1932

Abstract

Working memory is central to cognition, flexibly holding the variety of thoughts needed for complex behavior. Yet, despite its importance, working memory has a severely limited capacity, holding only three to four items at once. In this article, I review experimental and computational evidence that the flexibility and limited capacity of working memory reflect the same underlying neural mechanism. I argue that working memory relies on interactions between high-dimensional, integrative representations in the prefrontal cortex and structured representations in the sensory cortex. Together, these interactions allow working memory to flexibly maintain arbitrary representations. However, the distributed nature of working memory comes at the cost of causing interference between items in memory, resulting in a limited capacity. Finally, I discuss several mechanisms used by the brain to reduce interference and maximize the effective capacity of working memory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-104831
2021-09-15
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100419-104831.html?itemId=/content/journals/10.1146/annurev-vision-100419-104831&mimeType=html&fmt=ahah

Literature Cited

  1. Adam KCS, Vogel EK, Awh E. 2017. Clear evidence for item limits in visual working memory. Cogn. Psychol. 97:79–97
    [Google Scholar]
  2. Almeida R, Barbosa J, Compte A. 2015. Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study. J. Neurophysiol. 114:31806–18
    [Google Scholar]
  3. Angelucci A, Bressloff PC. 2006. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog. Brain Res. 154:93–120
    [Google Scholar]
  4. Arcizet F, Mirpour K, Bisley JW. 2011. A pure salience response in posterior parietal cortex. Cereb. Cortex 21:112498–506
    [Google Scholar]
  5. Bae G-Y, Olkkonen M, Allred SR, Wilson C, Flombaum JI. 2014. Stimulus-specific variability in color working memory with delayed estimation. J. Vis. 14:47
    [Google Scholar]
  6. Barak O, Rigotti M, Fusi S. 2013. The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off. J. Neurosci. 33:93844–56
    [Google Scholar]
  7. Barone P, Joseph J-P. 1989. Prefrontal cortex and spatial sequencing in macaque monkey. Exp. Brain Res. 78:3447–64
    [Google Scholar]
  8. Bays PM. 2015. Spikes not slots: noise in neural populations limits working memory. Trends Cogn. Sci. 19:8431–38
    [Google Scholar]
  9. Bays PM, Catalao RFG, Husain M. 2009. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9:107
    [Google Scholar]
  10. Bisley JW, Goldberg ME. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:560381–86
    [Google Scholar]
  11. Bouchacourt F, Buschman TJ. 2019. A flexible model of working memory. Neuron 103:1147–160.e8
    [Google Scholar]
  12. Brady TF, Konkle T, Alvarez GA. 2009. Compression in visual working memory: using statistical regularities to form more efficient memory representations. J. Exp. Psychol. Gen. 138:4487–502
    [Google Scholar]
  13. Buschman TJ, Denovellis EL, Diogo C, Bullock D, Miller EK. 2012. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76:4838–46
    [Google Scholar]
  14. Buschman TJ, Kastner S. 2015. From behavior to neural dynamics: an integrated theory of attention. Neuron 88:1127–44
    [Google Scholar]
  15. Buschman TJ, Siegel M, Roy JE, Miller EK 2011. Neural substrates of cognitive capacity limitations. PNAS 108:2711252–55
    [Google Scholar]
  16. Busse L, Wade AR, Carandini M. 2009. Representation of concurrent stimuli by population activity in visual cortex. Neuron 64:6931–42
    [Google Scholar]
  17. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:151–62
    [Google Scholar]
  18. Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes J-D. 2017. The distributed nature of working memory. Trends Cogn. Sci. 21:2111–24
    [Google Scholar]
  19. Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. 2000. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10:9910–23
    [Google Scholar]
  20. Conway ARA, Kane MJ, Engle RW. 2003. Working memory capacity and its relation to general intelligence. Trends Cogn. Sci. 7:12547–52
    [Google Scholar]
  21. Cowan N. 2001. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24:0187–114
    [Google Scholar]
  22. Denève S, Machens CK. 2016. Efficient codes and balanced networks. Nat. Neurosci. 19:3375–82
    [Google Scholar]
  23. Duncker L, Driscoll L, Shenoy KV, Sahani M, Sussillo D. 2021. Organizing recurrent network dynamics by task-computation to enable continual learning. Adv. Neural Inf. Process. Syst. 33: In press
    [Google Scholar]
  24. Edin F, Klingberg T, Johansson P, McNab F, Tegnér J, Compte A 2009. Mechanism for top-down control of working memory capacity. PNAS 106:166802–7
    [Google Scholar]
  25. Enel P, Procyk E, Quilodran R, Dominey PF. 2016. Reservoir computing properties of neural dynamics in prefrontal cortex. PLOS Comput. Biol. 12:6e1004967
    [Google Scholar]
  26. Engle RW, Tuholski SW, Laughlin JE, Conway AR. 1999. Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128:3309–31
    [Google Scholar]
  27. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2006. Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb. Cortex 16:111631–44
    [Google Scholar]
  28. Fritschy J-M. 2008. Epilepsy, E/I balance and GABAA receptor plasticity. Front. Mol. Neurosci. 1:5
    [Google Scholar]
  29. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61:2331–49
    [Google Scholar]
  30. Ganguli S, Sompolinsky H. 2010. Short-term memory in neuronal networks through dynamical compressed sensing. Adv. Neural Inf. Process. Syst. 23:667–75
    [Google Scholar]
  31. Ganguli S, Sompolinsky H. 2012. Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Annu. Rev. Neurosci. 35:485–508
    [Google Scholar]
  32. Gazzaley A, Nobre AC. 2012. Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 16:2129–35
    [Google Scholar]
  33. Gazzaley A, Rissman J, D'Esposito M 2004. Functional connectivity during working memory maintenance. Cogn. Affect. Behav. Neurosci. 4:4580–99
    [Google Scholar]
  34. Harrison SA, Tong F. 2009. Decoding reveals the contents of visual working memory in early visual areas. Nature 458:7238632–35
    [Google Scholar]
  35. Hasselmo ME, Stern CE. 2006. Mechanisms underlying working memory for novel information. Trends Cogn. Sci. 10:11487–93
    [Google Scholar]
  36. Higgins I, Chang L, Langston V, Hassabis D, Summerfield C et al. 2020. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal neurons. arXiv:2006.14304 [q-bio]
  37. Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Comput 9:81735–80
    [Google Scholar]
  38. Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:3574–91
    [Google Scholar]
  39. Isseroff A, Rosvold HE, Galkin TW, Goldman-Rakic PS. 1982. Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res 232:197–113
    [Google Scholar]
  40. Jackson MC, Raymond JE. 2008. Familiarity enhances visual working memory for faces. J. Exp. Psychol. Hum. Percept. Perform. 34:3556–68
    [Google Scholar]
  41. Kamiński J, Sullivan S, Chung JM, Ross IB, Mamelak AN, Rutishauser U. 2017. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat. Neurosci. 20:4590–601
    [Google Scholar]
  42. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. 2014. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17:3440–48
    [Google Scholar]
  43. Kim SS, Rouault H, Druckmann S, Jayaraman V. 2017. Ring attractor dynamics in the Drosophila central brain. Science 356:6340849–53
    [Google Scholar]
  44. Lee H, Simpson GV, Logothetis NK, Rainer G 2005. Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex. Neuron 45:1147–56
    [Google Scholar]
  45. Levy R, Friedman HR, Davachi L, Goldman-Rakic PS. 1997. Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks. J. Neurosci. 17:103870–82
    [Google Scholar]
  46. Libby A, Buschman TJ. 2021. Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. 24:715–26
    [Google Scholar]
  47. Liebe S, Hoerzer GM, Logothetis NK, Rainer G 2012. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat. Neurosci. 15:3456–62
    [Google Scholar]
  48. Lim S, McKee JL, Woloszyn L, Amit Y, Freedman DJ et al. 2015. Inferring learning rules from distributions of firing rates in cortical neurons. Nat. Neurosci. 18:121804–10
    [Google Scholar]
  49. Liu LD, Miller KD, Pack CC. 2018. A unifying motif for spatial and directional surround suppression. J. Neurosci. 38:4989–99
    [Google Scholar]
  50. Luck SJ, Vogel EK. 1997. The capacity of visual working memory for features and conjunctions. Nature 390:6657279–81
    [Google Scholar]
  51. Markov NT, Ercsey-Ravasz M, Essen DCV, Knoblauch K, Toroczkai Z, Kennedy H. 2013. Cortical high-density counterstream architectures. Science 342:61581238406
    [Google Scholar]
  52. Meyers EM, Qi X-L, Constantinidis C 2012. Incorporation of new information into prefrontal cortical activity after learning working memory tasks. PNAS 109:124651–56
    [Google Scholar]
  53. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  54. Miller EK, Li L, Desimone R. 1991. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254:50361377–79
    [Google Scholar]
  55. Ngiam WXQ, Khaw KLC, Holcombe AO, Goodbourn PT. 2019. Visual working memory for letters varies with familiarity but not complexity. J. Exp. Psychol. Learn. Mem. Cogn. 45:101761–75
    [Google Scholar]
  56. Norman KA, O'Reilly RC 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110:4611–46
    [Google Scholar]
  57. Panichello MF, DePasquale B, Pillow JW, Buschman TJ. 2019. Error-correcting dynamics in visual working memory. Nat. Commun. 10:13366
    [Google Scholar]
  58. Papadimitriou C, Ferdoash A, Snyder LH. 2015. Ghosts in the machine: memory interference from the previous trial. J. Neurophysiol. 113:2567–77
    [Google Scholar]
  59. Papadimitriou C, White RL, Snyder LH. 2017. Ghosts in the machine II: neural correlates of memory interference from the previous trial. Cereb. Cortex 27:42513–27
    [Google Scholar]
  60. Pasternak T, Greenlee MW. 2005. Working memory in primate sensory systems. Nat. Rev. Neurosci. 6:297–107
    [Google Scholar]
  61. Pasupathy A, Connor CE. 1999. Responses to contour features in macaque area V4. J. Neurophysiol. 82:52490–502
    [Google Scholar]
  62. Pertzov Y, Manohar S, Husain M. 2017. Rapid forgetting results from competition over time between items in visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 43:4528–36
    [Google Scholar]
  63. Postle B, Druzgal T, Desposito M. 2003. Seeking the neural substrates of visual working memory storage. Cortex 39:4–5927–46
    [Google Scholar]
  64. Postle BR, D'Esposito M 2003. Spatial working memory activity of the caudate nucleus is sensitive to frame of reference. Cogn. Affect. Behav. Neurosci. 3:2133–44
    [Google Scholar]
  65. Pribram KH, Mishkin M, Enger H, Kaplan SJ. 1952. Effects on delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons. J. Comp. Physiol. Psychol. 45:6565–75
    [Google Scholar]
  66. Quiroga RQ, Kreiman G, Koch C, Fried I. 2008. Sparse but not “Grandmother-cell” coding in the medial temporal lobe. Trends Cogn. Sci. 12:387–91
    [Google Scholar]
  67. Rahmati M, DeSimone K, Curtis CE, Sreenivasan KK. 2020. Spatially specific working memory activity in the human superior colliculus. J. Neurosci. 40:499487–95
    [Google Scholar]
  68. Ranganath C. 2006. Working memory for visual objects: complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neuroscience 139:1277–89
    [Google Scholar]
  69. Ranganath C, D'Esposito M 2001. Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31:5865–73
    [Google Scholar]
  70. Reynolds JH, Chelazzi L, Desimone R. 1999. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19:51736–53
    [Google Scholar]
  71. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:7451585–90
    [Google Scholar]
  72. Salazar RF, Dotson NM, Bressler SL, Gray CM. 2012. Content-specific fronto-parietal synchronization during visual working memory. Science 338:61101097–100
    [Google Scholar]
  73. Sarma A, Masse NY, Wang X-J, Freedman DJ. 2016. Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices. Nat. Neurosci. 19:1143–49
    [Google Scholar]
  74. Siegel M, Buschman TJ, Miller EK. 2015. Cortical information flow during flexible sensorimotor decisions. Science 348:62411352–55
    [Google Scholar]
  75. Siegel M, Warden MR, Miller EK 2009. Phase-dependent neuronal coding of objects in short-term memory. PNAS 106:5021341–46
    [Google Scholar]
  76. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216
    [Google Scholar]
  77. Soto D, Greene CM, Chaudhary A, Rotshtein P. 2011. Competition in working memory reduces frontal guidance of visual selection. Cereb. Cortex 22:51159–69
    [Google Scholar]
  78. Sprague TC, Ester EF, Serences JT. 2014. Reconstructions of information in visual spatial working memory degrade with memory load. Curr. Biol. 24:182174–80
    [Google Scholar]
  79. Stern CE, Sherman SJ, Kirchhoff BA, Hasselmo ME. 2001. Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus 11:4337–46
    [Google Scholar]
  80. Stokes MG. 2015.. “ Activity-silent” working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19:7394–405
    [Google Scholar]
  81. Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. 2013. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78:2364–75
    [Google Scholar]
  82. Taube JS, Bassett JP. 2003. Persistent neural activity in head direction cells. Cereb. Cortex 13:111162–72
    [Google Scholar]
  83. Taylor R, Bays PM. 2018. Efficient coding in visual working memory accounts for stimulus-specific variations in recall. J. Neurosci. 38:327132–42
    [Google Scholar]
  84. Vogel EK, McCollough AW, Machizawa MG. 2005. Neural measures reveal individual differences in controlling access to working memory. Nature 438:7067500–3
    [Google Scholar]
  85. Wang X-J. 2001. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:8455–63
    [Google Scholar]
  86. White OL, Lee DD, Sompolinsky H. 2004. Short-term memory in orthogonal neural networks. Phys. Rev. Lett. 92:14148102
    [Google Scholar]
  87. Whitney D, Levi DM. 2011. Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 15:4160–68
    [Google Scholar]
  88. Wilson NR, Runyan CA, Wang FL, Sur M. 2012. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488:7411343–48
    [Google Scholar]
  89. Wimmer K, Nykamp DQ, Constantinidis C, Compte A. 2014. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17:3431–39
    [Google Scholar]
  90. Woloszyn L, Sheinberg DL. 2012. Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron 74:1193–205
    [Google Scholar]
  91. Yu Q, Panichello MF, Cai Y, Postle BR, Buschman TJ. 2020. Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory. PLOS Biol 18:9e3000854
    [Google Scholar]
  92. Zanto TP, Rubens MT, Thangavel A, Gazzaley A. 2011. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat. Neurosci. 14:5656–61
    [Google Scholar]
  93. Zhang X, Yan W, Wang W, Fan H, Hou R et al. 2019. Active information maintenance in working memory by a sensory cortex. eLife 8:e43191
    [Google Scholar]
  94. Zipursky SL, Sanes JR 2010. Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. Cell 143:3343–53
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-104831
Loading
/content/journals/10.1146/annurev-vision-100419-104831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error