
    [Google Scholar]
  103. Kamitani Y, Tong F. 2005. Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8:5679–85
    [Google Scholar]
  104. Kamitani Y, Tong F. 2006. Decoding seen and attended motion directions from activity in the human visual cortex. Curr. Biol. 16:111096–102
    [Google Scholar]
  105. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:114302–11
    [Google Scholar]
  106. Kastner S, Pinsk MA. 2004. Visual attention as a multilevel selection process. Cogn. Affect. Behav. Neurosci. 4:4483–500
    [Google Scholar]
  107. Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K 2019. A critical assessment of data quality and venous effects in sub-millimeter fMRI. NeuroImage 189:847–69
    [Google Scholar]
  108. Kay KN, Naselaris T, Prenger RJ, Gallant JL. 2008. Identifying natural images from human brain activity. Nature 452:7185352–55
    [Google Scholar]
  109. Keliris GA, Li Q, Papanikolaou A, Logothetis NK, Smirnakis SM 2019. Estimating average single-neuron visual receptive field sizes by fMRI. PNAS 116:136425–34
    [Google Scholar]
  110. Kim S-G, Fukuda M. 2008. Lessons from fMRI about mapping cortical columns. Neuroscience 14:3287–99
    [Google Scholar]
  111. Kriegeskorte N, Cusack R, Bandettini P. 2010. How does an fMRI voxel sample the neuronal activity pattern: compact-kernel or complex spatiotemporal filter?. NeuroImage 49:31965–76
    [Google Scholar]
  112. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J et al. 2008. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:61126–41
    [Google Scholar]
  113. Krishnapuram B, Shah M, Smola A, Aggarwal C, Shen D et al. 2016. Why should I trust you? Explaining the predictions of any classifier. KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining1135–44 New York: ACM
    [Google Scholar]
  114. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:137–68
    [Google Scholar]
  115. Kupers ER, Benson NC, Winawer J. 2020. A visual encoding model links magnetoencephalography signals to neural synchrony in human cortex. bioRxiv 2020.04.19.049197. https://doi.org/10.1101/2020.04.19.049197
    [Crossref]
  116. Larsson J, Harrison C, Jackson J, Oh S-M, Zeringyte V. 2017. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data. J. Neurophysiol. 117:2818–35
    [Google Scholar]
  117. Larsson J, Harrison SJ. 2015. Spatial specificity and inheritance of adaptation in human visual cortex. J. Neurophysiol. 114:21211–26
    [Google Scholar]
  118. Larsson J, Landy MS, Heeger DJ. 2006. Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J. Neurophysiol. 95:2862–81
    [Google Scholar]
  119. Larsson J, Smith AT. 2012. fMRI repetition suppression: neuronal adaptation or stimulus expectation?. Cereb. Cortex 22:3567–76
    [Google Scholar]
  120. Larsson J, Solomon SG, Kohn A. 2016. fMRI adaptation revisited. Cortex 80:154–60
    [Google Scholar]
  121. Lawrence SJD, Formisano E, Muckli L, de Lange FP. 2019. Laminar fMRI: applications for cognitive neuroscience. NeuroImage 197:785–91
    [Google Scholar]
  122. Lerma-Usabiaga G, Benson N, Winawer J, Wandell B 2020a. Computational validity of neuroimaging software: the case of population receptive fields. J. Vis. 20:11341
    [Google Scholar]
  123. Lerma-Usabiaga G, Benson N, Winawer J, Wandell BA. 2020b. A validation framework for neuroimaging software: the case of population receptive fields. PLOS Comput. Biol. 16:6e1007924
    [Google Scholar]
  124. Levick WR, Thibos LN. 1980. Orientation bias of cat retinal ganglion cells. Nature 286:5771389–90
    [Google Scholar]
  125. Levick WR, Thibos LN. 1982. Analysis of orientation bias in cat retina. J. Physiol. 329:1243–61
    [Google Scholar]
  126. Levy I, Hasson U, Avidan G, Hendler T, Malach R. 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:5533–39
    [Google Scholar]
  127. Ling S, Pratte MS, Tong F. 2015. Attention alters orientation processing in the human lateral geniculate nucleus. Nat. Neurosci. 18:4496–98
    [Google Scholar]
  128. Lingnau A, Ashida H, Wall MB, Smith AT. 2009. Speed encoding in human visual cortex revealed by fMRI adaptation. J. Vis. 9:133
    [Google Scholar]
  129. Liu T, Cable D, Gardner JL. 2018. Inverted encoding models of human population response conflate noise and neural tuning width. J. Neurosci. 38:2398–408
    [Google Scholar]
  130. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:6843150–57
    [Google Scholar]
  131. Lorenc ES, Sreenivasan KK, Nee DE, Vandenbroucke ARE, D'Esposito M 2018. Flexible coding of visual working memory representations during distraction. J. Neurosci. 38:235267–76
    [Google Scholar]
  132. Lundberg S, Lee S-I. 2017. A unified approach to interpreting model predictions. arXiv:1705.07874 [cs.AI]
  133. Maloney RT. 2015. The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?. J. Neurophysiol. 113:11–3
    [Google Scholar]
  134. Mannion DJ, Clifford CWG. 2011. Cortical and behavioral sensitivity to eccentric polar form. J. Vis. 11:617
    [Google Scholar]
  135. Mannion DJ, McDonald JS, Clifford CWG. 2009. Discrimination of the local orientation structure of spiral Glass patterns early in human visual cortex. NeuroImage 46:2511–15
    [Google Scholar]
  136. Mante V, Carandini M. 2005. Mapping of stimulus energy in primary visual cortex. J. Neurophysiol. 94:1788–98
    [Google Scholar]
  137. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:747478–84
    [Google Scholar]
  138. Markuerkiaga I, Barth M, Norris DG. 2016. A cortical vascular model for examining the specificity of the laminar BOLD signal. NeuroImage 132:491–98
    [Google Scholar]
  139. Martino FD, Yacoub E, Kemper V, Moerel M, Uludag K et al. 2018. The impact of ultra-high field MRI on cognitive and computational neuroimaging. NeuroImage 168:366–82
    [Google Scholar]
  140. Molnar C. 2020. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable N.p: Lulu.com
  141. Mountcastle VB. 1957. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20:4408–34
    [Google Scholar]
  142. Movshon JA, Thompson ID, Tolhurst DJ. 1978. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283:53–77
    [Google Scholar]
  143. Nasr S, Tootell RBH. 2012. A cardinal orientation bias in scene-selective visual cortex. J. Neurosci. 32:4314921–26
    [Google Scholar]
  144. Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL 2011. Reconstructing visual experiences from brain activity evoked by natural movies. Curr. Biol. 21:191641–46
    [Google Scholar]
  145. Ogawa S, Lee TM, Kay AR, Tank DW 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87249868–72
  146. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:7026597–603
    [Google Scholar]
  147. Ohki K, Chung S, Kara P, Hübener M, Bonhoeffer T, Reid RC. 2006. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442:7105925–28
    [Google Scholar]
  148. Owen AB, Prieur C. 2017. On Shapley value for measuring importance of dependent inputs. SIAM/ASA J. Uncertain. Quantif. 5:1986–1002
    [Google Scholar]
  149. Parkes LM, Schwarzbach JV, Bouts AA, Deckers RHR, Pullens P et al. 2005. Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla. Magn. Reson. Med. 54:61465–72
    [Google Scholar]
  150. Peelen MV, Wiggett AJ, Downing PE. 2006. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron 49:6815–22
    [Google Scholar]
  151. Pitt MA, Myung IJ 2002. When a good fit can be bad. Trends Cogn. Sci. 6:10421–25
    [Google Scholar]
  152. Pratte MS, Sy JL, Swisher JD, Tong F. 2015. Radial bias is not necessary for orientation decoding. NeuroImage 127:23–33
    [Google Scholar]
  153. Ramírez FM, Merriam EP. 2020. Forward models of repetition suppression depend critically on assumptions of noise and granularity. Nat. Commun. 11:4732
    [Google Scholar]
  154. Reid RC, Soodak RE, Shapley RM 1987. Linear mechanisms of directional selectivity in simple cells of cat striate cortex. PNAS 84:238740–44
    [Google Scholar]
  155. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:7451585–90
    [Google Scholar]
  156. Ringach DL. 2002. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88:1455–63
    [Google Scholar]
  157. Ringach DL. 2007. On the origin of the functional architecture of the cortex. PLOS ONE 2:2e251
    [Google Scholar]
  158. Rodieck RW. 1965. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 5:12583–601
    [Google Scholar]
  159. Rodieck RW, Binmoeller KF, Dineen J. 1985. Parasol and midget ganglion cells of the human retina. J. Comp. Neurol. 233:1115–32
    [Google Scholar]
  160. Roth ZN, Heeger DJ, Merriam EP 2018. Stimulus vignetting and orientation selectivity in human visual cortex. eLife 7:e37241
    [Google Scholar]
  161. Rust NC, DiCarlo JJ. 2010. Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. J. Neurosci. 30:3912978–95
    [Google Scholar]
  162. Sapountzis P, Schluppeck D, Bowtell R, Peirce JW. 2010. A comparison of fMRI adaptation and multivariate pattern classification analysis in visual cortex. NeuroImage 49:1632–40
    [Google Scholar]
  163. Saproo S, Serences JT. 2014. Attention improves transfer of motion information between V1 and MT. J. Neurosci. 34:103586–96
    [Google Scholar]
  164. Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RBH. 2006. The radial bias: a different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 51:5661–70
    [Google Scholar]
  165. Schacter DL, Wig GS, Stevens WD. 2007. Reductions in cortical activity during priming. Curr. Opin. Neurobiol. 17:2171–76
    [Google Scholar]
  166. Schall JD, Vitek DJ, Leventhal AG. 1986. Retinal constraints on orientation specificity in cat visual cortex. J. Neurosci. 6:3823–36
    [Google Scholar]
  167. Schellekens W, van Wezel RJA, Petridou N, Ramsey NF, Raemaekers M. 2016. Predictive coding for motion stimuli in human early visual cortex. Brain Struct. Funct. 221:2879–90
    [Google Scholar]
  168. Schwarzlose RF, Swisher JD, Dang S, Kanwisher N. 2008. The distribution of category and location information across object-selective regions in human visual cortex. PNAS 105:114447–52
    [Google Scholar]
  169. Scolari M, Byers A, Serences JT. 2012. Optimal deployment of attentional gain during fine discriminations. J. Neurosci. 32:227723–33
    [Google Scholar]
  170. Scolari M, Serences JT. 2009. Adaptive allocation of attentional gain. J. Neurosci. 29:3811933–42
    [Google Scholar]
  171. Shou T, Ruan D, Zhou Y. 1986. The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina. Exp. Brain Res. 64:1233–36
    [Google Scholar]
  172. Silson EH, Reynolds RC, Kravitz DJ, Baker CI. 2018. Differential sampling of visual space in ventral and dorsal early visual cortex. J. Neurosci. 38:92294–303
    [Google Scholar]
  173. Simoncelli EP, Freeman WT. 1995. The steerable pyramid: a flexible architecture for multi-scale derivative computation. Proceedings of the 2nd IEEE International Conference on Image Processing III444–47 Piscataway, NJ: IEEE
    [Google Scholar]
  174. Smith EL, Chino YM, Ridder WH, Kitagawa K, Langston A 1990. Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys. Vis. Neurosci. 5:6525–45
    [Google Scholar]
  175. Sprague TC, Adam KCS, Foster JJ, Rahmati M, Sutterer DW, Vo VA. 2018. Inverted encoding models assay population-level stimulus representations, not single-unit neural tuning. eNeuro 5:3ENEURO.0098-18.2018
    [Google Scholar]
  176. Sterzer P, Haynes J-D, Rees G 2006. Primary visual cortex activation on the path of apparent motion is mediated by feedback from hMT+/V5. NeuroImage 32:31308–16
    [Google Scholar]
  177. Stigliani A, Jeska B, Grill-Spector K 2017. Encoding model of temporal processing in human visual cortex. PNAS 114:51E11047–56
    [Google Scholar]
  178. Summerfield C, Trittschuh EH, Monti JM, Mesulam M-M, Egner T. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. 11:91004–6
    [Google Scholar]
  179. Sun P, Gardner JL, Costagli M, Ueno K, Waggoner RA et al. 2013. Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm. Cereb. Cortex 23:71618–29
    [Google Scholar]
  180. Sun P, Ueno K, Waggoner RA, Gardner JL, Tanaka K, Cheng K. 2007. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI. Nat. Neurosci. 10:111404–6
    [Google Scholar]
  181. Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon C-H et al. 2010. Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. J. Neurosci. 30:1325–30
    [Google Scholar]
  182. Tanaka H, Ohzawa I. 2009. Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. J. Neurophysiol. 101:31444–62
    [Google Scholar]
  183. Tong F, Pratte MS. 2012. Decoding patterns of human brain activity. Annu. Rev. Psychol. 63:483–509
    [Google Scholar]
  184. Tootell R, Reppas J, Kwong K, Malach R, Born R et al. 1995. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15:43215–30
    [Google Scholar]
  185. Ugurbil K. 2016. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Phil. Trans. R. Soc. B 371:170520150361
    [Google Scholar]
  186. van Bergen RS, Ma WJ, Pratte MS, Jehee JFM. 2015. Sensory uncertainty decoded from visual cortex predicts behavior. Nat. Neurosci. 18:121728–30
    [Google Scholar]
  187. Vanni S, Henriksson L, Viikari M, James AC. 2006. Retinotopic distribution of chromatic responses in human primary visual cortex. Eur. J. Neurosci. 24:61821–31
    [Google Scholar]
  188. Vintch B, Gardner JL. 2014. Cortical correlates of human motion perception biases. J. Neurosci. 34:72592–604
    [Google Scholar]
  189. Vizioli L, Martino FD, Petro LS, Kersten D, Ugurbil K et al. 2020. Multivoxel pattern of blood oxygen level dependent activity can be sensitive to stimulus specific fine scale responses. Sci. Rep. 10:7565
    [Google Scholar]
  190. Walker GA, Ohzawa I, Freeman RD. 1999. Asymmetric suppression outside the classical receptive field of the visual cortex. J. Neurosci. 19:2310536–53
    [Google Scholar]
  191. Wandell BA, Winawer J. 2011. Imaging retinotopic maps in the human brain. Vis. Res. 51:7718–37
    [Google Scholar]
  192. Wang HX, Merriam EP, Freeman J, Heeger DJ. 2014. Motion direction biases and decoding in human visual cortex. J. Neurosci. 34:3712601–15
    [Google Scholar]
  193. Wardle SG, Ritchie JB, Seymour K, Carlson TA. 2017. Edge-related activity is not necessary to explain orientation decoding in human visual cortex. J. Neurosci. 37:51187–96
    [Google Scholar]
  194. Warren SG, Yacoub E, Ghose GM. 2014. Featural and temporal attention selectively enhance task-appropriate representations in human primary visual cortex. Nat. Commun. 5:5643
    [Google Scholar]
  195. Watkins DW, Berkley MA. 1974. The orientation selectivity of single neurons in cat striate cortex. Exp. Brain Res. 19:4433–46
    [Google Scholar]
  196. Watson AB, Ahumada AJ. 1985. Model of human visual-motion sensing. J. Opt. Soc. Am. 2:2322–41
    [Google Scholar]
  197. Weiner KS, Sayres R, Vinberg J, Grill-Spector K. 2010. fMRI-adaptation and category selectivity in human ventral temporal cortex: regional differences across time scales. J. Neurophysiol. 103:63349–65
    [Google Scholar]
  198. Whitney D, Westwood DA, Goodale MA. 2003. The influence of visual motion on fast reaching movements to a stationary object. Nature 423:6942869–73
    [Google Scholar]
  199. Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA. 2010. Mapping hV4 and ventral occipital cortex: the venous eclipse. J. Vis. 10:51
    [Google Scholar]
  200. Winston JS, Henson RNA, Fine-Goulden MR, Dolan RJ 2004. fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. J. Neurophysiol. 92:31830–39
    [Google Scholar]
  201. Yacoub E, Harel N, Ugurbil K. 2008. High-field fMRI unveils orientation columns in humans. PNAS 105:3010607–12
    [Google Scholar]
  202. Yacoub E, Shmuel A, Logothetis N, Ugurbil K. 2007. Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. NeuroImage 37:41161–77
    [Google Scholar]
  203. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:238619–24
    [Google Scholar]
  204. Yu Q, Shim WM. 2017. Occipital, parietal, and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory. NeuroImage 157:97–107
    [Google Scholar]
  205. Yu Y, Huber L, Yang J, Jangraw DC, Handwerker DA et al. 2019. Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Sci. Adv. 5:5eaav9053
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093019-111124
Loading
/content/journals/10.1146/annurev-vision-093019-111124
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error