1932

Abstract

Deep learning models currently achieve human levels of performance on real-world face recognition tasks. We review scientific progress in understanding human face processing using computational approaches based on deep learning. This review is organized around three fundamental advances. First, deep networks trained for face identification generate a representation that retains structured information about the face (e.g., identity, demographics, appearance, social traits, expression) and the input image (e.g., viewpoint, illumination). This forces us to rethink the universe of possible solutions to the problem of inverse optics in vision. Second, deep learning models indicate that high-level visual representations of faces cannot be understood in terms of interpretable features. This has implications for understanding neural tuning and population coding in the high-level visual cortex. Third, learning in deep networks is a multistep process that forces theoretical consideration of diverse categories of learning that can overlap, accumulate over time, and interact. Diverse learning types are needed to model the development of human face processing skills, cross-race effects, and familiarity with individual faces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093019-111701
2021-09-15
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-093019-111701.html?itemId=/content/journals/10.1146/annurev-vision-093019-111701&mimeType=html&fmt=ahah

Literature Cited

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A et al. 2016. Tensorflow: a system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)265–83 Berkeley, CA: USENIX
    [Google Scholar]
  2. Abudarham N, Shkiller L, Yovel G. 2019. Critical features for face recognition. Cognition 182:73–83
    [Google Scholar]
  3. Abudarham N, Yovel G. 2020. Face recognition depends on specialized mechanisms tuned to view-invariant facial features: insights from deep neural networks optimized for face or object recognition. bioRxiv 2020.01.01.890277. https://doi.org/10.1101/2020.01.01.890277
    [Crossref]
  4. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE et al. 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513:5532–41
    [Google Scholar]
  5. Barlow HB. 1972. Single units and sensation: a neuron doctrine for perceptual psychology?. Perception 1:4371–94
    [Google Scholar]
  6. Bashivan P, Kar K, DiCarlo JJ. 2019. Neural population control via deep image synthesis. Science 364:6439eaav9436
    [Google Scholar]
  7. Best-Rowden L, Jain AK. 2018. Learning face image quality from human assessments. IEEE Trans. Inform. Forensics Secur. 13:123064–77
    [Google Scholar]
  8. Blanz V, Vetter T. 1999. A morphable model for the synthesis of 3D faces. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques187–94 New York: ACM
    [Google Scholar]
  9. Blauch NM, Behrmann M, Plaut DC. 2020a. Computational insights into human perceptual expertise for familiar and unfamiliar face recognition. Cognition 208:104341
    [Google Scholar]
  10. Blauch NM, Behrmann M, Plaut DC. 2020b. Deep learning of shared perceptual representations for familiar and unfamiliar faces: reply to commentaries. Cognition 208:104484
    [Google Scholar]
  11. Box GE. 1976. Science and statistics. J. Am. Stat. Assoc. 71:356791–99
    [Google Scholar]
  12. Box GEP 1979. Robustness in the strategy of scientific model building. Robustness in Statistics RL Launer, GN Wilkinson 201–36 Cambridge, MA: Academic Press
    [Google Scholar]
  13. Bruce V, Young A. 1986. Understanding face recognition. Br. J. Psychol. 77:3305–27
    [Google Scholar]
  14. Burton AM, Bruce V, Hancock PJ. 1999. From pixels to people: a model of familiar face recognition. Cogn. Sci. 23:11–31
    [Google Scholar]
  15. Cavazos JG, Noyes E, O'Toole AJ. 2019. Learning context and the other-race effect: strategies for improving face recognition. Vis. Res. 157:169–83
    [Google Scholar]
  16. Cavazos JG, Phillips PJ, Castillo CD, O'Toole AJ. 2020. Accuracy comparison across face recognition algorithms: Where are we on measuring race bias?. IEEE Trans. Biom. Behav. Identity Sci. 3:1101–11
    [Google Scholar]
  17. Chang L, Tsao DY. 2017. The code for facial identity in the primate brain. Cell 169:61013–28
    [Google Scholar]
  18. Chen JC, Patel VM, Chellappa R. 2016. Unconstrained face verification using deep CNN features. Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV)1–9 Piscataway, NJ: IEEE
    [Google Scholar]
  19. Cichy RM, Kaiser D. 2019. Deep neural networks as scientific models. Trends Cogn. Sci. 23:4305–17
    [Google Scholar]
  20. Collins E, Behrmann M. 2020. Exemplar learning reveals the representational origins of expert category perception. PNAS 117:2011167–77
    [Google Scholar]
  21. Colón YI, Castillo CD, O'Toole AJ. 2021. Facial expression is retained in deep networks trained for face identification. J. Vis. 21:44
    [Google Scholar]
  22. Cootes TF, Taylor CJ, Cooper DH, Graham J. 1995. Active shape models—their training and application. Comput. Vis. Image Underst. 61:138–59
    [Google Scholar]
  23. Crosswhite N, Byrne J, Stauffer C, Parkhi O, Cao Q, Zisserman A. 2018. Template adaptation for face verification and identification. Image Vis. Comput. 79:35–48
    [Google Scholar]
  24. Deng J, Guo J, Xue N, Zafeiriou S. 2019. Arcface: additive angular margin loss for deep face recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition4690–99 Piscataway, NJ: IEEE
    [Google Scholar]
  25. Dhar P, Bansal A, Castillo CD, Gleason J, Phillips P, Chellappa R. 2020. How are attributes expressed in face DCNNs?. Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)61–68 Piscataway, NJ: IEEE
    [Google Scholar]
  26. DiCarlo JJ, Cox DD. 2007. Untangling invariant object recognition. Trends Cogn. Sci. 11:8333–41
    [Google Scholar]
  27. Dobs K, Kell AJ, Martinez J, Cohen M, Kanwisher N. 2020. Using task-optimized neural networks to understand why brains have specialized processing for faces. J. Vis. 20:11660
    [Google Scholar]
  28. Dowsett A, Sandford A, Burton AM. 2016. Face learning with multiple images leads to fast acquisition of familiarity for specific individuals. Q. J. Exp. Psychol. 69:11–10
    [Google Scholar]
  29. El Khiyari H, Wechsler H. 2016. Face verification subject to varying (age, ethnicity, and gender) demographics using deep learning. J. Biom. Biostat. 7:323
    [Google Scholar]
  30. Fausey CM, Jayaraman S, Smith LB. 2016. From faces to hands: changing visual input in the first two years. Cognition 152:101–7
    [Google Scholar]
  31. Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:6005845–51
    [Google Scholar]
  32. Freiwald WA, Tsao DY, Livingstone MS. 2009. A face feature space in the macaque temporal lobe. Nat. Neurosci. 12:91187–96
    [Google Scholar]
  33. Fukushima K. 1988. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1:2119–30
    [Google Scholar]
  34. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. 2014. Generative adversarial nets. NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems2672–80 New York: ACM
    [Google Scholar]
  35. Goodman CS, Shatz CJ. 1993. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72:77–98
    [Google Scholar]
  36. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. 1999. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:1187–203
    [Google Scholar]
  37. Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:8536–48
    [Google Scholar]
  38. Grill-Spector K, Weiner KS, Gomez J, Stigliani A, Natu VS. 2018. The functional neuroanatomy of face perception: from brain measurements to deep neural networks. Interface Focus 8:420180013
    [Google Scholar]
  39. Gross CG. 2002. Genealogy of the “grandmother cell. Neuroscientist 8:5512–18
    [Google Scholar]
  40. Grother P, Ngan M, Hanaoka K 2019. Face recognition vendor test (FRVT) part 3: demographic effects Rep. Natl. Inst. Stand. Technol., US Dept. Commerce Gaithersburg, MD:
  41. Hancock PJ, Bruce V, Burton AM. 2000. Recognition of unfamiliar faces. Trends Cogn. Sci. 4:9330–37
    [Google Scholar]
  42. Hasson U, Nastase SA, Goldstein A. 2020. Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron 105:3416–34
    [Google Scholar]
  43. Hayward WG, Favelle SK, Oxner M, Chu MH, Lam SM. 2017. The other-race effect in face learning: using naturalistic images to investigate face ethnicity effects in a learning paradigm. Q. J. Exp. Psychol. 70:5890–96
    [Google Scholar]
  44. Hesse JK, Tsao DY. 2020. The macaque face patch system: a turtle's underbelly for the brain. Nat. Rev. Neurosci. 21:12695–716
    [Google Scholar]
  45. Hill MQ, Parde CJ, Castillo CD, Colon YI, Ranjan R et al. 2019. Deep convolutional neural networks in the face of caricature. Nat. Mach. Intel. 1:11522–29
    [Google Scholar]
  46. Hong H, Yamins DL, Majaj NJ, DiCarlo JJ. 2016. Explicit information for category-orthogonal object properties increases along the ventral stream. Nat. Neurosci. 19:4613–22
    [Google Scholar]
  47. Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Netw 2:5359–66
    [Google Scholar]
  48. Huang GB, Lee H, Learned-Miller E. 2012. Learning hierarchical representations for face verification with convolutional deep belief networks. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2518–25 Piscataway, NJ: IEEE
  49. Huang GB, Mattar M, Berg T, Learned-Miller E. 2008. Labeled faces in the wild: a database for studying face recognition in unconstrained environments Paper presented at the Workshop on Faces in “Real-Life” Images: Detection, Alignment, and Recognition Marseille, France:
  50. Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A 2019. Adversarial examples are not bugs, they are features. arXiv:1905.02175 [stat.ML]
  51. Issa EB, DiCarlo JJ. 2012. Precedence of the eye region in neural processing of faces. J. Neurosci. 32:4716666–82
    [Google Scholar]
  52. Jacquet M, Champod C. 2020. Automated face recognition in forensic science: review and perspectives. Forensic Sci. Int. 307:110124
    [Google Scholar]
  53. Jayaraman S, Fausey CM, Smith LB. 2015. The faces in infant-perspective scenes change over the first year of life. PLOS ONE 10:5e0123780
    [Google Scholar]
  54. Jayaraman S, Smith LB. 2019. Faces in early visual environments are persistent not just frequent. Vis. Res. 157:213–21
    [Google Scholar]
  55. Jenkins R, White D, Van Montfort X, Burton AM. 2011. Variability in photos of the same face. Cognition 121:3313–23
    [Google Scholar]
  56. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S 2000. Principles of Neural Science, Vol. 4 New York: McGraw-Hill
  57. Kay KN, Weiner KS, Grill-Spector K. 2015. Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25:5595–600
    [Google Scholar]
  58. Kelly DJ, Quinn PC, Slater AM, Lee K, Ge L, Pascalis O. 2007. The other-race effect develops during infancy: evidence of perceptual narrowing. Psychol. Sci. 18:121084–89
    [Google Scholar]
  59. Kelly DJ, Quinn PC, Slater AM, Lee K, Gibson A et al. 2005. Three-month-olds, but not newborns, prefer own-race faces. Dev. Sci. 8:6F31–36
    [Google Scholar]
  60. Kietzmann TC, Swisher JD, König P, Tong F. 2012. Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. J. Neurosci. 32:3411763–72
    [Google Scholar]
  61. Krishnapriya KS, Albiero V, Vangara K, King MC, Bowyer KW. 2020. Issues related to face recognition accuracy varying based on race and skin tone. IEEE Trans. Technol. Soc. 1:18–20
    [Google Scholar]
  62. Krishnapriya K, Vangara K, King MC, Albiero V, Bowyer K. 2019. Characterizing the variability in face recognition accuracy relative to race. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Vol. 12278–85 Piscataway, NJ: IEEE
    [Google Scholar]
  63. Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems1097–105 New York: ACM
    [Google Scholar]
  64. Kumar N, Berg AC, Belhumeur PN, Nayar SK. 2009. Attribute and simile classifiers for face verification. Proceedings of the 2009 IEEE International Conference on Computer Vision365–72 Piscataway, NJ: IEEE
    [Google Scholar]
  65. Laurence S, Zhou X, Mondloch CJ. 2016. The flip side of the other-race coin: They all look different to me. Br. J. Psychol. 107:2374–88
    [Google Scholar]
  66. LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:7553436–44
    [Google Scholar]
  67. Levin DT. 2000. Race as a visual feature: using visual search and perceptual discrimination tasks to understand face categories and the cross-race recognition deficit. J. Exp. Psychol. Gen. 129:4559–74
    [Google Scholar]
  68. Lewenberg Y, Bachrach Y, Shankar S, Criminisi A. 2016. Predicting personal traits from facial images using convolutional neural networks augmented with facial landmark information. arXiv:1605.09062 [cs.CV]
  69. Li Y, Gao F, Ou Z, Sun J. 2018. Angular softmax loss for end-to-end speaker verification. Proceedings of the 11th International Symposium on Chinese Spoken Language Processing (ISCSLP)190–94 Baixas, France: ISCA
    [Google Scholar]
  70. Liu Z, Luo P, Wang X, Tang X 2015. Deep learning face attributes in the wild. Proceedings of the 2015 IEEE International Conference on Computer Vision3730–38 Piscataway, NJ: IEEE
    [Google Scholar]
  71. Lundqvist D, Flykt A, Ohman A. 1998. Karolinska directed emotional faces Database of standardized facial images Psychol. Sect., Dept. Clin. Neurosci. Karolinska Hosp. Solna, Swed: https://www.kdef.se/#:∼:text=The%20Karolinska%20Directed%20Emotional%20Faces,from%20the%20original%20KDEF%20images
  72. Malpass RS, Kravitz J. 1969. Recognition for faces of own and other race. J. Personal. Soc. Psychol. 13:4330–34
    [Google Scholar]
  73. Matthews CM, Mondloch CJ. 2018. Improving identity matching of newly encountered faces: effects of multi-image training. J. Appl. Res. Mem. Cogn. 7:2280–90
    [Google Scholar]
  74. Maurer D, Le Grand R, Mondloch CJ 2002. The many faces of configural processing. Trends Cogn. Sci. 6:6255–60
    [Google Scholar]
  75. Maze B, Adams J, Duncan JA, Kalka N, Miller T et al. 2018. IARPA Janus Benchmark—C: face dataset and protocol. Proceedings of the 2018 International Conference on Biometrics (ICB)158–65 Piscataway, NJ: IEEE
    [Google Scholar]
  76. McCurrie M, Beletti F, Parzianello L, Westendorp A, Anthony S, Scheirer WJ. 2017. Predicting first impressions with deep learning. Proceedings of the 2017 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)518–25 Piscataway, NJ: IEEE
    [Google Scholar]
  77. Murphy J, Ipser A, Gaigg SB, Cook R. 2015. Exemplar variance supports robust learning of facial identity. J. Exp. Psychol. Hum. Percept. Perform. 41:3577–81
    [Google Scholar]
  78. Natu VS, Barnett MA, Hartley J, Gomez J, Stigliani A, Grill-Spector K. 2016. Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36:4210893–907
    [Google Scholar]
  79. Natu VS, Jiang F, Narvekar A, Keshvari S, Blanz V, O'Toole AJ. 2010. Dissociable neural patterns of facial identity across changes in viewpoint. J. Cogn. Neurosci. 22:71570–82
    [Google Scholar]
  80. Nordt M, Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K. 2019. Learning to read increases the informativeness of distributed ventral temporal responses. Cereb. Cortex 29:73124–39
    [Google Scholar]
  81. Nordt M, Gomez J, Natu VS, Rezai AA, Finzi D, Grill-Spector K. 2020. Selectivity to limbs in ventral temporal cortex decreases during childhood as selectivity to faces and words increases. J. Vis. 20:11152
    [Google Scholar]
  82. Noyes E, Jenkins R. 2019. Deliberate disguise in face identification. J. Exp. Psychol. Appl. 25:2280–90
    [Google Scholar]
  83. Noyes E, Parde C, Colon Y, Hill M, Castillo C et al. 2021. Seeing through disguise: getting to know you with a deep convolutional neural network. Cognition 211:104611
    [Google Scholar]
  84. Noyes E, Phillips P, O'Toole A 2017. What is a super-recogniser?. Face Processing: Systems, Disorders and Cultural Differences M Bindemann 173–201 Hauppage, NY: Nova Sci. Publ.
    [Google Scholar]
  85. Oosterhof NN, Todorov A. 2008. The functional basis of face evaluation. PNAS 105:3211087–92
    [Google Scholar]
  86. O'Toole AJ, Castillo CD, Parde CJ, Hill MQ, Chellappa R. 2018. Face space representations in deep convolutional neural networks. Trends Cogn. Sci. 22:9794–809
    [Google Scholar]
  87. O'Toole AJ, Phillips PJ, Jiang F, Ayyad J, Pénard N, Abdi H. 2007. Face recognition algorithms surpass humans matching faces over changes in illumination. IEEE Trans. Pattern Anal. Mach. Intel.91642–46
    [Google Scholar]
  88. Parde CJ, Castillo C, Hill MQ, Colon YI, Sankaranarayanan S et al. 2017. Face and image representation in deep CNN features. Proceedings of the 2017 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)673–80 Piscataway, NJ: IEEE
    [Google Scholar]
  89. Parde CJ, Colón YI, Hill MQ, Castillo CD, Dhar P, O'Toole AJ. 2021. Face recognition by humans and machines: closing the gap between single-unit and neural population codes—insights from deep learning in face recognition. J. Vis. In press
    [Google Scholar]
  90. Parde CJ, Hu Y, Castillo C, Sankaranarayanan S, O'Toole AJ. 2019. Social trait information in deep convolutional neural networks trained for face identification. Cogn. Sci. 43:6e12729
    [Google Scholar]
  91. Parkhi OM, Vedaldi A, Zisserman A. 2015. Deep face recognition. Rep., Vis. Geom. Group Dept. Eng. Sci., Univ. Oxford UK:
    [Google Scholar]
  92. Paszke A, Gross S, Massa F, Lerer A, Bradbury J et al. 2019. Pytorch: an imperative style, high-performance deep learning library. NeurIPS 2019: Proceedings of the 32nd International Conference on Neural Information Processing Systems8024–35 New York: ACM
    [Google Scholar]
  93. Pezdek K, Blandon-Gitlin I, Moore C 2003. Children's face recognition memory: more evidence for the cross-race effect. J. Appl. Psychol. 88:4760–63
    [Google Scholar]
  94. Phillips PJ, Beveridge JR, Draper BA, Givens G, O'Toole AJ et al. 2011. An introduction to the good, the bad, & the ugly face recognition challenge problem. Proceedings of the 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG)346–53 Piscataway, NJ: IEEE
    [Google Scholar]
  95. Phillips PJ, O'Toole AJ. 2014. Comparison of human and computer performance across face recognition experiments. Image Vis. Comput. 32:174–85
    [Google Scholar]
  96. Phillips PJ, Yates AN, Hu Y, Hahn CA, Noyes E et al. 2018. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. PNAS 115:246171–76
    [Google Scholar]
  97. Poggio T, Banburski A, Liao Q. 2020. Theoretical issues in deep networks. PNAS 117:4830039–45
    [Google Scholar]
  98. Ponce CR, Xiao W, Schade PF, Hartmann TS, Kreiman G, Livingstone MS. 2019. Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences. Cell 177:4999–1009
    [Google Scholar]
  99. Ranjan R, Bansal A, Zheng J, Xu H, Gleason J et al. 2019. A fast and accurate system for face detection, identification, and verification. IEEE Trans. Biom. Behav. Identity Sci. 1:282–96
    [Google Scholar]
  100. Ranjan R, Castillo CD, Chellappa R. 2017a. L2-constrained softmax loss for discriminative face verification. arXiv:1703.09507 [cs.CV]
  101. Ranjan R, Sankaranarayanan S, Castillo CD, Chellappa R. 2017b. An all-in-one convolutional neural network for face analysis. Proceedings of the 2017 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)17–24 Piscataway, NJ: IEEE
    [Google Scholar]
  102. Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R et al. 2019. A deep learning framework for neuroscience. Nat. Neurosci. 22:111761–70
    [Google Scholar]
  103. Ritchie KL, Burton AM. 2017. Learning faces from variability. Q. J. Exp. Psychol. 70:5897–905
    [Google Scholar]
  104. Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P. 1976. Basic objects in natural categories. Cogn. Psychol. 8:3382–439
    [Google Scholar]
  105. Russakovsky O, Deng J, Su H, Krause J, Satheesh S et al. 2015. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115:3211–52
    [Google Scholar]
  106. Russell R, Duchaine B, Nakayama K. 2009. Super-recognizers: people with extraordinary face recognition ability. Psychon. Bull. Rev. 16:2252–57
    [Google Scholar]
  107. Sangrigoli S, Pallier C, Argenti AM, Ventureyra V, de Schonen S. 2005. Reversibility of the other-race effect in face recognition during childhood. Psychol. Sci. 16:6440–44
    [Google Scholar]
  108. Sankaranarayanan S, Alavi A, Castillo C, Chellappa R. 2016. Triplet probabilistic embedding for face verification and clustering. arXiv:1604.05417 [cs.CV]
  109. Schrimpf M, Kubilius J, Hong H, Majaj NJ, Rajalingham R et al. 2018. Brain-Score: Which artificial neural network for object recognition is most brain-like?. bioRxiv 407007: https://doi.org/10.1101/407007
    [Crossref] [Google Scholar]
  110. Schroff F, Kalenichenko D, Philbin J. 2015. Facenet: a unified embedding for face recognition and clustering. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition815–23 Piscataway, NJ: IEEE
    [Google Scholar]
  111. Scott LS, Monesson A. 2010. Experience-dependent neural specialization during infancy. Neuropsychologia 48:61857–61
    [Google Scholar]
  112. Sengupta S, Chen JC, Castillo C, Patel VM, Chellappa R, Jacobs DW. 2016. Frontal to profile face verification in the wild. Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV)1–9 Piscataway, NJ: IEEE
    [Google Scholar]
  113. Sim T, Baker S, Bsat M. 2002. The CMU pose, illumination, and expression (PIE) database. Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition53–58 Piscataway, NJ: IEEE
    [Google Scholar]
  114. Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs.CV]
  115. Smith LB, Jayaraman S, Clerkin E, Yu C 2018. The developing infant creates a curriculum for statistical learning. Trends Cogn. Sci. 22:4325–36
    [Google Scholar]
  116. Smith LB, Slone LK. 2017. A developmental approach to machine learning?. Front. Psychol. 8:2124
    [Google Scholar]
  117. Song A, Linjie L, Atalla C, Gottrell G. 2017. Learning to see people like people: predicting social impressions of faces. Cogn. Sci. 2017:1096–101
    [Google Scholar]
  118. Storrs KR, Kietzmann TC, Walther A, Mehrer J, Kriegeskorte N. 2020. Diverse deep neural networks all predict human IT well, after training and fitting bioRxiv 2020.05.07.082743. https://doi.org/10.1101/2020.05.07.082743
    [Crossref] [Google Scholar]
  119. Su H, Maji S, Kalogerakis E, Learned-Miller E. 2015. Multi-view convolutional neural networks for 3D shape recognition. Proceedings of the 2015 IEEE International Conference on Computer Vision945–53 Piscataway, NJ: IEEE
    [Google Scholar]
  120. Sugden NA, Moulson MC. 2017. Hey baby, what's “up”? One- and 3-month-olds experience faces primarily upright but non-upright faces offer the best views. Q. J. Exp. Psychol. 70:5959–69
    [Google Scholar]
  121. Taigman Y, Yang M, Ranzato M, Wolf L. 2014. Deepface: closing the gap to human-level performance in face verification. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition1701–8 Piscataway, NJ: IEEE
    [Google Scholar]
  122. Tanaka JW, Pierce LJ. 2009. The neural plasticity of other-race face recognition. Cogn. Affect. Behav. Neurosci. 9:1122–31
    [Google Scholar]
  123. Terhörst P, Fährmann D, Damer N, Kirchbuchner F, Kuijper A. 2020. Beyond identity: What information is stored in biometric face templates?. arXiv:2009.09918 [cs.CV]
  124. Thorpe S, Fize D, Marlot C. 1996. Speed of processing in the human visual system. Nature 381:6582520–22
    [Google Scholar]
  125. Todorov A. 2017. Face Value: The Irresistible Influence of First Impressions Princeton, NJ: Princeton Univ. Press
  126. Todorov A, Mandisodza AN, Goren A, Hall CC. 2005. Inferences of competence from faces predict election outcomes. Science 308:57281623–26
    [Google Scholar]
  127. Valentine T. 1991. A unified account of the effects of distinctiveness, inversion, and race in face recognition. Q. J. Exp. Psychol. A 43:2161–204
    [Google Scholar]
  128. van der Maaten L, Weinberger K. 2012. Stochastic triplet embedding. Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing1–6 Piscataway, NJ: IEEE
    [Google Scholar]
  129. Walker M, Vetter T. 2009. Portraits made to measure: manipulating social judgments about individuals with a statistical face model. J. Vis. 9:1112
    [Google Scholar]
  130. Wang F, Liu W, Liu H, Cheng J. 2018. Additive margin softmax for face verification. IEEE Signal Process. Lett. 25:926–30
    [Google Scholar]
  131. Wang F, Xiang X, Cheng J, Yuille AL. 2017. Normface: L2 hypersphere embedding for face verification. MM '17: Proceedings of the 25th ACM International Conference on Multimedia1041–49 New York: ACM
    [Google Scholar]
  132. Xie C, Tan M, Gong B, Wang J, Yuille AL, Le QV. 2020. Adversarial examples improve image recognition. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition819–28 Piscataway, NJ: IEEE
    [Google Scholar]
  133. Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:238619–24
    [Google Scholar]
  134. Yi D, Lei Z, Liao S, Li SZ. 2014. Learning face representation from scratch. arXiv:1411.7923 [cs.CV]
  135. Yoshida H, Smith LB. 2008. What's in view for toddlers? Using a head camera to study visual experience. Infancy 13:3229–48
    [Google Scholar]
  136. Young AW, Burton AM. 2020. Insights from computational models of face recognition: a reply to Blauch, Behrmann and Plaut. Cognition 208:104422
    [Google Scholar]
  137. Yovel G, Abudarham N. 2020. From concepts to percepts in human and machine face recognition: a reply to Blauch, Behrmann & Plaut. Cognition 208:104424
    [Google Scholar]
  138. Yovel G, Halsband K, Pelleg M, Farkash N, Gal B, Goshen-Gottstein Y. 2012. Can massive but passive exposure to faces contribute to face recognition abilities?. J. Exp. Psychol. Hum. Percept. Perform. 38:2285–89
    [Google Scholar]
  139. Yovel G, O'Toole AJ. 2016. Recognizing people in motion. Trends Cogn. Sci. 20:5383–95
    [Google Scholar]
  140. Yuan L, Xiao W, Kreiman G, Tay FE, Feng J, Livingstone MS. 2020. Adversarial images for the primate brain. arXiv:2011.05623 [q-bio.NC]
  141. Yue X, Cassidy BS, Devaney KJ, Holt DJ, Tootell RB. 2010. Lower-level stimulus features strongly influence responses in the fusiform face area. Cereb. Cortex 21:135–47
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093019-111701
Loading
/content/journals/10.1146/annurev-vision-093019-111701
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error