1932

Abstract

Most animals have at least some binocular overlap, i.e., a region of space that is viewed by both eyes. This reduces the overall visual field and raises the problem of combining two views of the world, seen from different vantage points, into a coherent whole. However, binocular vision also offers many potential advantages, including increased ability to see around obstacles and increased contrast sensitivity. One particularly interesting use for binocular vision is comparing information from both eyes to derive information about depth. There are many different ways in which this might be done, but in this review, I refer to them all under the general heading of stereopsis. This review examines the different possible uses of binocular vision and stereopsis and compares what is currently known about the neural basis of stereopsis in different taxa. Studying different animals helps us break free of preconceptions stemming from the way that stereopsis operates in human vision and provides new insights into the different possible forms of stereopsis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093019-113212
2021-09-15
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-093019-113212.html?itemId=/content/journals/10.1146/annurev-vision-093019-113212&mimeType=html&fmt=ahah

Literature Cited

  1. Ackermann J, Goesele M. 2015. A survey of photometric stereo techniques. Found. Trends Comput. Graph. Vis. 9:3–4149–254
    [Google Scholar]
  2. Allman J. 1977. Evolution of the visual system in the early primates. Prog. Psychobiol. Physiol. Psychol. 7:1–53
    [Google Scholar]
  3. Anderson SJ, Mullen KT, Hess RF. 1991. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. J. Physiol. 442:47–64
    [Google Scholar]
  4. Artal P. 2015. Image formation in the living human eye. Annu. Rev. Vis. Sci. 1:1–17
    [Google Scholar]
  5. Atchison DA, Thibos LN. 2016. Optical models of the human eye. Clin. Exp. Optom. 99:99–106
    [Google Scholar]
  6. Backus BT, Banks MS, van Ee R, Crowell JA. 1999. Horizontal and vertical disparity, eye position, and stereoscopic slant perception. Vis. Res. 39:61143–70
    [Google Scholar]
  7. Baker DH, Lygo FA, Meese TS, Georgeson MA. 2018. Binocular summation revisited: beyond √2. Psychol. Bull. 144:111186–99
    [Google Scholar]
  8. Bennett AG, Rabbetts RB. 1989. Clinical Visual Optics Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  9. Blake R, Fox R. 1973. The psychophysical inquiry into binocular summation. Percept. Psychophys. 14:1161–85
    [Google Scholar]
  10. Blake R, Sloane M, Fox R. 1981. Further developments in binocular summation. Percept. Psychophys. 30:3266–76
    [Google Scholar]
  11. Blakemore C. 1970. The range and scope of binocular depth discrimination in man. J. Physiol. 211:3599–622
    [Google Scholar]
  12. Bloch S, Martinoya C. 1982. Comparing frontal and lateral viewing in the pigeon. I. Tachistoscopic visual acuity as a function of distance. Behav. Brain Res. 5:3231–44
    [Google Scholar]
  13. Bonnen K, Matthis JS, Gibaldi A, Banks MS, Levi D, Hayhoe M. 2019. A role for stereopsis in walking over complex terrains. J. Vis. 19:10178b
    [Google Scholar]
  14. Bough E. 1970. Stereoscopic vision in macaque monkey: a behavioural demonstration. Nature 225:42–43
    [Google Scholar]
  15. Brysch C, Leyden C, Arrenberg AB. 2019. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 17:1110
    [Google Scholar]
  16. Budelmann BU, Young JZ. 1993. The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Philos. Trans. R. Soc. Lond. B 340: 1291.93–125
    [Google Scholar]
  17. Butler SR, Templeton JJ, Fernández-Juricic E. 2018. How do birds look at their world? A novel avian visual fixation strategy. Behav. Ecol. Sociobiol. 72:338
    [Google Scholar]
  18. Cagenello R, Rogers BJ. 1993. Anisotropies in the perception of stereoscopic surfaces: the role of orientation disparity. Vis. Res. 33:162189–201
    [Google Scholar]
  19. Cartmill M 1997. Explaining primate origins. Research Frontiers in Anthropology CR Ember, M Ember 31–46 Englewood Cliffs, NJ: Prentice-Hall
    [Google Scholar]
  20. Cartmill M 2018. Binocular vision. International Encyclopedia of Biological Anthropology, Vol. 1 W Trevathan, M Cartmill, DL Dufour, CL Larsen, DH O'Rourke, et al. 172–76 Hoboken, NJ: Wiley
    [Google Scholar]
  21. Changizi MA, Shimojo S. 2008.. “ X-ray vision” and the evolution of forward-facing eyes. J. Theor. Biol. 254:4756–67
    [Google Scholar]
  22. Collett TS. 1977. Stereopsis in toads. Nature 267:5609349–51
    [Google Scholar]
  23. Colodro-Conde C, Toledo-Moreo FJ, Toledo-Moreo R, Martínez-Álvarez JJ, Garrigós Guerrero J, Ferrández-Vicente JM 2014. Evaluation of stereo correspondence algorithms and their implementation on FPGA. J. Syst. Archit. 60:122–31
    [Google Scholar]
  24. Corfield JR, Gsell AC, Brunton D, Heesy CP, Hall MI et al. 2011. Anatomical specializations for nocturnality in a critically endangered parrot, the kākāpō (Strigops habroptilus). PLOS ONE 6:8e22945
    [Google Scholar]
  25. Crick F. 1996. Visual perception: rivalry and consciousness. Nature 379:6565485–86
    [Google Scholar]
  26. Cumming BG, DeAngelis GC. 2001. The physiology of stereopsis. Annu. Rev. Neurosci. 24:203–38
    [Google Scholar]
  27. Cumming BG, Parker AJ. 1994. Binocular mechanisms for detecting motion-in-depth. Vis. Res. 34:4483–95
    [Google Scholar]
  28. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE 1990. Human photoreceptor topography. J. Comp. Neurol. 292:4497–523
    [Google Scholar]
  29. de la Motte I, Burkhardt D. 1983. Portrait of an Asian stalk-eyed fly. Naturwissenschaften 70:9451–61
    [Google Scholar]
  30. Dearworth JR, Ashworth AL, Kaye JM, Bednarz DT, Blaum JF et al. 2013. Role of the trochlear nerve in eye abduction and frontal vision of the red-eared slider turtle (Trachemys scripta elegans). J. Comp. Neurol. 521:153464–77
    [Google Scholar]
  31. Erkelens CJ. 1988. Fusional limits for a large random-dot stereogram. Vis. Res. 28:2345–53
    [Google Scholar]
  32. Erkelens CJ, Collewijn H. 1985. Motion perception during dichoptic viewing of moving random-dot stereograms. Vis. Res. 25:4583–88
    [Google Scholar]
  33. Fahle M, Schmid M. 1988. Naso-temporal asymmetry of visual perception and of the visual cortex. Vis. Res. 28:2293–300
    [Google Scholar]
  34. Fawcett SL. 2005. An evaluation of the agreement between contour-based circles and random dot-based near stereoacuity tests. J. AAPOS 9:6572–78
    [Google Scholar]
  35. Feord RC, Sumner ME, Pusdekar S, Kalra L, Gonzalez-Bellido PT, Wardill TJ. 2020. Cuttlefish use stereopsis to strike at prey. Sci. Adv. 6:2eaay6036
    [Google Scholar]
  36. Fox R, Lehmkuhle SW, Bush RC. 1977. Stereopsis in the falcon. Science 197:429879–81
    [Google Scholar]
  37. Fricke TR, Siderov J. 1997. Stereopsis, stereotests, and their relation to vision screening and clinical practice. Clin. Exp. Optom. 80:5165–72
    [Google Scholar]
  38. Frisby JP, Mein J, Saye A, Stanworth A. 1975. Use of random-dot stereograms in the clinical assessment of strabismic patients. Br. J. Ophthalmol. 59:10545–52
    [Google Scholar]
  39. Fritsches KA, Marshall NJ. 2002. Independent and conjugate eye movements during optokinesis in teleost fish. J. Exp. Biol. 205:91241–52
    [Google Scholar]
  40. Ghahghaei S, McKee S, Verghese P. 2019. The upper disparity limit increases gradually with eccentricity. J. Vis. 19:113
    [Google Scholar]
  41. Giaschi D, Lo R, Narasimhan S, Lyons C, Wilcox LM. 2013. Sparing of coarse stereopsis in stereodeficient children with a history of amblyopia. J. Vis. 13:1017
    [Google Scholar]
  42. Glennerster A. 1998. dmax for stereopsis and motion in random dot displays. Vis. Res. 38:6925–35
    [Google Scholar]
  43. Hartley R, Zisserman A. 2000. Multiple View Geometry in Computer Vision Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  44. Heesy CP. 2008. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals. Brain Behav. Evol. 71:154–67
    [Google Scholar]
  45. Hibbard PB, Scott-Brown KC, Haigh EC, Adrain M. 2014. Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms. PLOS ONE 9:1e84087
    [Google Scholar]
  46. Hirschmüller H. 2008. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30:2328–41
    [Google Scholar]
  47. Janssen P, Vogels R, Liu Y, Orban GA. 2003. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37:4693–701
    [Google Scholar]
  48. Johnston EB. 1991. Systematic distortions of shape from stereopsis. Vis. Res. 31:7–81351–60
    [Google Scholar]
  49. Julesz B. 1971. Foundations of Cyclopean Perception Chicago: Univ. Chicago Press
    [Google Scholar]
  50. Julesz B 1978. Global stereopsis: cooperative phenomena in stereopsis depth perception. Handbook of Sensory Physiology, Vol. 8: Perception R Held, HW Leibowitz, H Teuber 215–56 Berlin: Springer
    [Google Scholar]
  51. Julesz B, Tyler CW. 1976. Neurontropy, an entropy-like measure of neural correlation, in binocular fusion and rivalry. Biol. Cybernet. 23:125–32
    [Google Scholar]
  52. Kaneko H, Howard IP. 1997. Spatial limitation of vertical-size disparity processing. Vis. Res. 37:202871–78
    [Google Scholar]
  53. Katz HK, Lustig A, Lev-Ari T, Nov Y, Rivlin E, Katzir G. 2015. Eye movements in chameleons are not truly independent—evidence from simultaneous monocular tracking of two targets. J. Exp. Biol. 218:132097–105
    [Google Scholar]
  54. Kelber A, Somanathan H. 2019. Spatial vision and visually guided behavior in Apidae. Insects 10:12418
    [Google Scholar]
  55. Kral K, Prete FR 2004. In the mind of a hunter: the visual world of the praying mantis. Complex Worlds from Simpler Nervous Systems FR Prete 75–115 Cambridge, MA: MIT Press
    [Google Scholar]
  56. Lee DN. 1970. Spatio-temporal integration in binocular-kinetic space perception. Vis. Res. 10:165–78
    [Google Scholar]
  57. Legge GE. 1984. Binocular contrast summation—I. Detection and discrimination. Vis. Res. 24:4373–83
    [Google Scholar]
  58. Linander N, Dacke M, Baird E 2015. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field. J. Exp. Biol. 218:71051–59
    [Google Scholar]
  59. Linton P. 2020. Does vision extract absolute distance from vergence?. Atten. Percept. Psychophys. 82:63176–95
    [Google Scholar]
  60. Lisney TJ, Wylie DR, Kolominsky J, Iwaniuk AN. 2015. Eye morphology and retinal topography in hummingbirds (Trochilidae: Aves). Brain Behav. Evol. 86:3–4176–90
    [Google Scholar]
  61. Liu Y, Aggarwal JK 2005. Local and global stereo methods. Handbook of Image and Video Processing A Bovik 297–307 Amsterdam: Elsevier
    [Google Scholar]
  62. Maier A, Panagiotaropoulos TI, Tsuchiya N, Keliris GA. 2012. Introduction to research topic—binocular rivalry: a gateway to studying consciousness. Front. Hum. Neurosci. 6:263
    [Google Scholar]
  63. Marr D, Poggio T. 1976. Cooperative computation of stereo disparity. Science 194:283–87
    [Google Scholar]
  64. Martin GR. 2009. What is binocular vision for? A birds’ eye view. J. Vis. 9:1114
    [Google Scholar]
  65. Martin GR, Katzir G. 1999. Visual fields in short-toed eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds. Brain Behav. Evol. 53:255–66
    [Google Scholar]
  66. McFadden S, Wild J. 1986. Binocular depth perception in the pigeon. J. Exp. Anal. Behav. 45:149–60
    [Google Scholar]
  67. Mitchell DE. 1969. Qualitative depth localization with diplopic images of dissimilar shape. Vis. Res. 9:8991–94
    [Google Scholar]
  68. Movshon J, Thompson I, Tolhurst DJ. 1978. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283:53–77
    [Google Scholar]
  69. Nityananda V, O'Keeffe J, Umeton D, Simmons A, Read JCA 2019. Second-order cues to figure motion enable object detection during prey capture by praying mantids. PNAS 116:5227018–27
    [Google Scholar]
  70. Nityananda V, Read JCA. 2017. Stereopsis in animals: evolution, function and mechanisms. J. Exp. Biol. 220:142502–12
    [Google Scholar]
  71. Nityananda V, Tarawneh G, Henriksen S, Umeton D, Simmons A, Read JCA. 2018. A novel form of stereo vision in the praying mantis. Curr. Biol. 28:4588–93.e4
    [Google Scholar]
  72. Ogle KN. 1953. Precision and validity of stereoscopic depth perception from double images. J. Opt. Soc. Am. 43:10907–13
    [Google Scholar]
  73. Ogle KN, Mussey F, Prangen AD. 1949. Fixation disparity and the fusional processes in binocular single vision. Am. J. Ophthalmol. 32:81069–87
    [Google Scholar]
  74. Ohzawa I, DeAngelis GC, Freeman RD. 1990. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:1037–41
    [Google Scholar]
  75. Ott M. 2001. Chameleons have independent eye movements but synchronise both eyes during saccadic prey tracking. Exp. Brain Res. 139:2173–79
    [Google Scholar]
  76. Otto JM, Bach M, Kommerell G. 2010. Advantage of binocularity in the presence of external visual noise. Graefes Arch. Clin. Exp. Ophthalmol. 248:4535–41
    [Google Scholar]
  77. Palmisano S, Gillam B, Govan DG, Allison RS, Harris JM 2010. Stereoscopic perception of real depths at large distances. J. Vis. 10:619
    [Google Scholar]
  78. Panum PL. 1858. Physiologische Untersuchungen über das Sehen mit zwei Augen Kiel, Ger: Schwers
    [Google Scholar]
  79. Parker AJ. 2007. Binocular depth perception and the cerebral cortex. Nat. Rev. Neurosci. 8:5379–91
    [Google Scholar]
  80. Pettigrew JD 1986. The evolution of binocular vision. Visual Neuroscience JD Pettigrew, KJ Sanderson, WR Lewick 208–22 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  81. Pettigrew JD, Collin SP, Ott M. 1999. Convergence of specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Curr. Biol. 9:8421–24
    [Google Scholar]
  82. Prete FR, McLean T, McMillin PJ. 1996. Responses to moving small-field stimuli by the praying mantis, Sphodromantis lineola (Burmeister). Brain Behav. Evol. 47:142–54
    [Google Scholar]
  83. Ptito M, Lepore F, Guillemot J-P. 1991. Stereopsis in the cat: behavioral demonstration and underlying mechanisms. Neuropsychologia 29:6443–64
    [Google Scholar]
  84. Ravosa MJ, Savakova DG. 2004. Euprimate origins: the eyes have it. J. Hum. Evol. 46:3357–64
    [Google Scholar]
  85. Read JCA, Phillipson GP, Glennerster A. 2009. Latitude and longitude vertical disparities. J. Vis. 9:1311
    [Google Scholar]
  86. Richards W, Kaye MG. 1974. Local versus global stereopsis: two mechanisms?. Vis. Res. 14:121345–47
    [Google Scholar]
  87. Richards W, Regan D. 1973. A stereo field map with implications for disparity processing. Investig. Ophthalmol. Vis. Sci. 12:12904–9
    [Google Scholar]
  88. Rogers BJ, Bradshaw MF. 1993. Vertical disparities, differential perspective and binocular stereopsis. Nature 361:6409253–55
    [Google Scholar]
  89. Rose D, Blake R, Halpern DL. 1988. Disparity range for binocular summation. Investig. Ophthalmol. Vis. Sci. 29:2283–90
    [Google Scholar]
  90. Rosner R, Tarawneh G, Lukyanova V, Read JCA. 2020. Binocular responsiveness of projection neurons of the praying mantis optic lobe in the frontal visual field. J. Comp. Physiol. A 206:2165–81
    [Google Scholar]
  91. Rosner R, von Hadeln J, Tarawneh G, Read JCA. 2019. A neuronal correlate of insect stereopsis. Nat. Commun. 10:12845
    [Google Scholar]
  92. Scharstein D, Szeliski R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47:7–42
    [Google Scholar]
  93. Scholl B, Burge J, Priebe N. 2013. Binocular integration and disparity selectivity in mouse primary visual cortex. J. Neurophys. 109:123013–24
    [Google Scholar]
  94. Schwind H. 1989. Size and distance perception in compound eyes. Facets of Vision DG Stavenga, RC Hardie 425–44 Berlin: Springer
    [Google Scholar]
  95. Serrano-Pedraza I, Phillipson GP, Read JCA. 2010. A specialization for vertical disparity discontinuities. J. Vis. 10:32
    [Google Scholar]
  96. Sherrington CS. 1906. Lecture X: Sensual fusion. The Integrative Action of the Nervous System354–94 London: Archibald Constable Co.
    [Google Scholar]
  97. Siderov J, Harwerth RS. 1995. Stereopsis, spatial frequency and retinal eccentricity. Vis. Res. 35:162329–37
    [Google Scholar]
  98. Smith R. 1738. A Compleat System of Opticks in Four Books, Viz. A Popular, a Mathematical, a Mechanical, and a Philosophical Treatise. To Which Are Added Remarks Upon the Whole London: Stephen Austen
    [Google Scholar]
  99. Smith SM, Angielczyk KD, Schmitz L, Wang SC. 2018. Do bony orbit dimensions predict Diel activity pattern in sciurid rodents?. Anat. Record. 301:101774–87
    [Google Scholar]
  100. Somanathan H, Kelber A, Borges RM, Wallén R, Warrant EJ. 2009. Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. J. Comp. Physiol. A 195:6571–83
    [Google Scholar]
  101. Spector RH 1990. Visual fields. Clinical Methods: The History, Physical, and Laboratory Examinations HK Walker, WD Hall, JW Hurst 565–72 Boston: Butterworths, 3rd ed..
    [Google Scholar]
  102. Stevens KA. 2006. Binocular vision in theropod dinosaurs. J. Vertebr. Palaeontol. 26:2321–30
    [Google Scholar]
  103. Taylor GJ, Tichit P, Schmidt MD, Bodey AJ, Rau C, Baird E 2019. Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife 8:e40613
    [Google Scholar]
  104. Timney B, Keil K 1999. Local and global stereopsis in the horse. Vis. Res. 39:101861–67
    [Google Scholar]
  105. Tyler CW 1991. Cyclopean vision. Binocular Vision D Regan 38–74 New York: MacMillan
    [Google Scholar]
  106. Tyler CW, Chen C-C. 2000. Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation. Vis. Res. 40:223121–44
    [Google Scholar]
  107. Tyrrell LP, Fernández-Juricic E, Tovey P, White C, Isard P-F, Dulaurent T. 2017. Avian binocular vision: It's not just about what birds can see, it's also about what they can't. PLOS ONE 12:3e0173235
    [Google Scholar]
  108. van den Berg AV, Brenner E. 1994. Why two eyes are better than one for judgements of heading. Nature 371:6499700–2
    [Google Scholar]
  109. van der Willigen RF. 2000. On the perceptual identity of depth vision in the owl PhD Thesis, Aachen Univ. Ger.:
    [Google Scholar]
  110. van der Willigen RF. 2011. Owls see in stereo much like humans do. J. Vis. 11:710
    [Google Scholar]
  111. van der Willigen RF, Frost BJ, Wagner H. 1998. Stereoscopic depth perception in the owl. Neuroreport 9:61233–37
    [Google Scholar]
  112. Vancleef K, Read JCA, Herbert W, Goodship N, Woodhouse M, Serrano-Pedraza I. 2017. Overestimation of stereo thresholds by the TNO stereotest is not due to global stereopsis. Ophthalmic Physiol. Opt. 37:4507–20
    [Google Scholar]
  113. Vega-Zuniga T, Medina FS, Fredes F, Zuniga C, Severín D et al. 2013. Does nocturnality drive binocular vision? Octodontine rodents as a case study. PLOS ONE 8:12e84199
    [Google Scholar]
  114. Voss J, Bischof H-J. 2009. Eye movements of laterally eyed birds are not independent. J. Exp. Biol. 212:101568–75
    [Google Scholar]
  115. Wade NJ, Ono H. 2012. Early studies of binocular and stereoscopic vision. Jpn. Psychol. Res. 54:154–70
    [Google Scholar]
  116. Wakayama A, Matsumoto C, Ohmure K, Inase M, Shimomura Y. 2011. Influence of target size and eccentricity on binocular summation of reaction time in kinetic perimetry. Vis. Res. 51:1174–78
    [Google Scholar]
  117. Wakayama A, Matsumoto C, Shimomura Y. 2005. Binocular summation of detection and resolution thresholds in the central visual field using parallel-line targets. Investig. Ophthalmol. Vis. Sci. 46:82810–15
    [Google Scholar]
  118. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JND. 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:745265–69
    [Google Scholar]
  119. Walls GL. 1942. The Vertebrate Eye and Its Adaptive Radiation Bloomfield Hills, MI: Cranbrook Inst. Sci.
    [Google Scholar]
  120. Warrant EJ. 2008. Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps. J. Exp. Biol. 211:111737–46
    [Google Scholar]
  121. Welchman AE. 2016. The human brain in depth: how we see in 3D. Annu. Rev. Vis. Sci. 2:345–76
    [Google Scholar]
  122. Wheatstone C. 1838. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128:371–94
    [Google Scholar]
  123. Wood JM, Collins MJ, Carkeet A. 1992. Regional variations in binocular summation across the visual field. Ophthalmic Physiol. Opt. 12:146–51
    [Google Scholar]
  124. Zhang ZL, Cantor CR, Schor CM. 2010. Perisaccadic stereo depth with zero retinal disparity. Curr. Biol. 20:131176–81
    [Google Scholar]
  125. Zhao L, Wu H. 2019. The difference in stereoacuity testing: contour-based and random dot-based graphs at far and near distances. Ann. Transl. Med. 7:9193
    [Google Scholar]
  126. Zlatkova MB, Anderson RS, Ennis FA. 2001. Binocular summation for grating detection and resolution in foveal and peripheral vision. Vis. Res. 41:243093–100
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093019-113212
Loading
/content/journals/10.1146/annurev-vision-093019-113212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error