1932

Abstract

Early detection and monitoring are critical to the diagnosis and management of glaucoma, a progressive optic neuropathy that causes irreversible blindness. Optical coherence tomography (OCT) has become a commonly utilized imaging modality that aids in the detection and monitoring of structural glaucomatous damage. Since its inception in 1991, OCT has progressed through multiple iterations, from time-domain OCT, to spectral-domain OCT, to swept-source OCT, all of which have progressively improved the resolution and speed of scans. Even newer technological advancements and OCT applications, such as adaptive optics, visible-light OCT, and OCT-angiography, have enriched the use of OCT in the evaluation of glaucoma. This article reviews current commercial and state-of-the-art OCT technologies and analytic techniques in the context of their utility for glaucoma diagnosis and management, as well as promising future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-111350
2021-09-15
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100419-111350.html?itemId=/content/journals/10.1146/annurev-vision-100419-111350&mimeType=html&fmt=ahah

Literature Cited

  1. Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD et al. 2014. Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. Am. J. Ophthalmol. 157:1272–81.e1
    [Google Scholar]
  2. Alnawaiseh M, Lahme L, Müller V, Rosentreter A, Eter N. 2018. Correlation of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch. Clin. Exp. Ophthalmol. 256:589–97
    [Google Scholar]
  3. Ang BCH, Lim SY, Dorairaj S. 2020. Intra-operative optical coherence tomography in glaucoma surgery—a systematic review. Eye 34:168–77
    [Google Scholar]
  4. Arend O, Plange N, Sponsel WE, Remky A. 2004. Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open angle glaucoma. Brain Res. Bull. 62:517–24
    [Google Scholar]
  5. Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M et al. 2019. Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images. Am. J. Ophthalmol. 198:136–45
    [Google Scholar]
  6. Asaoka R, Murata H, Iwase A, Araie M. 2016. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 123:1974–80
    [Google Scholar]
  7. Barella KA, Costa VP, Gonçalves Vidotti V, Silva FR, Dias M, Gomi ES 2013. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J. Ophthalmol. 2013:789129
    [Google Scholar]
  8. Beach JM, Schwenzer KJ, Srinivas S, Kim D, Tiedeman JS. 1999. Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J. Appl. Physiol. 86:748–58
    [Google Scholar]
  9. Bengtsson B, Andersson S, Heijl A. 2012. Performance of time-domain and spectral-domain optical coherence tomography for glaucoma screening. Acta Ophthalmol 90:310–15
    [Google Scholar]
  10. Berkowitz BA, Wilson CA. 1995. Quantitative mapping of ocular oxygenation using magnetic resonance imaging. Magn. Reson. Med. 33:579–81
    [Google Scholar]
  11. Biswas S, Lin C, Leung CKS. 2016. Evaluation of a myopic normative database for analysis of retinal nerve fiber layer thickness. JAMA Ophthalmol 134:1032–39
    [Google Scholar]
  12. Bizheva K, Tan B, MacLelan B, Kralj O, Hajialamdari M et al. 2017. Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas. Biomed. Opt. Express 8:800–12
    [Google Scholar]
  13. Bizios D, Heijl A, Hougaard JL, Bengtsson B. 2010. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT. Acta Ophthalmol 88:44–52
    [Google Scholar]
  14. Bojikian KD, Chen CL, Wen JC, Zhang Q, Xin C et al. 2016. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLOS ONE 11:e0154691
    [Google Scholar]
  15. Borrelli E, Sadda SR, Uji A, Querques G. 2019. Pearls and pitfalls of optical coherence tomography angiography imaging: a review. Ophthalmol. Ther. 8:215–26
    [Google Scholar]
  16. Bowd C, Chan K, Zangwill LM, Goldbaum MH, Lee TW et al. 2002. Comparing neural networks and linear discriminant functions for glaucoma detection using confocal scanning laser ophthalmoscopy of the optic disc. Investig. Ophthalmol. Vis. Sci. 43:3444–54
    [Google Scholar]
  17. Bowd C, Hao J, Tavares IM, Medeiros FA, Zangwill LM et al. 2008. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 49:945–53
    [Google Scholar]
  18. Bowd C, Lee I, Goldbaum MH, Balasubramanian M, Medeiros FA et al. 2012. Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements. Investig. Ophthalmol. Vis. Sci. 53:2382–89
    [Google Scholar]
  19. Bowd C, Medeiros FA, Zhang Z, Zangwill LM, Hao J et al. 2005. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Investig. Ophthalmol. Vis. Sci. 46:1322–29
    [Google Scholar]
  20. Bowd C, Zangwill LM, Medeiros FA, Hao J, Chan K et al. 2004. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Investig. Ophthalmol. Vis. Sci. 45:2255–62
    [Google Scholar]
  21. Burgansky-Eliash Z, Wollstein G, Chu T, Ramsey JD, Glymour C et al. 2005. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Investig. Ophthalmol. Vis. Sci. 46:4147–52
    [Google Scholar]
  22. Bussel II, Wollstein G, Schuman JS. 2014. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br. J. Ophthalmol. 98:Suppl. 2ii15–19
    [Google Scholar]
  23. Camino A, Zhang M, Gao SS, Hwang TS, Sharma U et al. 2016. Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomed. Opt. Express 7:3905–15
    [Google Scholar]
  24. Castejón-Móchon JF, López-Gil N, Benito A, Artal P 2002. Ocular wave-front aberration statistics in a normal young population. Vis. Res. 42:1611–17
    [Google Scholar]
  25. Chan K, Lee TW, Sample PA, Goldbaum MH, Weinreb RN, Sejnowski TJ. 2002. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Trans. Biomed. Eng. 49:963–74
    [Google Scholar]
  26. Chang RT, Singh K. 2013. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr. Opin. Ophthalmol. 24:96–101
    [Google Scholar]
  27. Chansangpetch S, Lin SC. 2018. Optical coherence tomography angiography in glaucoma care. Curr. Eye Res. 43:1067–82
    [Google Scholar]
  28. Charman WN, Chateau N. 2003. The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration. Ophthalmic Physiol. Opt. 23:479–93
    [Google Scholar]
  29. Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q et al. 2016a. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. Quant. Imaging Med. Surg. 6:125–33
    [Google Scholar]
  30. Chen CL, Bojikian KD, Wen JC, Zhang Q, Xin C et al. 2017. Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol 135:461–68
    [Google Scholar]
  31. Chen CL, Wang RK. 2017. Optical coherence tomography based angiography [Invited]. Biomed. Opt. Express 8:1056–82
    [Google Scholar]
  32. Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q et al. 2016b. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Investig. Ophthalmol. Vis. Sci. 57:OCT475–85
    [Google Scholar]
  33. Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. 2017. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Investig. Ophthalmol. Vis. Sci. 58:3637–45
    [Google Scholar]
  34. Chen S, Shu X, Nesper PL, Liu W, Fawzi AA, Zhang HF. 2017. Retinal oximetry in humans using visible-light optical coherence tomography [Invited]. Biomed. Opt. Express 8:1415–29
    [Google Scholar]
  35. Chen S, Shu X, Yi J, Fawzi A, Zhang HF. 2016. Dual-band optical coherence tomography using a single supercontinuum laser source. J. Biomed. Opt. 21:66013
    [Google Scholar]
  36. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. 2013. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr. Opin. Pharmacol. 13:36–42
    [Google Scholar]
  37. Chiou HJ, Chou YH, Liu CJ, Hsu CC, Tiu CM et al. 1999. Evaluation of ocular arterial changes in glaucoma with color Doppler ultrasonography. J. Ultrasound Med. 18:295–302
    [Google Scholar]
  38. Cho JW, Sung KR, Hong JT, Um TW, Kang SY, Kook MS. 2011. Detection of glaucoma by spectral domain-scanning laser ophthalmoscopy/optical coherence tomography (SD-SLO/OCT) and time domain optical coherence tomography. J. Glaucoma 20:15–20
    [Google Scholar]
  39. Choi SS, Zawadzki RJ, Lim MC, Brandt JD, Keltner JL et al. 2011. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br. J. Ophthalmol. 95:131–41
    [Google Scholar]
  40. Choma M, Sarunic M, Yang C, Izatt J 2003. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11:2183–89
    [Google Scholar]
  41. Chong SP, Bernucci M, Radhakrishnan H, Srinivasan VJ. 2017. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope. Biomed. Opt. Express 8:323–37
    [Google Scholar]
  42. Christopher M, Belghith A, Weinreb RN, Bowd C, Goldbaum MH et al. 2018. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Investig. Ophthalmol. Vis. Sci. 59:2748–56
    [Google Scholar]
  43. Chung JK, Hwang YH, Wi JM, Kim M, Jung JJ. 2017. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr. Eye Res. 42:1458–67
    [Google Scholar]
  44. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:5–25
    [Google Scholar]
  45. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. 2003. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28:2067–69
    [Google Scholar]
  46. Devalla SK, Chin KS, Mari JM, Tun TA, Strouthidis NG et al. 2018. A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head. Investig. Ophthalmol. Vis. Sci. 59:63–74
    [Google Scholar]
  47. Devalla SK, Subramanian G, Pham TH, Wang X, Perera S et al. 2019. A deep learning approach to denoise optical coherence tomography images of the optic nerve head. Sci. Rep. 9:14454
    [Google Scholar]
  48. Diaz-Santana L, Torti C, Munro I, Gasson P, Dainty C. 2003. Benefit of higher closed-loop bandwidths in ocular adaptive optics. Opt. Express 11:2597–605
    [Google Scholar]
  49. Dong ZM, Wollstein G, Schuman JS. 2016. Clinical utility of optical coherence tomography in glaucoma. Investig. Ophthalmol. Vis. Sci. 57:OCT556–67
    [Google Scholar]
  50. Dong ZM, Wollstein G, Wang B, Schuman JS. 2017. Adaptive optics optical coherence tomography in glaucoma. Prog. Retin. Eye Res. 57:76–88
    [Google Scholar]
  51. Ehlers JP, Dupps WJ, Kaiser PK, Goshe J, Singh RP et al. 2014a. The Prospective Intraoperative and Perioperative Ophthalmic ImagiNg with Optical CoherEncE TomogRaphy (PIONEER) study: 2-year results. Am. J. Ophthalmol. 158:999–1007
    [Google Scholar]
  52. Ehlers JP, Goshe J, Dupps WJ, Kaiser PK, Singh RP et al. 2015. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results. JAMA Ophthalmol 133:1124–32
    [Google Scholar]
  53. Ehlers JP, Srivastava SK, Feiler D, Noonan AI, Rollins AM, Tao YK. 2014b. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLOS ONE 9:e105224
    [Google Scholar]
  54. El-Danaf RN, Huberman AD 2015. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J. Neurosci. 35:2329–43
    [Google Scholar]
  55. Ergorul C, Ray A, Huang W, Wang DY, Ben Y et al. 2010. Hypoxia inducible factor-1α (HIF-1α) and some HIF-1 target genes are elevated in experimental glaucoma. J. Mol. Neurosci. 42:183–91
    [Google Scholar]
  56. Felberer F, Kroisamer JS, Baumann B, Zotter S, Schmidt-Erfurth U et al. 2014. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed. Opt. Express 5:439–56
    [Google Scholar]
  57. Felberer F, Rechenmacher M, Haindl R, Baumann B, Hitzenberger CK, Pircher M. 2015. Imaging of retinal vasculature using adaptive optics SLO/OCT. Biomed. Opt. Express 6:1407–18
    [Google Scholar]
  58. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK et al. 2002. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21:359–93
    [Google Scholar]
  59. Francois J, de Laey JJ. 1974. Fluorescein angiography of the glaucomatous disc. Ophthalmologica 168:288–98
    [Google Scholar]
  60. Fu H, Baskaran M, Xu Y, Lin S, Wong DWK et al. 2019. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am. J. Ophthalmol. 203:37–45
    [Google Scholar]
  61. Fuchsjäger-Mayrl G, Wally B, Rainer G, Buehl W, Aggermann T et al. 2005. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br. J. Ophthalmol. 89:1293–97
    [Google Scholar]
  62. Gardiner SK, Demirel S, Reynaud J, Fortune B. 2016. Changes in retinal nerve fiber layer reflectance intensity as a predictor of functional progression in glaucoma. Investig. Ophthalmol. Vis. Sci. 57:1221–27
    [Google Scholar]
  63. Ghasia FF, El-Dairi M, Freedman SF, Rajani A, Asrani S. 2015. Reproducibility of spectral-domain optical coherence tomography measurements in adult and pediatric glaucoma. J. Glaucoma 24:55–63
    [Google Scholar]
  64. Girard MJ, Strouthidis NG, Ethier CR, Mari JM. 2011. Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Investig. Ophthalmol. Vis. Sci. 52:7738–48
    [Google Scholar]
  65. Gisbert G, Dey N, Ishikawa H, Schuman J, Fishbaugh J, Gerig G. 2020. Improved denoising of optical coherence tomography via repeated acquisitions and unsupervised deep learning. Investig. Ophthalmol. Vis. Sci. 61:PB0035
    [Google Scholar]
  66. Godara P, Dubis AM, Roorda A, Duncan JL, Carroll J 2010. Adaptive optics retinal imaging: emerging clinical applications. Optom. Vis. Sci. 87:930–41
    [Google Scholar]
  67. Goldbaum MH, Lee I, Jang G, Balasubramanian M, Sample PA et al. 2012. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields. Investig. Ophthalmol. Vis. Sci. 53:6557–67
    [Google Scholar]
  68. Goldbaum MH, Sample PA, White H, Côlt B, Raphaelian P et al. 1994. Interpretation of automated perimetry for glaucoma by neural network. Investig. Ophthalmol. Vis. Sci. 35:3362–73
    [Google Scholar]
  69. Greenfield DS, Bagga H, Knighton RW. 2003. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch. Ophthalmol. 121:41–46
    [Google Scholar]
  70. Grewal DS, Jain R, Grewal SP, Rihani V. 2008. Artificial neural network-based glaucoma diagnosis using retinal nerve fiber layer analysis. Eur. J. Ophthalmol. 18:915–21
    [Google Scholar]
  71. Grewal DS, Tanna AP. 2013. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr. Opin. Ophthalmol. 24:150–61
    [Google Scholar]
  72. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A et al. 2003. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–89
    [Google Scholar]
  73. Guirao A, Porter J, Williams DR, Cox IG. 2002. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19:620–28
    [Google Scholar]
  74. Hafez AS, Bizzarro RL, Lesk MR. 2003. Evaluation of optic nerve head and peripapillary retinal blood flow in glaucoma patients, ocular hypertensives, and normal subjects. Am. J. Ophthalmol. 136:1022–31
    [Google Scholar]
  75. Halupka KJ, Antony BJ, Lee MH, Lucy KA, Rai RS et al. 2018. Retinal optical coherence tomography image enhancement via deep learning. Biomed. Opt. Express 9:6205–21
    [Google Scholar]
  76. Hardin JS, Taibbi G, Nelson SC, Chao D, Vizzeri G. 2015. Factors affecting Cirrus-HD OCT optic disc scan quality: a review with case examples. J. Ophthalmol. 2015:746150
    [Google Scholar]
  77. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS et al. 1995. Optical coherence tomography of the human retina. Arch. Ophthalmol. 113:325–32
    [Google Scholar]
  78. Heindl LM, Siebelmann S, Dietlein T, Huttmann G, Lankenau E et al. 2015. Future prospects: assessment of intraoperative optical coherence tomography in ab interno glaucoma surgery. Curr. Eye Res. 40:1288–91
    [Google Scholar]
  79. Hermann B, Fernández EJ, Unterhuber A, Sattmann H, Fercher AF et al. 2004. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29:2142–44
    [Google Scholar]
  80. Hofer H, Artal P, Singer B, Aragon JL, Williams DR. 2001. Dynamics of the eye's wave aberration. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18:497–506
    [Google Scholar]
  81. Holló G. 2017a. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J. Glaucoma 26:e7–10
    [Google Scholar]
  82. Holló G. 2017b. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLOS ONE 12:e0171541
    [Google Scholar]
  83. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E et al. 2018. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am. J. Ophthalmol. 190:69–77
    [Google Scholar]
  84. Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E et al. 2019. Macula vessel density and thickness in early primary open-angle glaucoma. Am. J. Ophthalmol. 199:120–32
    [Google Scholar]
  85. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG et al. 1991. Optical coherence tomography. Science 254:1178–81
    [Google Scholar]
  86. Huang ML, Chen HY. 2005. Development and comparison of automated classifiers for glaucoma diagnosis using Stratus optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 46:4121–29
    [Google Scholar]
  87. Huang X-R, Knighton RW. 2005. Microtubules contribute to the birefringence of the retinal nerve fiber layer. Investig. Ophthalmol. Vis. Sci. 46:4588–93
    [Google Scholar]
  88. Huang X-R, Zhou Y, Kong W, Knighton RW. 2011a. Change of retinal nerve fiber layer reflectance correlated with cytostructural change in glaucoma. Investig. Ophthalmol. Vis. Sci. 52:2442–42
    [Google Scholar]
  89. Huang X-R, Zhou Y, Kong W, Knighton RW. 2011b. Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas. Investig. Ophthalmol. Vis. Sci. 52:6737–42
    [Google Scholar]
  90. Huang Y, Lu Z, Shao Z, Ran M, Zhou J et al. 2019. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network. Opt. Express 27:12289–307
    [Google Scholar]
  91. Huber R, Adler DC, Fujimoto JG. 2006a. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett. 31:2975–77
    [Google Scholar]
  92. Huber R, Adler DC, Srinivasan VJ, Fujimoto JG. 2007. Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt. Lett. 32:2049–51
    [Google Scholar]
  93. Huber R, Wojtkowski M, Fujimoto JG. 2006b. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14:3225–37
    [Google Scholar]
  94. Jacques SL. 2013. Optical properties of biological tissues: a review. Phys. Med. Biol. 58:R37–61
    [Google Scholar]
  95. Javitt JC, McBean AM, Nicholson GA, Babish JD, Warren JL, Krakauer H. 1991. Undertreatment of glaucoma among black Americans. N. Engl. J. Med. 325:1418–22
    [Google Scholar]
  96. Jeoung JW, Choi YJ, Park KH, Kim DM. 2013. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 54:4422–29
    [Google Scholar]
  97. Jeoung JW, Park KH. 2010. Comparison of Cirrus OCT and Stratus OCT on the ability to detect localized retinal nerve fiber layer defects in preperimetric glaucoma. Investig. Ophthalmol. Vis. Sci. 51:938–45
    [Google Scholar]
  98. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L et al. 2012. Quantitative OCT angiography of optic nerve head blood flow. Biomed. Opt. Express 3:3127–37
    [Google Scholar]
  99. Jia Y, Wei E, Wang X, Zhang X, Morrison JC et al. 2014. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–32
    [Google Scholar]
  100. Jian Y, Lee S, Ju MJ, Heisler M, Ding W et al. 2016. Lens-based wavefront sensorless adaptive optics swept source OCT. Sci. Rep. 6:27620
    [Google Scholar]
  101. Jiao S, Jiang M, Hu J, Fawzi A, Zhou Q et al. 2010. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 18:3967–72
    [Google Scholar]
  102. Jin S, Trope GE, Buys YM, Badley EM, Thavorn K et al. 2019. Reduced social participation among seniors with self-reported visual impairment and glaucoma. PLOS ONE 14:e0218540
    [Google Scholar]
  103. Jo YH, Kwon J, Jeong D, Shon K, Kook MS 2019. Rapid central visual field progression rate in eyes with open-angle glaucoma and choroidal microvasculature dropout. Sci. Rep. 9:8525
    [Google Scholar]
  104. Jo YH, Sung KR, Yun SC. 2018. The relationship between peripapillary vascular density and visual field sensitivity in primary open-angle and angle-closure glaucoma. Investig. Ophthalmol. Vis. Sci. 59:5862–67
    [Google Scholar]
  105. Junker B, Jordan JF, Framme C, Pielen A. 2017. Intraoperative optical coherence tomography and ab interno trabecular meshwork surgery with the Trabectome. Clin. Ophthalmol. 11:1755–60
    [Google Scholar]
  106. Kapetanakis VV, Chan MP, Foster PJ, Cook DG, Owen CG, Rudnicka AR. 2016. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br. J. Ophthalmol. 100:86–93
    [Google Scholar]
  107. Kim J-A, Lee EJ, Kim T-W. 2019. Evaluation of parapapillary choroidal microvasculature dropout and progressive retinal nerve fiber layer thinning in patients with glaucoma. JAMA Ophthalmol 137:810–16
    [Google Scholar]
  108. Kim SJ, Cho KJ, Oh S. 2017. Development of machine learning models for diagnosis of glaucoma. PLOS ONE 12:e0177726
    [Google Scholar]
  109. Kiumehr S, Park SC, Syril D, Teng CC, Tello C et al. 2012. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch. Ophthalmol. 130:552–59
    [Google Scholar]
  110. Knighton RW, Huang XR. 1999. Directional and spectral reflectance of the rat retinal nerve fiber layer. Investig. Ophthalmol. Vis. Sci. 40:639–47
    [Google Scholar]
  111. Kocaoglu OP, Cense B, Jonnal RS, Wang Q, Lee S et al. 2011. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics. Vis. Res. 51:1835–44
    [Google Scholar]
  112. Kocaoglu OP, Turner TL, Liu Z, Miller DT. 2014. Adaptive optics optical coherence tomography at 1 MHz. Biomed. Opt. Express 5:4186–200
    [Google Scholar]
  113. Kostanyan T, Wollstein G, Schuman JS. 2015. Evaluating glaucoma damage: emerging imaging technologies. Expert Rev. Ophthalmol. 10:183–95
    [Google Scholar]
  114. Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y et al. 2012. Glaucoma discrimination of segmented Cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br. J. Ophthalmol. 96:1420–25
    [Google Scholar]
  115. Kristjansdottir JV, Hardarson SH, Halldorsson GH, Karlsson RA, Eliasdottir TS, Stefánsson E. 2014. Retinal oximetry with a scanning laser ophthalmoscope. Investig. Ophthalmol. Vis. Sci. 55:3120–26
    [Google Scholar]
  116. Kumar RS, Anegondi N, Chandapura RS, Sudhakaran S, Kadambi SV et al. 2016. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Investig. Ophthalmol. Vis. Sci. 57:6079–88
    [Google Scholar]
  117. Kurysheva NI, Maslova EV, Zolnikova IV, Fomin AV, Lagutin MB. 2018. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PLOS ONE 13:e0201599
    [Google Scholar]
  118. Kwon J, Choi J, Shin JW, Lee J, Kook MS. 2017. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Investig. Ophthalmol. Vis. Sci. 58:1637–45
    [Google Scholar]
  119. Kwon JM, Weinreb RN, Zangwill LM, Suh MH. 2019. Parapapillary deep-layer microvasculature dropout and visual field progression in glaucoma. Am. J. Ophthalmol. 200:65–75
    [Google Scholar]
  120. Lally DR, Wollstein G, Danks D, Ishikawa H, Kagemann L et al. 2009. Combining OCT, HRT, and GDx through machine learning classifiers for glaucoma detection. Investig. Ophthalmol. Vis. Sci. 50:5817
    [Google Scholar]
  121. LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  122. Lee EJ, Kim T-W, Kim J-A, Kim J-A. 2017a. Parapapillary deep-layer microvasculature dropout in primary open-angle glaucoma eyes with a parapapillary γ-zone. Investig. Ophthalmol. Vis. Sci. 58:5673–80
    [Google Scholar]
  123. Lee EJ, Kim T-W, Weinreb RN, Park KH, Kim SH, Kim DM. 2011. Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 152:87–95.e1
    [Google Scholar]
  124. Lee EJ, Lee KM, Lee SH, Kim T-W. 2017b. Parapapillary choroidal microvasculature dropout in glaucoma: a comparison between optical coherence tomography angiography and indocyanine green angiography. Ophthalmology 124:1209–17
    [Google Scholar]
  125. Lee J, Kim J-S, Lee HJ, Kim S-J, Kim YK et al. 2020a. Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier. Br. J. Ophthalmol. 104:1717–23
    [Google Scholar]
  126. Lee J, Kim YK, Park KH, Jeoung JW. 2020b. Diagnosing glaucoma with spectral-domain optical coherence tomography using deep learning classifier. J. Glaucoma 29:287–94
    [Google Scholar]
  127. Leitgeb R, Hitzenberger C, Fercher A. 2003a. Performance of Fourier domain versus time domain optical coherence tomography. Opt. Express 11:889–94
    [Google Scholar]
  128. Leitgeb R, Schmetterer L, Drexler W, Fercher A, Zawadzki R, Bajraszewski T. 2003b. Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11:3116–21
    [Google Scholar]
  129. Leung CKS, Chan W-M, Yung W-H, Ng AC, Woo J et al. 2005. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400
    [Google Scholar]
  130. Leung CKS, Ye C, Weinreb RN, Yu M, Lai G, Lam DS. 2013. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology 120:2485–92
    [Google Scholar]
  131. Leung CKS, Yu M, Weinreb RN, Ye C, Liu S et al. 2012. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology 119:731–37
    [Google Scholar]
  132. Li Z, He Y, Keel S, Meng W, Chang RT, He M. 2018. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 125:1199–206
    [Google Scholar]
  133. Lin S, Cheng H, Zhang S, Ye C, Pan X et al. 2019. Parapapillary choroidal microvasculature dropout is associated with the decrease in retinal nerve fiber layer thickness: a prospective study. Investig. Ophthalmol. Vis. Sci. 60:838–42
    [Google Scholar]
  134. Lisboa R, Paranhos A Jr., Weinreb RN, Zangwill LM, Leite MT, Medeiros FA. 2013. Comparison of different spectral domain oct scanning protocols for diagnosing preperimetric glaucoma. Investig. Ophthalmol. Vis. Sci. 54:3417–25
    [Google Scholar]
  135. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B et al. 2015. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 133:1045–52
    [Google Scholar]
  136. Liu S, Wang B, Yin B, Milner TE, Markey MK et al. 2014. Retinal nerve fiber layer reflectance for early glaucoma diagnosis. J. Glaucoma 23:e45–52
    [Google Scholar]
  137. Liu T, Wei Q, Wang J, Jiao S, Zhang HF. 2011. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed. Opt. Express 2:1359–65
    [Google Scholar]
  138. Lombardo M, Serrao S, Devaney N, Parravano M, Lombardo G. 2012. Adaptive optics technology for high-resolution retinal imaging. Sensors 13:334–66
    [Google Scholar]
  139. Maetschke S, Antony B, Ishikawa H, Wollstein G, Schuman J, Garnavi R 2019a. Inference of visual field test performance from OCT volumes using deep learning. arXiv:1908.01428 [cs.CV]
  140. Maetschke S, Antony B, Ishikawa H, Wollstein G, Schuman J, Garnavi R 2019b. A feature agnostic approach for glaucoma detection in OCT volumes. PLOS ONE 14:e0219126
    [Google Scholar]
  141. Manalastas PIC, Zangwill LM, Saunders LJ, Mansouri K, Belghith A et al. 2017. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J. Glaucoma 26:851–59
    [Google Scholar]
  142. Mansouri K, Rao HL, Hoskens K, D'Alessandro E, Flores-Reyes EM et al. 2018. Diurnal variations of peripapillary and macular vessel density in glaucomatous eyes using optical coherence tomography angiography. J. Glaucoma 27:336–41
    [Google Scholar]
  143. Mari JM, Strouthidis NG, Park SC, Girard MJ. 2013. Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Investig. Ophthalmol. Vis. Sci. 54:2238–47
    [Google Scholar]
  144. Miri MS, Abramoff MD, Kwon YH, Sonka M, Garvin MK. 2017. A machine-learning graph-based approach for 3D segmentation of Bruch's membrane opening from glaucomatous SD-OCT volumes. Med. Image Anal. 39:206–17
    [Google Scholar]
  145. Miri MS, Abramoff MD, Lee K, Niemeijer M, Wang JK et al. 2015. Multimodal segmentation of optic disc and cup from SD-OCT and color fundus photographs using a machine-learning graph-based approach. IEEE Trans. Med. Imaging 34:1854–66
    [Google Scholar]
  146. Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K et al. 2019. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 126:980–88
    [Google Scholar]
  147. Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E et al. 2018. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 125:1720–28
    [Google Scholar]
  148. Mrejen S, Spaide RF. 2013. Optical coherence tomography: imaging of the choroid and beyond. Surv. Ophthalmol. 58:387–429
    [Google Scholar]
  149. Muhammad H, Fuchs TJ, De Cuir N, De Moraes CG, Blumberg DM et al. 2017. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. J. Glaucoma 26:1086–94
    [Google Scholar]
  150. Mwanza J-C, Chang RT, Budenz DL, Durbin MK, Gendy MG et al. 2010. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with Cirrus HD-OCT in glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 51:5724–30
    [Google Scholar]
  151. Mwanza J-C, Durbin MK, Budenz DL, Sayyad FE, Chang RT et al. 2012a. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–58
    [Google Scholar]
  152. Mwanza J-C, Oakley JD, Budenz DL, Anderson DRCirrus Optical Coherence Tomography Normative Database Study Group 2011. Ability of Cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 118:241–48.e1
    [Google Scholar]
  153. Mwanza J-C, Sayyad FE, Aref AA, Budenz DL. 2012b. Rates of abnormal retinal nerve fiber layer and ganglion cell layer OCT scans in healthy myopic eyes: Cirrus versus RTVue. Ophthalmic Surg. Lasers Imaging 43:S67–74
    [Google Scholar]
  154. Na JH, Sung KR, Baek S, Kim YJ, Durbin MK et al. 2012. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 53:3817–26
    [Google Scholar]
  155. Na JH, Sung KR, Lee JR, Lee KS, Baek S et al. 2013. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology 120:1388–95
    [Google Scholar]
  156. Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H et al. 2014. Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography. Biomed. Opt. Express 5:1114–23
    [Google Scholar]
  157. Naghizadeh F, Garas A, Vargha P, Holló G. 2014. Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph. J. Glaucoma 23:195–98
    [Google Scholar]
  158. Nicolela MT, Hnik P, Schulzer M, Drance SM. 1997. Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J. Glaucoma 6:157–64
    [Google Scholar]
  159. Nirmaier T, Pudasaini G, Bille J. 2003. Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor. Opt. Express 11:2704–16
    [Google Scholar]
  160. Niwas SI, Lin W, Kwoh CK, Kuo CC, Sng CC et al. 2016. Cross-examination for angle-closure glaucoma feature detection. IEEE J. Biomed. Health Inform. 20:343–54
    [Google Scholar]
  161. Nuyen B, Mansouri K, Weinreb RN. 2012. Imaging of the lamina cribrosa using swept-source optical coherence tomography. J. Curr. Glaucoma Pract. 6:113–19
    [Google Scholar]
  162. Oddone F, Lucenteforte E, Michelessi M, Rizzo S, Donati S et al. 2016. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology 123:939–49
    [Google Scholar]
  163. Olafsdottir OB, Hardarson SH, Gottfredsdottir MS, Harris A, Stefánsson E. 2011. Retinal oximetry in primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 52:6409–13
    [Google Scholar]
  164. Olafsdottir OB, Vandewalle E, Abegão Pinto L, Geirsdottir A, De Clerck E et al. 2014. Retinal oxygen metabolism in healthy subjects and glaucoma patients. Br. J. Ophthalmol. 98:329–33
    [Google Scholar]
  165. Ou Y, Jo RE, Ullian EM, Wong RO, Della Santina L 2016. Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. J. Neurosci. 36:9240–52
    [Google Scholar]
  166. Park HL, Kim JW, Park CK. 2018. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 125:1003–13
    [Google Scholar]
  167. Park JH, Yoo C, Girard MJA, Mari JM, Kim YY. 2018. Peripapillary vessel density in glaucomatous eyes: comparison between pseudoexfoliation glaucoma and primary open-angle glaucoma. J. Glaucoma 27:1009–16
    [Google Scholar]
  168. Park K, Kim J, Lee J 2018. Macular vessel density and ganglion cell/inner plexiform layer thickness and their combinational index using artificial intelligence. J. Glaucoma 27:750–60
    [Google Scholar]
  169. Patel RC, Wang J, Hwang TS, Zhang M, Gao SS et al. 2018. Plexus-specific detection of retinal vascular pathologic conditions with projection-resolved OCT angiography. Ophthalmol. Retina 2:816–26
    [Google Scholar]
  170. Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S et al. 2004. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Investig. Ophthalmol. Vis. Sci. 45:1716–24
    [Google Scholar]
  171. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC et al. 2018. Optical coherence tomography angiography macular vascular density measurements and the central 10-2 visual field in glaucoma. J. Glaucoma 27:481–89
    [Google Scholar]
  172. Phene S, Dunn RC, Hammel N, Liu Y, Krause J et al. 2019. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmology 126:1627–39
    [Google Scholar]
  173. Philip S, Najafi A, Tantraworasin A, Chui TYP, Rosen RB, Ritch R 2019. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 60:1244–53
    [Google Scholar]
  174. Pi S, Camino A, Cepurna W, Wei X, Zhang M et al. 2018. Automated spectroscopic retinal oximetry with visible-light optical coherence tomography. Biomed. Opt. Express 9:2056–67
    [Google Scholar]
  175. Piltz-Seymour JR. 1999. Laser Doppler flowmetry of the optic nerve head in glaucoma. Surv. Ophthalmol. 43:Suppl. 1S191–98
    [Google Scholar]
  176. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV et al. 2018. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2:158–64
    [Google Scholar]
  177. Popovic Z, Knutsson P, Thaung J, Owner-Petersen M, Sjöstrand J. 2011. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Investig. Ophthalmol. Vis. Sci. 52:2649–55
    [Google Scholar]
  178. Porter J, Guirao A, Cox IG, Williams DR. 2001. Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18:1793–803
    [Google Scholar]
  179. Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J et al. 2008. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt. Express 16:15149–69
    [Google Scholar]
  180. Povazay B, Apolonski A, Unterhuber A, Hermann B, Bizheva K et al. 2002. Visible light optical coherence tomography. Proc. SPIE 4619, Coherence Domain Opt. Methods Biomed. Sci. Clin. Appl. VI https://doi.org/10.1117/12.470466
    [Crossref] [Google Scholar]
  181. Pradhan ZS, Dixit S, Sreenivasaiah S, Rao HL, Venugopal JP et al. 2018. A sectoral analysis of vessel density measurements in perimetrically intact regions of glaucomatous eyes: an optical coherence tomography angiography study. J. Glaucoma 27:525–31
    [Google Scholar]
  182. Prünte C, Flammer J, Markstein R, Rudin M. 1995. Quantification of optic nerve blood flow changes using magnetic resonance imaging. Investig. Ophthalmol. Vis. Sci. 36:247–51
    [Google Scholar]
  183. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS et al. 1995. Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–29
    [Google Scholar]
  184. Quigley HA, Addicks EM, Green WR, Maumenee AE. 1981. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 99:635–49
    [Google Scholar]
  185. Quigley HA, Anderson DR. 1977. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Investig. Ophthalmol. Vis. Sci. 16:640–44
    [Google Scholar]
  186. Quigley HA, Broman AT. 2006. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90:262–67
    [Google Scholar]
  187. Radius RL, Anderson DR. 1981. Rapid axonal transport in primate optic nerve. Distribution of pressure-induced interruption. Arch. Ophthalmol. 99:650–54
    [Google Scholar]
  188. Ramaswamy G, Lombardo M, Devaney N. 2014. Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images. Biomed. Opt. Express 5:1941–51
    [Google Scholar]
  189. Rankin SJ. 1999. Color Doppler imaging of the retrobulbar circulation in glaucoma. Surv. Ophthalmol. 43:Suppl. 1S176–82
    [Google Scholar]
  190. Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS et al. 2017a. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 101:1066–70
    [Google Scholar]
  191. Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M et al. 2017b. Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma. J. Glaucoma 26:548–54
    [Google Scholar]
  192. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M et al. 2017c. Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes. J. Glaucoma 26:491–97
    [Google Scholar]
  193. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S et al. 2017d. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLOS ONE 12:e0173930
    [Google Scholar]
  194. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S et al. 2017e. Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am. J. Ophthalmol. 177:106–15
    [Google Scholar]
  195. Rao HL, Riyazuddin M, Dasari S, Puttaiah NK, Pradhan ZS et al. 2018. Relationship of macular thickness and function to optical microangiography measurements in glaucoma. J. Glaucoma 27:210–18
    [Google Scholar]
  196. Rojas CD, Reed DM, Moroi SE. 2020. Usefulness of iCare HOME in telemedicine workflow to detect real-world intraocular pressure response to glaucoma medication change. Ophthalmol. Glaucoma 3:5403–5
    [Google Scholar]
  197. Sakaguchi K, Higashide T, Udagawa S, Ohkubo S, Sugiyama K. 2017. Comparison of sectoral structure-function relationships in glaucoma: vessel density versus thickness in the peripapillary retinal nerve fiber layer. Investig. Ophthalmol. Vis. Sci. 58:5251–62
    [Google Scholar]
  198. Schuman JS. 2008. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans. Am. Ophthalmol. Soc. 106:426–58
    [Google Scholar]
  199. Schuman JS. 2016. Optical coherence tomography in high myopia. JAMA Ophthalmol 134:1040
    [Google Scholar]
  200. Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA et al. 1995. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr. Opin. Ophthalmol. 6:89–95
    [Google Scholar]
  201. Scripsema NK, Garcia PM, Bavier RD, Chui TY, Krawitz BD et al. 2016. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Investig. Ophthalmol. Vis. Sci. 57:OCT611–20
    [Google Scholar]
  202. Sehi M, Grewal DS, Sheets CW, Greenfield DS. 2009. Diagnostic ability of Fourier-domain versus time-domain optical coherence tomography for glaucoma detection. Am. J. Ophthalmol. 148:597–605
    [Google Scholar]
  203. Shiga Y, Kunikata H, Aizawa N, Kiyota N, Maiya Y et al. 2016. Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Curr. Eye Res. 41:1447–53
    [Google Scholar]
  204. Shin JW, Kwon J, Lee J, Kook MS. 2019. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br. J. Ophthalmol. 103:585–91
    [Google Scholar]
  205. Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A et al. 2017. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am. J. Ophthalmol. 182:107–17
    [Google Scholar]
  206. Shu X, Beckmann L, Wang Y, Rubinoff I, Lucy K et al. 2019. Designing visible-light optical coherence tomography towards clinics. Quant. . Imaging Med. Surg. 9:769–81
    [Google Scholar]
  207. Shu X, Beckmann L, Zhang H. 2017. Visible-light optical coherence tomography: a review. J. Biomed. Opt. 22:1–14
    [Google Scholar]
  208. Sigal IA, Ethier CR. 2009. Biomechanics of the optic nerve head. Exp. Eye Res. 88:799–807
    [Google Scholar]
  209. Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJ. 2014. Recent advances in OCT imaging of the lamina cribrosa. Br. J. Ophthalmol. 98:Suppl. 2ii34–39
    [Google Scholar]
  210. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL et al. 1991. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch. Ophthalmol. 109:77–83
    [Google Scholar]
  211. Sommer A, Miller NR, Pollack I, Maumenee AE, George T 1977. The nerve fiber layer in the diagnosis of glaucoma. Arch. Ophthalmol. 95:2149–56
    [Google Scholar]
  212. Song W, Wei Q, Jiao S, Zhang HF. 2013. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography. J. Vis. Exp. 71:e4390
    [Google Scholar]
  213. Song W, Wei Q, Liu W, Liu T, Yi J et al. 2014. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci. Rep. 4:6525
    [Google Scholar]
  214. Spaide RF, Fujimoto JG, Waheed NK. 2015. Image artifacts in optical coherence tomography angiography. Retina 35:2163–80
    [Google Scholar]
  215. Spaide RF, Koizumi H, Pozzoni MC. 2008. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 146:496–500
    [Google Scholar]
  216. Suh MH, Park JW, Kim HR. 2018. Association between the deep-layer microvasculature dropout and the visual field damage in glaucoma. J. Glaucoma 27:543–51
    [Google Scholar]
  217. Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A et al. 2016. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 123:2509–18
    [Google Scholar]
  218. Sung KR, Na JH, Lee Y. 2012a. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography. J. Glaucoma 21:498–504
    [Google Scholar]
  219. Sung KR, Sun JH, Na JH, Lee JY, Lee Y. 2012b. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 119:308–13
    [Google Scholar]
  220. Sung KR, Wollstein G, Kim NR, Na JH, Nevins JE et al. 2012c. Macular assessment using optical coherence tomography for glaucoma diagnosis. Br. J. Ophthalmol. 96:1452–55
    [Google Scholar]
  221. Suwan Y, Geyman LS, Fard MA, Tantraworasin A, Chui TY et al. 2018. Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma versus POAG and healthy controls: an OCTA study. Asia Pac. J. Ophthalmol. 7:84–89
    [Google Scholar]
  222. Swanson EA, Fujimoto JG. 2017. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Biomed. Opt. Express 8:1638–64
    [Google Scholar]
  223. Takagi D, Sawada A, Yamamoto T. 2017. Evaluation of a new rebound self-tonometer, Icare HOME: comparison with Goldmann applanation tonometer. J. Glaucoma 26:613–18
    [Google Scholar]
  224. Takayama K, Hangai M, Durbin M, Nakano N, Morooka S et al. 2012. A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 53:6904–13
    [Google Scholar]
  225. Takayama K, Hangai M, Kimura Y, Morooka S, Nukada M et al. 2013. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 54:4798–807
    [Google Scholar]
  226. Tezel G, Wax MB. 2004. Hypoxia-inducible factor 1α in the glaucomatous retina and optic nerve head. Arch. Ophthalmol. 122:1348–56
    [Google Scholar]
  227. Thibos LN, Hong X, Bradley A, Cheng X. 2002. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19:2329–48
    [Google Scholar]
  228. Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. 2020. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol 138:4333–39
    [Google Scholar]
  229. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND et al. 2017. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–23
    [Google Scholar]
  230. Torti C, Považay B, Hofer B, Unterhuber A, Carroll J et al. 2009. Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt. Express 17:19382–400
    [Google Scholar]
  231. Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F et al. 2017. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Investig. Ophthalmol. Vis. Sci. 58:5713–22
    [Google Scholar]
  232. Umfress AC, Brantley MA Jr. 2016. Eye care disparities and health-related consequences in elderly patients with age-related eye disease. Semin. Ophthalmol. 31:432–38
    [Google Scholar]
  233. van der Schoot J, Vermeer KA, de Boer JF, Lemij HG. 2012. The effect of glaucoma on the optical attenuation coefficient of the retinal nerve fiber layer in spectral domain optical coherence tomography images. Investig. Ophthalmol. Vis. Sci. 53:2424–30
    [Google Scholar]
  234. Vandewalle E, Abegão Pinto L, Olafsdottir OB, De Clerck E, Stalmans P et al. 2014. Oximetry in glaucoma: correlation of metabolic change with structural and functional damage. Acta Ophthalmol 92:105–10
    [Google Scholar]
  235. Venugopal JP, Rao HL, Weinreb RN, Dasari S, Riyazuddin M et al. 2019. Repeatability and comparability of peripapillary vessel density measurements of high-density and non-high-density optical coherence tomography angiography scans in normal and glaucoma eyes. Br. J. Ophthalmol. 103:949–54
    [Google Scholar]
  236. Venugopal JP, Rao HL, Weinreb RN, Pradhan ZS, Dasari S et al. 2018. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br. J. Ophthalmol. 102:352–57
    [Google Scholar]
  237. Vidotti VG, Costa VP, Silva FR, Resende GM, Cremasco F et al. 2013. Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma. Eur. J. Ophthalmol. 23:61–69
    [Google Scholar]
  238. Vilupuru AS, Rangaswamy NV, Frishman LJ, Smith EL 3rd, Harwerth RS, Roorda A 2007. Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24:1417–25
    [Google Scholar]
  239. Wan KH, Lam AKN, Leung CK-S. 2018. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol 136:866–74
    [Google Scholar]
  240. Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H et al. 2013. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 54:8270–74
    [Google Scholar]
  241. Wang B, Tran H, Smith MA, Kostanyan T, Schmitt SE et al. 2017. In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. PLOS ONE 12:e0188302
    [Google Scholar]
  242. Wang SY, Singh K, Lin SC. 2012. Prevalence and predictors of depression among participants with glaucoma in a nationally representative population sample. Am. J. Ophthalmol. 154:436–44.e2
    [Google Scholar]
  243. Wang X, Jiang C, Ko T, Kong X, Yu X et al. 2015. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 253:1557–64
    [Google Scholar]
  244. Wang Y, Fawzi AA, Varma R, Sadun AA, Zhang X et al. 2011. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Investig. Ophthalmol. Vis. Sci. 52:840–45
    [Google Scholar]
  245. Weinreb RN, Leung CKS, Crowston JG, Medeiros FA, Friedman DS et al. 2016. Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2:16067
    [Google Scholar]
  246. Werner AC, Shen LQ. 2019. A review of OCT angiography in glaucoma. Semin. Ophthalmol. 34:279–86
    [Google Scholar]
  247. Werner JS, Keltner JL, Zawadzki RJ, Choi SS. 2011. Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies. Eye 25:279–89
    [Google Scholar]
  248. Wessel JM, Horn FK, Tornow RP, Schmid M, Mardin CY et al. 2013. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 54:3613–20
    [Google Scholar]
  249. White B, Pierce M, Nassif N, Cense B, Park B et al. 2003. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt. Express 11:3490–97
    [Google Scholar]
  250. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. 2010. Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18:14685–704
    [Google Scholar]
  251. Williams DR. 2011. Imaging single cells in the living retina. Vis. Res. 51:1379–96
    [Google Scholar]
  252. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA et al. 2004. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am. J. Ophthalmol. 138:218–25
    [Google Scholar]
  253. Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC et al. 2005. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch. Ophthalmol. 123:464–70
    [Google Scholar]
  254. Xu BY, Chiang M, Chaudhary S, Kulkarni S, Pardeshi AA, Varma R. 2019. Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images. Am. J. Ophthalmol. 208:273–80
    [Google Scholar]
  255. Xu Y, Liu J, Cheng J, Lee BH, Wong DW et al. 2013. Automated anterior chamber angle localization and glaucoma type classification in OCT images. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013:7380–83
    [Google Scholar]
  256. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH et al. 2017. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124:709–19
    [Google Scholar]
  257. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S et al. 2016. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123:2498–508
    [Google Scholar]
  258. Yi J, Chen S, Backman V, Zhang HF. 2014. In vivo functional microangiography by visible-light optical coherence tomography. Biomed. Opt. Express 5:3603–12
    [Google Scholar]
  259. Yi J, Liu W, Chen S, Backman V, Sheibani N et al. 2015. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci. Appl 4:e334
    [Google Scholar]
  260. You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R 2013. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. JAMA Ophthalmol 131:314–20
    [Google Scholar]
  261. Yousefi S, Kiwaki T, Zheng Y, Sugiura H, Asaoka R et al. 2018. Detection of longitudinal visual field progression in glaucoma using machine learning. Am. J. Ophthalmol. 193:71–79
    [Google Scholar]
  262. Yun S, Tearney G, de Boer J, Iftimia N, Bouma B. 2003. High-speed optical frequency-domain imaging. Opt. Express 11:2953–63
    [Google Scholar]
  263. Zangwill LM, Chan K, Bowd C, Hao J, Lee TW et al. 2004. Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Investig. Ophthalmol. Vis. Sci. 45:3144–51
    [Google Scholar]
  264. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. 1998. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–31
    [Google Scholar]
  265. Zhang A, Zhang Q, Chen CL, Wang RK. 2015. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J. Biomed. Opt. 20:100901
    [Google Scholar]
  266. Zhang HF, Maslov K, Stoica G, Wang LV. 2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24:848–51
    [Google Scholar]
  267. Zhang S, Wu C, Liu L, Jia Y, Zhang Y et al. 2017. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma. Am. J. Ophthalmol. 182:194–200
    [Google Scholar]
  268. Zhang T, Kho AM, Srinivasan VJ. 2019. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking. Biomed. Opt. Express 10:2918–31
    [Google Scholar]
  269. Zhang X, Dastiridou A, Francis BA, Tan O, Varma R et al. 2017. Comparison of glaucoma progression detection by optical coherence tomography and visual field. Am. J. Ophthalmol. 184:63–74
    [Google Scholar]
  270. Zhang X, Hu J, Knighton RW, Huang X-R, Puliafito CA, Jiao S. 2011. Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer. Opt. Express 19:19653–59
    [Google Scholar]
  271. Zheng C, Johnson TV, Garg A, Boland MV. 2019. Artificial intelligence in glaucoma. Curr. Opin. Ophthalmol. 30:97–103
    [Google Scholar]
  272. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. 2016. Learning deep features for discriminative localization. Paper presented at 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV: June 27–30
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-111350
Loading
/content/journals/10.1146/annurev-vision-100419-111350
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error