1932

Abstract

Lightness perception is the perception of achromatic surface colors: black, white, and shades of grey. Lightness has long been a central research topic in experimental psychology, as perceiving surface color is an important visual task but also a difficult one due to the deep ambiguity of retinal images. In this article, I review psychophysical work on lightness perception in complex scenes over the past 20 years, with an emphasis on work that supports the development of computational models. I discuss Bayesian models, equivalent illumination models, multidimensional scaling, anchoring theory, spatial filtering models, natural scene statistics, and related work in computer vision. I review open topics in lightness perception that seem ready for progress, including the relationship between lightness and brightness, and developing more sophisticated computational models of lightness in complex scenes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093019-115159
2021-09-15
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-093019-115159.html?itemId=/content/journals/10.1146/annurev-vision-093019-115159&mimeType=html&fmt=ahah

Literature Cited

  1. Adams WJ, Elder JH, Graf EW, Leyland J, Lugtigheid AJ, Muryy A. 2016. The Southampton-York natural scenes (SYNS) dataset: statistics of surface attitude. Sci. Rep. 6:35805
    [Google Scholar]
  2. Adelson EH 1993. Perceptual organization and the judgment of brightness. Science 262:2042–44
    [Google Scholar]
  3. Adelson EH 2000. Lightness perception and lightness illusions. The New Cognitive Neurosciences M Gazzaniga 339–51 Cambridge, MA: MIT PressOutlines creative and influential ideas on lightness perception, several of which have still not been thoroughly explored.
    [Google Scholar]
  4. Adelson EH, Pentland AP 1996. The perception of shading and reflectance. Perception as Bayesian Inference D Knill, W Richards 409–12 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  5. Allred SR, Brainard DH. 2013. A Bayesian model of lightness perception that incorporates spatial variation in the illumination. J. Vis. 13:718
    [Google Scholar]
  6. Allred SR, Radonjic A, Gilchrist AL, Brainard DH. 2012. Lightness perception in high dynamic range images: local and remote luminance effects. J. Vis. 12:27
    [Google Scholar]
  7. Arend LE. 1993. Mesopic lightness, brightness, and brightness contrast. Percept. Psychophys. 54:469–76
    [Google Scholar]
  8. Arend LE, Spehar B. 1993a. Lightness, brightness, and brightness contrast: 1. Illuminance variation. Percept. Psychophys. 54:446–56
    [Google Scholar]
  9. Arend LE, Spehar B. 1993b. Lightness, brightness, and brightness contrast: 2. Reflectance variation. Percept. Psychophys. 54:457–68
    [Google Scholar]
  10. Barlow HB. 1961. Possible principles underlying the transformations of sensory messages. Sensory Communication WA Rosenblith 216–34 Cambridge, MA: MIT Press
    [Google Scholar]
  11. Barron JT, Malik J. 2015. Shape, illumination, and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intel. 37:1670–87
    [Google Scholar]
  12. Barrow HG, Tenenbaum JM 1978. Recovering intrinsic scene characteristics from images. Computer Vision Systems A Hanson, E Riseman 3–26 New York: Academic
    [Google Scholar]
  13. Belhumeur PN, Kriegman DJ, Yuille AL. 1999. The bas-relief ambiguity. Int. J. Comput. Vis. 35:33–44
    [Google Scholar]
  14. Betz T, Shapley R, Wichmann FA, Maertens M. 2015. Noise masking of White's illusion exposes the weakness of current spatial filtering models of lightness perception. J. Vis 15:141
    [Google Scholar]
  15. Blakeslee B, McCourt ME . 1999. . A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis. Res. 39:4361–77Presents ODOG, a highly successful spatial filtering model of brightness perception.
    [Google Scholar]
  16. Blakeslee B, McCourt ME. 2012. When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component. Vis. Res. 60:40–50
    [Google Scholar]
  17. Blakeslee B, Reetz D, McCourt ME. 2008. Coming to terms with lightness and brightness: effects of stimulus configuration and instructions on brightness and lightness judgments. J. Vis. 8:113
    [Google Scholar]
  18. Bloj M, Ripamonti C, Mitha K, Hauck R, Greenwald S, Brainard DH. 2004. An equivalent illuminant model for the effect of surface slant on perceived lightness. J. Vis. 4:96
    [Google Scholar]
  19. Bonato F, Gilchrist AL. 1994. The perception of luminosity on different backgrounds and in different illuminations. Perception 23:991–1006
    [Google Scholar]
  20. Boyaci H, Maloney LT, Hersh S 2003. The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes. J. Vis. 3:541–53
    [Google Scholar]
  21. Brainard DH, Longere P, Delahunt PB, Freeman WT, Kraft JM, Xiao B 2006. Bayesian model of human color constancy. J. Vis. 6:1110
    [Google Scholar]
  22. Brainard DH, Maloney LT 2011. Surface color perception and equivalent illumination models. J. Vis 11:51A clear introduction to equivalent illumination models of color and lightness.
    [Google Scholar]
  23. Brascamp JW, Shevell SK. 2021. The certainty of ambiguity in visual neural representations. Annu. Rev. Vis. Sci. 7:465–86
    [Google Scholar]
  24. Brunswik E, Kamiya J. 1953. Ecological cue-validity of “proximity” and of other gestalt factors. Am. J. Psychol. 66:20–32
    [Google Scholar]
  25. Carney T, Klein SA, Tyler CW, Silverstein AD, Beutter B et al. 1999. Development of an image/threshold database for designing and testing human vision models. Proceedings of SPIE, Vol. 3644, Human Vision and Electronic Imaging IV BE Rogowitz, TN Pappas 542–51 Bellingham, WA: SPIE
    [Google Scholar]
  26. Chung ST, Legge GE, Tjan BS. 2002. Spatial-frequency characteristics of letter identification in central and peripheral vision. Vis. Res. 42:2137–52
    [Google Scholar]
  27. Corney D, Lotto RB. 2007. What are lightness illusions and why do we see them?. PLOS Comput. Biol. 3:e180
    [Google Scholar]
  28. Cornsweet TN. 1970. Visual Perception Fort Worth, TX: Harcourt Coll.
  29. Dakin SC, Bex PJ. 2003. Natural image statistics mediate brightness “filling in”. Proc. R. Soc. B 270:2341–48
    [Google Scholar]
  30. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. 2009. ImageNet: a large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition248–55 Piscataway, NJ: IEEE
    [Google Scholar]
  31. DeValois RL, DeValois KK. 1988. Spatial Vision Oxford, UK: Oxford Univ. Press
  32. Doerschner K, Boyaci H, Maloney L. 2007. Testing limits on matte surface color perception in three-dimensional scenes with complex light fields. Vis. Res. 47:3409–23
    [Google Scholar]
  33. Economou E, Zdravkovic S, Gilchrist AL. 2007. Anchoring versus spatial filtering accounts of simultaneous lightness contrast. J. Vis 7:122A persuasive anchoring-theory account of simultaneous contrast, traditionally the domain of lateral inhibition models.
    [Google Scholar]
  34. Field DJ. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4:2379–94
    [Google Scholar]
  35. Geisler WS. 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92
    [Google Scholar]
  36. Gilchrist AL. 1977. Perceived lightness depends on perceived spatial arrangement. Science 195:185–87
    [Google Scholar]
  37. Gilchrist AL 2006. Seeing Black and White Oxford, UK: Oxford Univ. PressGives an exceptionally thorough and informative review of the history of lightness research.
  38. Gilchrist AL, Kossyfidis C, Bonato F, Agostini T, Cataliotti J et al. 1999. An anchoring theory of lightness perception. Psychol. Rev. 106:795–834
    [Google Scholar]
  39. Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press
  40. Graham NVS. 1989. Visual Pattern Analyzers Oxford, UK: Oxford Univ. Press
  41. Grossberg S, Todorovic D. 1988. Neural dynamics of 1-d and 2-d brightness perception: a unified model of classical and recent phenomena. Percept. Psychophys. 43:241–77
    [Google Scholar]
  42. Heinemann EG. 1955. Simultaneous brightness induction as a function of inducing- and test-field luminances. J. Exp. Psychol. 50:89–96
    [Google Scholar]
  43. Hering E. 1964 (1905. Outlines of a Theory of the Light Sense Cambridge, MA: Harvard Univ. Press
  44. Hess C, Pretori H. 1970 (1894. Quantitative investigation of the lawfulness of simultaneous brightness contrast. Percept. Motor Skills 31:947–69
    [Google Scholar]
  45. Ibn al-Haytham 1989 (1083. The Optics of Ibn al-Haytham London: Warburg Institute
  46. Jacobsen A, Gilchrist A. 1988. The ratio principle holds over a million-to-one range of illumination. Percept. Psychophys. 43:1–6
    [Google Scholar]
  47. Katz D. 1935. The World of Colour London: Kegan Paul
  48. Kim M, Wilcox LM, Murray RF. 2006. Perceived three-dimensional shape toggles perceived glow. Curr. Biol. 26:9R350–51
    [Google Scholar]
  49. Kingdom FA. 2008. Perceiving light versus material. Vis. Res. 48:2090–105
    [Google Scholar]
  50. Kingdom FAA. 2011. Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy. Vis. Res. 51:652–73
    [Google Scholar]
  51. Knill DC, Richards W 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press
  52. Kobyzev I, Prince S, Brubaker M. 2020. Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intel. In press
    [Google Scholar]
  53. Koffka K. 1935. Principles of Gestalt Psychology New York: Harcourt Brace World
  54. Koller D, Friedman N 2009. Probabilistic Graphical Models: Principles and Techniques Cambridge, MA: MIT PressA detailed introduction to probabilistic graphical models.
  55. Kuffler SW. 1953. Discharge patterns and functional organization of the mammalian retina. J. Neurophysiol. 16:37–68
    [Google Scholar]
  56. Land EH, McCann JJ. 1971. Lightness and retinex theory. J. Opt. Soc. Am. 61:1–11
    [Google Scholar]
  57. Lee AB, Mumford D, Huang J. 2001. Occlusion models for natural images: a statistical study of a scale-invariant dead leaves model. Int. J. Comput. Vis. 41:35–59
    [Google Scholar]
  58. Logvinenko AD. 2015. The achromatic object-color manifold is three-dimensional. Perception 44:243–68
    [Google Scholar]
  59. Logvinenko AD, Adelson EH, Ross DA, Somers D. 2005. Straightness as a cue for luminance edge interpretation. Percept. Psychophys. 67:120–28
    [Google Scholar]
  60. Logvinenko AD, Maloney LT 2006. The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching. Percept. Psychophys 68:76–83The starting point for multidimensional scaling studies of achromatic color appearance.
    [Google Scholar]
  61. Logvinenko AD, Petrini K, Maloney LT. 2008. A scaling analysis of the snake lightness illusion. Percept. Psychophys. 70:828–40
    [Google Scholar]
  62. Madigan SC, Brainard DH 2014. Scaling measurements of the effect of surface slant on perceived lightness. i-Perception 5:53–72
    [Google Scholar]
  63. McCluney R. 1994. Introduction to Radiometry and Photometry Norwood, MA: Artech House
  64. Morgenstern Y, Geisler WS, Murray RF. 2014. Human vision is attuned to the diffuseness of natural light. J. Vis. 14:915
    [Google Scholar]
  65. Murdoch I. 1973. The Black Prince London: Chatto & Windus
  66. Murray RF. 2013. Human lightness perception is guided by simple assumptions about reflectance and lighting. Proceedings of SPIE, Vol. 8651, Human Vision and Electronic Imaging XVIII BE Rogowitz, TN Pappas, H de Ridder, art. 865106 Bellingham, WA: SPIE
    [Google Scholar]
  67. Murray RF. 2020. A model of lightness perception guided by probabilistic assumptions about lighting and reflectance. J. Vis. 20:728
    [Google Scholar]
  68. Ostrovsky Y, Cavanagh P, Sinha P. 2005. Perceiving illumination inconsistencies in scenes. Perception 34:1301–14
    [Google Scholar]
  69. Patel KY, Munasinghe AP, Murray RF. 2018. Lightness matching and perceptual similarity. J. Vis. 18:51
    [Google Scholar]
  70. Perdreau F, Cavanagh P. 2011. Do artists see their retinas?. Front. Hum. Neurosci. 5:171
    [Google Scholar]
  71. Purves D, Lotto RB 2010. Why We See What We Do Redux: A Wholly Empirical Theory of Vision Sunderland, MA: Sinauer Assoc.
  72. Radonjic A, Pearce B, Aston S, Krieger A, Dubin H et al. 2016. Illumination discrimination in real and simulated scenes. J. Vis. 16:112
    [Google Scholar]
  73. Ramamoorthi R, Hanrahan P. 2001. A signal-processing framework for inverse rendering. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques117–28 New York: ACM
    [Google Scholar]
  74. Robinson AE, Hammon PS, de Sa VR. 2007. Explaining brightness illusions using spatial filtering and local response normalization. Vis. Res. 47:1631–44
    [Google Scholar]
  75. Roth S, Black M. 2005. Fields of experts: a framework for learning image priors. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)860–67 Piscataway, NJ: IEEE
    [Google Scholar]
  76. Rutherford MD, Brainard DH. 2002. Lightness constancy: a direct test of the illumination-estimation hypothesis. Psychol. Sci. 13:142–49
    [Google Scholar]
  77. Schirillo JA. 2013. We infer light in space. Psychon. Bull. Rev. 20:905–15
    [Google Scholar]
  78. Shapiro A, Lu ZL. 2011. Relative brightness in images can be accounted for by removing blurry content. Psychol. Sci. 22:1452–59
    [Google Scholar]
  79. Tolstoy L. 2006 (1874. Anna Karenina London: Penguin Classics
  80. von Helmholtz HLF. 1924 (1910. Treatise on Physiological Optics Rochester, NY: Opt. Soc. Am.
  81. Wallach H. 1948. Brightness constancy and the nature of achromatic colors. J. Exp. Psychol. 38:310–24
    [Google Scholar]
  82. White M. 1979. A new effect of pattern on perceived lightness. Perception 8:413–16
    [Google Scholar]
  83. Wilder JD, Adams WJ, Murray RF. 2019. Shape from shading under inconsistent illumination. J. Vis. 19:62
    [Google Scholar]
  84. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:8619–24
    [Google Scholar]
  85. Yu Y, Smith WAP. 2019. InverseRenderNet: learning single image inverse rendering. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)3150–59 Piscataway, NJ: IEEE
    [Google Scholar]
  86. Zeiner K, Maertens M. 2014. Linking luminance and lightness by global contrast normalization. J. Vis. 14:73
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093019-115159
Loading
/content/journals/10.1146/annurev-vision-093019-115159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error