1932

Abstract

Measuring when exactly perceptual decisions are made is crucial for defining how the activation of specific neurons contributes to behavior. However, in traditional, nonurgent visuomotor tasks, the uncertainty of this temporal measurement is very large. This is a problem not only for delimiting the capacity of perception, but also for correctly interpreting the functional roles ascribed to choice-related neuronal responses. In this article, we review psychophysical, neurophysiological, and modeling work based on urgent visuomotor tasks in which this temporal uncertainty can be effectively overcome. The cornerstone of this work is a novel behavioral metric that describes the evolution of the subject's perceptual judgment moment by moment, allowing us to resolve numerous perceptual events that unfold within a few tens of milliseconds. In this framework, the neural distinction between perceptual evaluation and motor selection processes becomes particularly clear, as the conclusion of one is not contingent on that of the other.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-103842
2021-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100419-103842.html?itemId=/content/journals/10.1146/annurev-vision-100419-103842&mimeType=html&fmt=ahah

Literature Cited

  1. Aagten-Murphy D, Bays PM. 2017. Automatic and intentional influences on saccade landing. J. Neurophysiol. 118:1105–22
    [Google Scholar]
  2. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA. 1991a. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J. Neurophysiol. 66:1095–108
    [Google Scholar]
  3. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA. 1991b. Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol. 66:1109–24
    [Google Scholar]
  4. Becker W, Jürgens R. 1979. An analysis of the saccadic system by means of double step stimuli. Vis. Res. 19:967–83
    [Google Scholar]
  5. Bendiksby MS, Platt ML. 2006. Neural correlates of reward and attention in macaque area LIP. Neuropsychologia 44:2411–20
    [Google Scholar]
  6. Berg DJ, Boehnke SE, Marino RA, Munoz DP, Itti L. 2009. Free viewing of dynamic stimuli by humans and monkeys. J. Vis. 9:19
    [Google Scholar]
  7. Bichot NP, Thompson KG, Chenchal Rao S, Schall JD 2001. Reliability of macaque frontal eye field neurons signaling saccade targets during visual search. J. Neurosci. 21:713–25
    [Google Scholar]
  8. Bisley JW, Goldberg ME. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86
    [Google Scholar]
  9. Bisley JW, Goldberg ME. 2010. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33:1–21
    [Google Scholar]
  10. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. 2006. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113:700–65
    [Google Scholar]
  11. Bompas A, Campbell AE, Sumner P. 2020. Cognitive control and automatic interference in mind and brain: a unified model of saccadic inhibition and countermanding. Psychol. Rev. 127:524–61
    [Google Scholar]
  12. Bompas A, Sumner P. 2011. Saccadic inhibition reveals the timing of automatic and voluntary signals in the human brain. J. Neurosci. 31:12501–12
    [Google Scholar]
  13. Brown JW, Hanes DP, Schall JD, Stuphorn V. 2008. Relation of frontal eye field activity to saccade initiation during a countermanding task. Exp. Brain Res. 190:135–51
    [Google Scholar]
  14. Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53:603–35
    [Google Scholar]
  15. Buonocore A, Purokayastha S, McIntosh RD. 2017. Saccade reorienting is facilitated by pausing the oculomotor program. J. Cogn. Neurosci. 29:2068–80
    [Google Scholar]
  16. Camalier CR, Gotler A, Murthy A, Thompson KG, Logan GD et al. 2007. Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Vis. Res. 47:2187–211
    [Google Scholar]
  17. Carrasco M. 2011. Visual attention: the past 25 years. Vis. Res. 51:1484–525
    [Google Scholar]
  18. Chen X, Zirnsak M, Vega GM, Govil E, Lomber SG, Moore T. 2020. Parietal cortex regulates visual salience and salience-driven behavior. Neuron 106:177–87
    [Google Scholar]
  19. Chittka L, Skorupski P, Raine NE. 2009. Speed-accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 24:400–7
    [Google Scholar]
  20. Churchland AK, Kiani R, Shadlen MN. 2008. Decision-making with multiple alternatives. Nat. Neurosci. 11:693–702
    [Google Scholar]
  21. Coe BC, Munoz DP. 2017. Mechanisms of saccade suppression revealed in the antisaccade task. Philos. Trans. R. Soc. Lond. B 372:20160192
    [Google Scholar]
  22. Cohen JY, Heitz RP, Woodman GF, Schall JD. 2009. Neural basis of the set-size effect in frontal eye field: timing of attention during visual search. J. Neurophysiol. 101:1699–704
    [Google Scholar]
  23. Colby CL, Duhamel JR, Goldberg ME. 1996. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76:2841–52
    [Google Scholar]
  24. Costello MG, Zhu D, Salinas E, Stanford TR. 2013. Perceptual modulation of motor—but not visual—responses in the frontal eye field during an urgent-decision task. J. Neurosci. 33:16394–408
    [Google Scholar]
  25. Darmohray DM, Jacobs JR, Marques HG, Carey MR. 2019. Spatial and temporal locomotor learning in mouse cerebellum. Neuron 102:217–31
    [Google Scholar]
  26. de Lafuente V, Jazayeri M, Shadlen MN. 2015. Representation of accumulating evidence for a decision in two parietal areas. J. Neurosci. 35:4306–18
    [Google Scholar]
  27. Ding L, Gold JI. 2012. Neural correlates of perceptual decision making before, during, and after decision commitment in monkey frontal eye field. Cereb. Cortex 22:1052–67
    [Google Scholar]
  28. Donders FC. 1868 (1969. On the speed of mental processes, transl. WG Koster. Acta Psychol 30:412–31
    [Google Scholar]
  29. Dorris MC, Olivier E, Munoz DP 2007. Competitive integration of visual and preparatory signals in the superior colliculus during saccadic programming. J. Neurosci. 27:5053–62
    [Google Scholar]
  30. Dorris MC, Paré M, Munoz DP. 1997. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J. Neurosci. 17:8566–79
    [Google Scholar]
  31. Drugowitsch J, DeAngelis GC, Angelaki DE, Pouget A 2015. Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making. eLife 4:e06678
    [Google Scholar]
  32. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ et al. 2019. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570:509–13
    [Google Scholar]
  33. Erlich JC, Brunton BW, Duan CA, Hanks TD, Brody CD 2015. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife 4:e05457
    [Google Scholar]
  34. Fecteau JH, Munoz DP. 2007. Warning signals influence motor processing. J. Neurophysiol. 97:1600–9
    [Google Scholar]
  35. Fischer B, Boch R. 1983. Saccadic eye movements after extremely short reaction times in the monkey. Brain Res 260:21–26
    [Google Scholar]
  36. Fischer B, Ramsperger E. 1984. Human express saccades: extremely short reaction times of goal directed eye movements. Exp. Brain Res. 57:191–95
    [Google Scholar]
  37. Fischer B, Ramsperger E. 1986. Human express saccades: effects of randomization and daily practice. Exp. Brain Res. 64:569–78
    [Google Scholar]
  38. Forstmann BU, Ratcliff R, Wagenmakers EJ. 2016. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu. Rev. Psychol. 67:641–66
    [Google Scholar]
  39. Freedman DJ, Ibos G. 2018. An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron 97:1219–34
    [Google Scholar]
  40. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkeys's dorsolateral prefrontal cortex. J. Neurophysiol. 61:331–49
    [Google Scholar]
  41. Ghez C, Hening W, Favilla M. 1989. Gradual specification of response amplitude in human tracking performance. Brain Behav. Evol. 33:69–74
    [Google Scholar]
  42. Godijn R, Theeuwes J. 2002. Programming of endogenous and exogenous saccades: evidence for a competitive integration model. J. Exp. Psychol. Hum. Percept. Perform. 28:1039–54
    [Google Scholar]
  43. Gold JI, Ding L. 2013. How mechanisms of perceptual decision-making affect the psychometric function. Prog. Neurobiol. 103:98–114
    [Google Scholar]
  44. Gottlieb J. 2007. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron 53:9–16
    [Google Scholar]
  45. Gray R. 2009. How do batters use visual, auditory, and tactile information about the success of a baseball swing?. Res. Q. Exerc. Sport 80:491–501
    [Google Scholar]
  46. Gray R, Cañal-Bruland R. 2018. Integrating visual trajectory and probabilistic information in baseball batting. Psychol. Sport Exerc. 36:123–31
    [Google Scholar]
  47. Hafed ZM, Ignashchenkova A. 2013. On the dissociation between microsaccade rate and direction after peripheral cues: microsaccadic inhibition revisited. J. Neurosci. 33:16220–35
    [Google Scholar]
  48. Hanes DP, Schall JD. 1996. Neural control of voluntary movement initiation. Science 274:427–30
    [Google Scholar]
  49. Hanks TD, Ditterich J, Shadlen M. 2006. Microstimulation of macaque area LIP affects decision-making in a motion discrimination task. Nat. Neurosci. 9:682–89
    [Google Scholar]
  50. Hart E, Huk AC 2020. Recurrent circuit dynamics underlie persistent activity in the macaque frontoparietal network. eLife 9:e52460
    [Google Scholar]
  51. Hauser CK, Zhu D, Stanford TR, Salinas E 2018. Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets. eLife 7:e33456
    [Google Scholar]
  52. Hening W, Favilla M, Ghez C. 1988. Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Exp. Brain Res. 71:116–28
    [Google Scholar]
  53. Higuchi T, Morohoshi J, Nagami T, Nakata H, Isaka T, Kanosue K. 2016. Contribution of visual information about ball trajectory to baseball hitting accuracy. PLOS ONE 11:e0148498
    [Google Scholar]
  54. Hikosaka O, Kim HF, Yasuda M, Yamamoto S. 2014. Basal ganglia circuits for reward value-guided behavior. Annu. Rev. Neurosci. 37:289–306
    [Google Scholar]
  55. Hirokawa J, Vaughan A, Masset P, Ott T, Kepecs A. 2019. Frontal cortex neuron types categorically encode single decision variables. Nature 576:446–51
    [Google Scholar]
  56. Huk AC, Katz LN, Yates JL. 2017. The role of the lateral intraparietal area in (the study of) decision making. Annu. Rev. Neurosci. 40:349–72
    [Google Scholar]
  57. Huk AC, Shadlen MN. 2005. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25:10420–36
    [Google Scholar]
  58. Ignashchenkova A, Dicke PW, Haarmeier T, Thier P. 2004. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat. Neurosci. 7:56–64
    [Google Scholar]
  59. Isoda M, Hikosaka O. 2008. A neural correlate of motivational conflict in the superior colliculus of the macaque. J. Neurophysiol. 100:1332–42
    [Google Scholar]
  60. Jensen AR. 2006. Clocking the Mind: Mental Chronometry and Individual Differences. Amsterdam: Elsevier
  61. Joiner WM, Cavanaugh J, Wurtz RH, Cumming BG. 2017. Visual responses in FEF, unlike V1, primarily reflect when the visual context renders a receptive field salient. J. Neurosci. 37:9871–79
    [Google Scholar]
  62. Jüttner M, Wolf W. 1992. Occurrence of human express saccades depends on stimulus uncertainty and stimulus sequence. Exp. Brain Res. 89:678–81
    [Google Scholar]
  63. Kalesnykas RP, Hallett PE. 1987. The differentiation of visually guided and anticipatory saccades in gap and overlap paradigms. Exp. Brain Res. 68:115–21
    [Google Scholar]
  64. Katnani HA, Gandhi NJ. 2013. Time course of motor preparation during visual search with flexible stimulus-response association. J. Neurosci. 33:10057–65
    [Google Scholar]
  65. Katz LN, Yates JL, Pillow JW, Huk AC. 2016. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535:285–88
    [Google Scholar]
  66. Kidokoro S, Matsukaki Y, Akagi R. 2019. Acceptable timing error at ball-bat impact for different pitches and its implications for baseball skills. Hum. Mov. Sci. 66:554–63
    [Google Scholar]
  67. Kira S, Yang T, Shadlen MN 2015. A neural implementation of Wald's sequential probability ratio test. Neuron 85:861–73
    [Google Scholar]
  68. Kowler E, Anderson E, Dosher B, Blaser E 1995. The role of attention in the programming of saccades. Vis. Res. 35:1897–916
    [Google Scholar]
  69. Krauzlis R, Dill N. 2002. Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron 35:355–63
    [Google Scholar]
  70. Lo CC, Wang XJ. 2006. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat. Neurosci. 9:956–63
    [Google Scholar]
  71. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:78–84
    [Google Scholar]
  72. Maunsell JH. 2004. Neuronal representations of cognitive state: reward or attention?. Trends Cogn. Sci. 8:261–65
    [Google Scholar]
  73. McPeek RM, Keller EL. 2001. Short-term priming, concurrent processing, and saccade curvature during a target selection task in the monkey. Vis. Res. 41:785–800
    [Google Scholar]
  74. McPeek RM, Keller EL. 2002. Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. J. Neurophysiol. 87:1805–15
    [Google Scholar]
  75. McPeek RM, Skavenski AA, Nakayama K. 2000. Concurrent processing of saccades in visual search. Vis. Res. 40:2499–516
    [Google Scholar]
  76. Meyer DE, Osman AM, Irwin DE, Yantis S. 1988. Modern mental chronometry. Biol. Psychol. 26:3–67
    [Google Scholar]
  77. Moore T, Fallah M. 2004. Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91:152–62
    [Google Scholar]
  78. Munoz DP, Everling S. 2004. Look away: the anti-saccade task and the voluntary control of eye movement. Nat. Rev. Neurosci. 5:218–28
    [Google Scholar]
  79. Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG. 2009. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. J. Neurophysiol. 101:2485–506
    [Google Scholar]
  80. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. 2019. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22:1677–86
    [Google Scholar]
  81. Najafi F, Churchland AK. 2018. Perceptual decision-making: a field in the midst of a transformation. Neuron 100:453–62
    [Google Scholar]
  82. Palmer J, Huk AC, Shadlen MN. 2005. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5:376–404
    [Google Scholar]
  83. Papadimitriou C, White RL 3rd, Snyder LH. 2017. Ghosts in the machine II: neural correlates of memory interference from the previous trial. Cereb. Cortex 27:2513–27
    [Google Scholar]
  84. Paré M, Munoz DP. 1996. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. J. Neurophysiol. 76:3666–81
    [Google Scholar]
  85. Paré M, Wurtz RH. 1997. Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J. Neurophysiol. 78:3493–97
    [Google Scholar]
  86. Parker AJ, Newsome WT. 1998. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21:227–77
    [Google Scholar]
  87. Peck CJ, Jangraw DC, Suzuki M, Efem R, Gottlieb J. 2009. Reward modulates attention independently of action value in posterior parietal cortex. J. Neurosci. 29:11182–91
    [Google Scholar]
  88. Pelz JB, Canosa R. 2001. Oculomotor behavior and perceptual strategies in complex tasks. Vis. Res. 41:3587–96
    [Google Scholar]
  89. Phillips AN, Segraves MA. 2010. Predictive activity in macaque frontal eye field neurons during natural scene searching. J. Neurophysiol. 103:1238–52
    [Google Scholar]
  90. Pisupati S, Chartarifsky L, Churchland AK. 2016. Decision activity in parietal cortex—leader or follower?. Trends Cogn. Sci. 20:788–89
    [Google Scholar]
  91. Port NL, Wurtz RH. 2009. Target selection and saccade generation in monkey superior colliculus. Exp. Brain Res. 192:465–77
    [Google Scholar]
  92. Pouget P, Murthy A, Stuphorn V. 2017. Cortical control and performance monitoring of interrupting and redirecting movements. Phil. Trans. R. Soc. B 372:20160201
    [Google Scholar]
  93. Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, Palmeri TJ. 2010. Neurally constrained modeling of perceptual decision making. Psychol. Rev. 117:1113–43
    [Google Scholar]
  94. Ratcliff R, McKoon G. 2008. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 20:873–922
    [Google Scholar]
  95. Reinagel P. 2013. Speed and accuracy of visual motion discrimination by rats. PLOS ONE 8:e68505
    [Google Scholar]
  96. Reingold EM, Stampe DM. 2002. Saccadic inhibition in voluntary and reflexive saccades. J. Cogn. Neurosci. 14:371–88
    [Google Scholar]
  97. Reingold EM, Stampe DM. 2004. Saccadic inhibition in reading. J. Exp. Psychol. Hum. Percept. Perform. 30:194–211
    [Google Scholar]
  98. Resulaj A, Ruediger S, Olsen SR, Scanziani M 2018. First spikes in visual cortex enable perceptual discrimination. eLife 7:e34044
    [Google Scholar]
  99. Roitman JD, Shadlen MN. 2002. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22:9475–89
    [Google Scholar]
  100. Romo R, Hernández A, Zainos A, Lemus L, Brody CD. 2002. Neuronal correlates of decision-making in secondary somatosensory cortex. Nat. Neurosci. 5:1217–25
    [Google Scholar]
  101. Rorie AE, Gao J, McClelland JL, Newsome WT. 2010. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLOS ONE 5:e9308
    [Google Scholar]
  102. Salinas E, Scerra VE, Hauser CK, Costello MG, Stanford TR. 2014. Decoupling speed and accuracy in an urgent decision-making task reveals multiple contributions to their trade-off. Front. Neurosci. 8:85
    [Google Scholar]
  103. Salinas E, Shankar S, Costello MG, Zhu D, Stanford TR. 2010. Waiting is the hardest part: comparison of two computational strategies for performing a compelled-response task. Front. Comput. Neurosci. 4:153
    [Google Scholar]
  104. Salinas E, Stanford TR. 2013. The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance. J. Neurosci. 33:5668–85
    [Google Scholar]
  105. Salinas E, Stanford TR. 2018. Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Sci. Rep. 8:14163
    [Google Scholar]
  106. Salinas E, Steinberg BR, Sussman LA, Fry SM, Hauser CK et al. 2019. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. eLife 8:e46359
    [Google Scholar]
  107. Saslow MG. 1967. Effects of components of displacement-step stimuli upon latency for saccadic eye movement. J. Opt. Soc. Am. 57:1024–29
    [Google Scholar]
  108. Sato T, Murthy A, Thompson KG, Schall JD. 2001. Search efficiency but not response interference affects visual selection in frontal eye field. Neuron 30:583–91
    [Google Scholar]
  109. Sato TR, Schall JD. 2003. Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron 38:637–48
    [Google Scholar]
  110. Scerra VE, Costello MG, Salinas E, Stanford TR. 2019. All-or-none context dependence delineates limits of FEF visual target selection. Curr. Biol. 29:294–305.e3
    [Google Scholar]
  111. Schall JD, Purcell BA, Heitz RP, Logan GD, Palmeri TJ. 2011. Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade. Eur. J. Neurosci. 33:1991–2002
    [Google Scholar]
  112. Schmidt R, Berke JD. 2017. A pause-then-cancel model of stopping: evidence from basal ganglia neurophysiology. Philos. Trans. R. Soc. Lond. B 372:20160202
    [Google Scholar]
  113. Seideman JA, Salinas E, Stanford TR. 2019. Perceptual modulation of parietal activity during urgent saccadic choices. bioRxiv 874313. https://doi.org/10.1101/2019.12.12.874313
    [Crossref]
  114. Seideman JA, Stanford TR, Salinas E. 2018. Saccade metrics reflect decision-making dynamics during urgent choices. Nat. Commun. 9:2907
    [Google Scholar]
  115. Shadlen MN, Newsome WT 1996. Motion perception: seeing and deciding. PNAS 93:628–33
    [Google Scholar]
  116. Shadlen MN, Newsome WT. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86:1916–36
    [Google Scholar]
  117. Shaffer B, Jobe FW, Pink M, Perry J. 1993. Baseball batting: an electromyographic study. Clin. Orthop. Relat. Res. 292:285–93
    [Google Scholar]
  118. Shankar S, Massoglia DP, Zhu D, Costello MG, Stanford TR, Salinas E. 2011. Tracking the temporal evolution of a perceptual judgment using a compelled-response task. J. Neurosci. 31:8406–21
    [Google Scholar]
  119. Sheinin D. 2019. Velocity is strangling baseball—and its grip keeps tightening. The Washington Post May 21. https://www.washingtonpost.com/sports/2019/05/21/velocity-is-strangling-baseball-its-grip-keeps-tightening/?arc404=true
    [Google Scholar]
  120. Shen K, Paré M. 2014. Predictive saccade target selection in superior colliculus during visual search. J. Neurosci. 34:5640–48
    [Google Scholar]
  121. Sommer MA. 1994. Express saccades elicited during visual scan in the monkey. Vis. Res. 34:2023–38
    [Google Scholar]
  122. Sommer MA. 1997. The spatial relationship between scanning saccades and express saccades. Vis. Res. 37:2745–56
    [Google Scholar]
  123. Sommer MA, Wurtz RH. 2001. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J. Neurophysiol. 85:1673–85
    [Google Scholar]
  124. Sparks D, Rohrer WH, Zhang Y. 2000. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vis. Res. 40:2763–77
    [Google Scholar]
  125. Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E. 2010. Perceptual decision making in less than 30 milliseconds. Nat. Neurosci. 13:379–85
    [Google Scholar]
  126. Steinmetz NA, Moore T. 2014. Eye movement preparation modulates neuronal responses in area V4 when dissociated from attentional demands. Neuron 83:496–506
    [Google Scholar]
  127. Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD. 2019. Distributed coding of choice, action and engagement across the mouse brain. Nature 576:266–73
    [Google Scholar]
  128. Sternberg S. 1966. High speed scanning in human memory. Science 153:652–54
    [Google Scholar]
  129. Sternberg S. 1969. The discovery of processing stages: extensions of Donders' method. Acta Psychol 30:276–315
    [Google Scholar]
  130. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364:eaav7893
    [Google Scholar]
  131. Tanaka T, Nishida S, Ogawa T. 2015. Different target-discrimination times can be followed by the same saccade-initiation timing in different stimulus conditions during visual searches. J. Neurophysiol. 114:366–80
    [Google Scholar]
  132. Theeuwes J. 1992. Perceptual selectivity for color and form. Percept. Psychophys. 51:599–606
    [Google Scholar]
  133. Theeuwes J. 1994. Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. J. Exp. Psychol. Hum. Percept. Perform. 20:799–806
    [Google Scholar]
  134. Theeuwes J. 2004. Top-down search strategies cannot override attentional capture. Psychon. Bull. Rev. 11:65–70
    [Google Scholar]
  135. Theeuwes J. 2010. Top-down and bottom-up control of visual selection. Acta Psychol 135:77–99
    [Google Scholar]
  136. Thompson KG, Hanes DP, Bichot NP, Schall JD. 1996. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76:4040–55
    [Google Scholar]
  137. Thura D, Cisek P. 2016. Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. J. Neurosci. 36:938–56
    [Google Scholar]
  138. van Zoest W, Donk M, Theeuwes J. 2004. The role of stimulus-driven and goal-driven control in saccadic visual selection. J. Exp. Psychol. Hum. Percept. Perform. 30:746–59
    [Google Scholar]
  139. Verbruggen F, Logan GD. 2009. Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci. Biobehav. Rev. 33:647–61
    [Google Scholar]
  140. Watts RG, Bahill AT. 1990. Keep Your Eye on the Ball: The Science and Folklore of Baseball. New York: WH Freeman Co.
  141. Werner G, Mountcastle VB. 1963. The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. J. Neurophysiol. 26:958–77
    [Google Scholar]
  142. Werner G, Mountcastle VB. 1965. Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, Weber functions, and information transmission. J. Neurophysiol. 28:359–97
    [Google Scholar]
  143. White BJ, Marino RA, Boehnke SE, Itti L, Theeuwes J, Munoz DP. 2013. Competitive integration of visual and goal-related signals on neuronal accumulation rate: a correlate of oculomotor capture in the superior colliculus. J. Cogn. Neurosci. 25:1754–68
    [Google Scholar]
  144. Wickelgren WA. 1977. Speed-accuracy tradeoff and information processing dynamics. Acta Psychol 41:67–85
    [Google Scholar]
  145. Williams AH, Poole B, Maheswaranathan N, Dhawale AK, Fisher T et al. 2020. Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping. Neuron 105:246–59
    [Google Scholar]
  146. Wolfe JM. 1998. Visual search. Attention H Pashler 13–74 London: Univ. Coll. London Press
    [Google Scholar]
  147. Wurtz RH, Sommer MA, Paré M, Ferraina S. 2001. Signal transformations from cerebral cortex to superior colliculus for the generation of saccades. Vis. Res. 41:3399–412
    [Google Scholar]
  148. Zariwala HA, Kepecs A, Uchida N, Hirokawa J, Mainen ZF. 2013. The limits of deliberation in a perceptual decision task. Neuron 78:339–51
    [Google Scholar]
  149. Zhou H, Desimone R. 2011. Feature-based attention in the frontal eye field and area V4 during visual search. Neuron 70:1205–17
    [Google Scholar]
  150. Zhou HH, Thompson KG. 2009. Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated. Vis. Res. 49:1205–15
    [Google Scholar]
  151. Zhou Y, Freedman DJ. 2019. Posterior parietal cortex plays a causal role in perceptual and categorical decisions. Science 365:180–85
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-103842
Loading
/content/journals/10.1146/annurev-vision-100419-103842
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error