1932

Abstract

Some images evoke bistable percepts: two different visual experiences seen in alternation while continuously viewing an unchanged stimulus. The Necker Cube and Rubin's Vase are classic examples, each of which gives alternating percepts of different shapes. Other bistable percepts are alternating colors or directions of motion. Although stimuli that result in salient bistability are rare and sometimes cleverly constructed to emphasize ambiguity, they have been influential for over 150 years, since the work of von Helmholtz, who considered them to be evidence for perceptual visual processes that interpret retinal stimuli. While bistability in natural viewing is uncommon, the main point of this review is that implicit ambiguity in visual neural representations is pervasive. Resolving ambiguity, therefore, is a fundamental and ubiquitous process of vision that routinely affects what we see, not an oddity arising from cleverly crafted images. This review focuses on the causes of widespread ambiguity, historical perspectives on it, and modern knowledge and theory about resolving it.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-125929
2021-09-15
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100419-125929.html?itemId=/content/journals/10.1146/annurev-vision-100419-125929&mimeType=html&fmt=ahah

Literature Cited

  1. Adams WJ, Graf EW, Ernst MO. 2004. Experience can change the “light-from-above” prior. Nat. Neurosci. 7:101057–58
    [Google Scholar]
  2. Adelson EH. 1993. Perceptual organization and the judgment of brightness. Science 262:2042–44
    [Google Scholar]
  3. Aitchison L, Lengyel M. 2017. With or without you: predictive coding and Bayesian inference in the brain. Curr. Opin. Neurobiol. 46:219–27
    [Google Scholar]
  4. Alais D, Burr D. 2004. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14:3257–62
    [Google Scholar]
  5. Alais D, O'Shea RP, Mesana-Alais C, Wilson IG 2000. On binocular alternation. Perception 29:1437–45
    [Google Scholar]
  6. Andrews TJ, Holmes D. 2011. Stereoscopic depth perception during binocular rivalry. Front. Hum. Neurosci. 5:99
    [Google Scholar]
  7. Arnold DH. 2011a. I agree: binocular rivalry stimuli are common but rivalry is not. Front. Hum. Neurosci. 5:157
    [Google Scholar]
  8. Arnold DH. 2011b. Why is binocular rivalry uncommon? Discrepant monocular images in the real world. Front. Hum. Neurosci. 5:116
    [Google Scholar]
  9. Aston S, Hurlbert A. 2017. What #theDress reveals about the role of illumination priors in color perception and color constancy. J. Vis. 17:94
    [Google Scholar]
  10. Atkins J, Fiser J, Jacobs R. 2001. Experience-dependent visual cue integration based on consistencies between visual and haptic percepts. Vis. Res. 41:4449–61
    [Google Scholar]
  11. Attneave F. 1968. Triangles as ambiguous figures. Am. J. Psychol. 81:3447–53
    [Google Scholar]
  12. Banks MS, Burge J, Held RT 2011. The statistical relationship between depth, visual cues and human perception. Sensory Cue Integration J Trommershauser, K Kording, MS Landy 1–33 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  13. Barlow H. 1961. Possible principles underlying the transformations of sensory messages. Sensory Communication WA Rosenblith 217–34 Cambridge, MA: MIT Press
    [Google Scholar]
  14. Bartels A, Logothetis NK. 2010. Binocular rivalry: a time dependence of eye and stimulus contributions. J. Vis. 10:123
    [Google Scholar]
  15. Berkeley G. 1709. An Essay Towards a New Theory of Vision Dublin: Aaron Rhames
  16. Blake R, Logothetis NK. 2002. Visual competition. Nat. Rev. Neurosci. 3:13–21
    [Google Scholar]
  17. Bloj MG, Kersten D, Hurlbert AC. 1999. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402:877–79
    [Google Scholar]
  18. Boring EG. 1942. Sensation and Perception in the History of Experimental Psychology New York: Appleton-Century-Crofts
  19. Brascamp JW, Blake R. 2012. Inattention abolishes binocular rivalry: perceptual evidence. Psychol. Sci. 23:101159–67
    [Google Scholar]
  20. Brascamp JW, Cuthbert P, Ling S 2020. Conflict defined by global gestalt can modulate binocular rivalry suppression. J. Vis. 20:133
    [Google Scholar]
  21. Brascamp JW, Knapen T, Kanai R, Ee R, Berg A. 2007. Flash suppression and flash facilitation in binocular rivalry. J. Vis. 7:1212
    [Google Scholar]
  22. Brascamp JW, Knapen T, Kanai R, Noest A, Ee R, Berg A. 2008. Multi-timescale perceptual history resolves visual ambiguity. PLOS ONE 3:1e1497
    [Google Scholar]
  23. Brascamp JW, Pearson J, Blake R, Berg A. 2009. Intermittent ambiguous stimuli: implicit memory causes periodic perceptual alternations. J. Vis. 9:33
    [Google Scholar]
  24. Breese BB. 1899. On inhibition. Psychol. Rev. Monogr. Suppl. 3:1–65
    [Google Scholar]
  25. Brunswik E, Kamiya J. 1953. Ecological cue-validity of “proximity” and of other Gestalt factors. Am. J. Psychol. 66:20–32
    [Google Scholar]
  26. Carpenter G, Grossberg S 2003. Adaptive resonance theory. The Handbook of Brain Theory and Neural Networks MA Arbib 87–90. Cambridge, MA: MIT Press, 2nd ed..
    [Google Scholar]
  27. Casati R, Cavanagh P. 2019. The Visual World of Shadows Cambridge, MA: MIT Press
  28. Castellotti S, Conti M, Feitosa-Santana C, Del Viva MM 2020. Pupillary response to representations of light in paintings. J. Vis. 20:1014
    [Google Scholar]
  29. Cavanagh P. 2011. Visual cognition. Vis. Res. 51:131538–51
    [Google Scholar]
  30. Chopin A, Mamassian P. 2012. Predictive properties of visual adaptation. Curr. Biol. 22:7622–26
    [Google Scholar]
  31. Christiansen JH, D'Antona AD, Shevell SK 2017. Chromatic interocular-switch rivalry. J. Vis. 17:59
    [Google Scholar]
  32. Creed RS. 1935. Observations on binocular fusion and rivalry. J. Physiol. 84:381–92
    [Google Scholar]
  33. DeBruine L, Welling L, Jones B, Little A. 2010. Opposite effects of visual versus imagined presentation of faces on subsequent sex perception. Vis. Cogn. 18:6816–28
    [Google Scholar]
  34. Diaz-Caneja E. 1928. Sur l'alternance binoculaire. Ann. Ocul 165:721–31
    [Google Scholar]
  35. Dieter K, Brascamp J, Tadin D, Blake R. 2016. Does visual attention drive the dynamics of bistable perception?. Atten. Percept. Psychophys. 78:71861–73
    [Google Scholar]
  36. Doerschner K, Fleming RW, Yilmaz O, Schrater PR, Hartung B, Kersten D. 2011. Visual motion and the perception of surface material. Curr. Biol. 21:232010–16
    [Google Scholar]
  37. Driver J, Davis G, Russell C, Turatto M, Freeman E 2001. Segmentation, attention and phenomenal visual objects. Cognition 80:1–261–95
    [Google Scholar]
  38. D'Zmura M, Lennie P 1986. Mechanisms of color constancy. J. Opt. Soc. Am. A 3:1662–72
    [Google Scholar]
  39. Elder J, Goldberg R. 2002. Ecological statistics of Gestalt laws for the perceptual organization of contours. J. Vis. 2:45
    [Google Scholar]
  40. Ernst M, Banks M. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:6870429–33
    [Google Scholar]
  41. Ernst M, Bülthoff H. 2004. Merging the senses into a robust percept. Trends Cogn. Sci. 8:4162–69
    [Google Scholar]
  42. Fischer J, Whitney D. 2014. Serial dependence in visual perception. Nat. Neurosci 17:5738–43
    [Google Scholar]
  43. Fiser J, Berkes P, Orbán G, Lengyel M. 2010. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14:119–30
    [Google Scholar]
  44. Foster DH. 2011. Color constancy. Vis. Res. 51:674–700
    [Google Scholar]
  45. Freeman E, Driver J. 2006. Subjective appearance of ambiguous structure-from-motion can be driven by objective switches of a separate less ambiguous context. Vis. Res. 46:234007–23
    [Google Scholar]
  46. Friston K. 2005. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B 360: 1456.815–36
    [Google Scholar]
  47. Fritsche M, Mostert P, Lange F. 2017. Opposite effects of recent history on perception and decision. Curr. Biol. 27:4590–95
    [Google Scholar]
  48. Geisler WS, Perry JS, Super BJ, Gallogly DP. 2001. Edge co-occurence in natural images predicts contour grouping performance. Vis. Res. 41:711–24
    [Google Scholar]
  49. Gregory R. 1980. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond. B 290:1038181–97
    [Google Scholar]
  50. Gregory RL. 1997. Knowledge in perception and illusion. Philos. Trans. R. Soc. Lond. B 352:1121–28
    [Google Scholar]
  51. Grossmann J, Dobbins A. 2003. Differential ambiguity reduces grouping of metastable objects. Vis. Res. 43:4359–69
    [Google Scholar]
  52. Hatfield G 2002. Perception as unconscious inference. Perception and the Physical World D Heyer, R Mausfeld 115–44 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  53. Hatfield G, Epstein W. 1979. The sensory core and the medieval foundations of early modern perceptual theory. Isis 70:3363–84
    [Google Scholar]
  54. Hillis J, Watt S, Landy M, Banks M. 2004. Slant from texture and disparity cues: optimal cue combination. J. Vis. 4:121
    [Google Scholar]
  55. Hochberg J. 1981. On cognition in perception: perceptual coupling and unconscious inference. Cognition 10:1–3127–34
    [Google Scholar]
  56. Holmes DJ, Hancock S, Andrews TJ. 2006. Independent binocular integration for form and color. Vis. Res. 46:665–77
    [Google Scholar]
  57. Hong SW, Shevell SK. 2008. Binocular rivalry between identical retinal stimuli with an induced color difference. Vis. Neurosci. 25:361–64
    [Google Scholar]
  58. Hong SW, Shevell SK. 2009. Color binding errors during rivalrous suppression of form. Psychol. Sci. 20:1084–91
    [Google Scholar]
  59. Howard I. 1996. Alhazen's neglected discoveries of visual phenomena. Perception 25:101203–17
    [Google Scholar]
  60. Howard I. 2012. Perceiving in Depth, Vol. 3: Other Methods of Depth Perception Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  61. Huber D, O'Reilly R. 2003. Persistence and accommodation in short-term priming and other perceptual paradigms: temporal segregation through synaptic depression. Cogn. Sci. 27:3403–30
    [Google Scholar]
  62. Jazayeri M, Movshon JA. 2006. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9:690–96
    [Google Scholar]
  63. Kanai R, Verstraten F. 2005. Perceptual manifestations of fast neural plasticity: motion priming, rapid motion aftereffect and perceptual sensitization. Vis. Res. 45:25–263109–16
    [Google Scholar]
  64. Kim I, Hong SW, Shevell SK, Shim WM 2020. Neural representations of perceptual color experience emerge along the human visual hierarchy. PNAS 117:13145–50
    [Google Scholar]
  65. Kleffner D, Ramachandran V. 1992. On the perception of shape from shading. Percept. Psychophys. 52:118–36
    [Google Scholar]
  66. Klink P, Noest A, Holten V, Berg A, Wezel R. 2009. Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling. J. Vis. 9:1020
    [Google Scholar]
  67. Kovács I, Papathomas TV, Yang M, Fehér Á 1996. When the brain changes its mind: interocular grouping during binocular rivalry. PNAS 93:15508–11
    [Google Scholar]
  68. Lamme V, Zipser K, Spekreijse H 1998. Figure-ground activity in primary visual cortex is suppressed by anesthesia. PNAS 95:63263–68
    [Google Scholar]
  69. Lee SH, Blake R. 1999. Rival ideas about binocular rivalry. Vis. Res. 39:1447–54
    [Google Scholar]
  70. Lee T, Mumford D. 2003. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20:71434–48
    [Google Scholar]
  71. Leopold D, Wilke M, Maier A, Logothetis N. 2002. Stable perception of visually ambiguous patterns. Nat. Neurosci. 5:6605–9
    [Google Scholar]
  72. Lindberg DC. 1976. Theories of Vision from Al-Kindi to Kepler Chicago: Univ. Chicago Press
  73. Logothetis N, Leopold D, Sheinberg D 1996. What is rivalling during binocular rivalry?. Nature 380:621–24
    [Google Scholar]
  74. Long GM, Toppino TC. 1994. Adaptation effects and reversible figures: a comment on Horlitz and O'Leary. Percept. Psychophys. 56:5605–10
    [Google Scholar]
  75. Long GM, Toppino TC. 2004. Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychol. Bull. 130:748–68
    [Google Scholar]
  76. Long GM, Toppino TC, Mondin G. 1992. Prime time: fatigue and set effects in the perception of reversible figures. Percept. Psychophys. 52:6609–16
    [Google Scholar]
  77. Mack A, Tang B, Tuma R, Kahn S, Rock I. 1992. Perceptual organization and attention. Cogn. Psychol. 24:4475–501
    [Google Scholar]
  78. Maloney RT, Lam SK, Clifford CWG. 2013. Colour misbinding during motion rivalry. Biol. Lett. 9:20120899
    [Google Scholar]
  79. Maniatis LM 2017. Symmetry and uprightness in visually perceived forms. The Oxford Compendium of Visual Illusions AG Shapiro, D Todorovic 234–37 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  80. Marlow PJ, Anderson BL. 2016. Motion and texture shape cues modulate perceived material properties. J. Vis. 16:15
    [Google Scholar]
  81. Matthews GB 1978. A medieval theory of vision. Studies in Perception: Interrelations in the History of Philosophy of Science PK Machamer, RG Turnbull 186–99 Columbus: Ohio State Univ. Press
    [Google Scholar]
  82. Maus G, Chaney W, Liberman A, Whitney D. 2013. The challenge of measuring long-term positive aftereffects. Curr. Biol. 23:10R438–39
    [Google Scholar]
  83. McGurk H, MacDonald J. 1976. Hearing lips and seeing voices. Nature 264:746–48
    [Google Scholar]
  84. Meyering TC. 1989. Historical Roots of Cognitive Science: The Rise of a Cognitive Theory of Perception from Antiquity to the Nineteenth Century Berlin: Springer
  85. Mumford D. 1992. On the computational architecture of the neocortex. Biol. Cybernet. 66:3241–51
    [Google Scholar]
  86. Murray RF. 2021. Lightness perception in complex scenes. Annu. Rev. Vis. Sci. 7:417–36
    [Google Scholar]
  87. Necker L. 1832. Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond. Edinb. Dublin Philos. Mag. J. Sci 1:5329–37
    [Google Scholar]
  88. Noest A, Ee R, Nijs M, Wezel R. 2007. Percept-choice sequences driven by interrupted ambiguous stimuli: a low-level neural model. J. Vis. 7:810
    [Google Scholar]
  89. Oruç İ, Barton J. 2010. A novel face aftereffect based on recognition contrast thresholds. Vis. Res. 50:181845–54
    [Google Scholar]
  90. O'Shea RP. 2011. Binocular rivalry stimuli are common but rivalry is not. Front. Hum. Neurosci. 5:148
    [Google Scholar]
  91. O'Shea RP, Parker A, La Rooy D, Alais D 2009. Monocular rivalry exhibits three hallmarks of binocular rivalry: evidence for common processes. Vis. Res. 49:671–81
    [Google Scholar]
  92. Ossa-Richardson A. 2019. The History of Ambiguity Princeton, NJ: Princeton Univ. Press
  93. Paffen C, Tadin D, Pas S, Blake R, Verstraten F. 2006. Adaptive center-surround interactions in human vision revealed during binocular rivalry. Vis. Res. 46:5599–604
    [Google Scholar]
  94. Palmer S. 1999. Vision Science: From Photons to Phenomenology Cambridge, MA: MIT Press
  95. Parker D. 1972. Contrast and size variables and the tilt after-effect. Q. J. Exp. Psychol. 24:11–7
    [Google Scholar]
  96. Pastukhov A, Braun J. 2008. A short-term memory of multi-stable perception. J. Vis. 8:137
    [Google Scholar]
  97. Pastukhov A, Füllekrug J, Braun J. 2013a. Sensory memory of structure-from-motion is shape-specific. Atten. Percept. Psychophys. 75:61215–29
    [Google Scholar]
  98. Pastukhov A, Lissner A, Braun J. 2013b. Perceptual adaptation to structure-from-motion depends on the size of adaptor and probe objects, but not on the similarity of their shapes. Atten. Percept. Psychophys. 76:2473–88
    [Google Scholar]
  99. Pearson J, Clifford C. 2005a. Mechanisms selectively engaged in rivalry: normal vision habituates, rivalrous vision primes. Vis. Res. 45:6707–14
    [Google Scholar]
  100. Pearson J, Clifford C. 2005b. When your brain decides what you see. Psychol. Sci. 16:516–19
    [Google Scholar]
  101. Pearson J, Clifford C, Tong F. 2008. The functional impact of mental imagery on conscious perception. Curr. Biol. 18:13982–86
    [Google Scholar]
  102. Peiso J, Shevell SK. 2020. Seeing fruit on trees: enhanced perceptual dissimilarity from multiple ambiguous neural representations. J. Opt. Soc. Am. A 37:A255–61
    [Google Scholar]
  103. Penny W. 2012. Bayesian models of brain and behaviour. Int. Sch. Res. Not. 2012:785791
    [Google Scholar]
  104. Piantadosi ST, Tily H, Gibson E. 2012. The communicative function of ambiguity in language. Cognition 122:280–91
    [Google Scholar]
  105. Polat U, Sagi D. 1993. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vis. Res. 33:7993–99
    [Google Scholar]
  106. Poort J, Raudies F, Wannig A, Lamme V. 2012. The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron 75:1143–56
    [Google Scholar]
  107. Ramachandran VS, Anstis SM. 1983. Perceptual organization in moving patterns. Nature 304:529–31
    [Google Scholar]
  108. Rao R, Ballard D. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:179–87
    [Google Scholar]
  109. Roelfsema P. 2006. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29:203–27
    [Google Scholar]
  110. Rushton WAH. 1972. Pigments and signals in colour vision. J. Physiol. 220:31–31P
    [Google Scholar]
  111. Sabra AI 1978. Sensation and inference in Alhazen's theory of visual perception. Studies in Perception: Interrelations in the History of Philosophy of Science PK Machamer, RG Turnbull 160–85 Columbus: Ohio State Univ. Press
    [Google Scholar]
  112. Schleidt W, Shalter M, Moura-Neto H. 2011. The hawk/goose story: the classical ethological experiments of Lorenz and Tinbergen, revisited. J. Comp. Psychol. 125:2121–33
    [Google Scholar]
  113. Scholte H, Witteveen S, Spekreijse H, Lamme V. 2006. The influence of inattention on the neural correlates of scene segmentation. Brain Res 1076:1106–15
    [Google Scholar]
  114. Schwartz O, Hsu A, Dayan P. 2007. Space and time in visual context. Nat. Rev. Neurosci. 8:7522–35
    [Google Scholar]
  115. Schwiedrzik C, Ruff C, Lazar A, Leitner F, Singer W, Melloni L. 2014. Untangling perceptual memory: Hysteresis and adaptation map into separate cortical networks. Cereb. Cortex 24:51152–64
    [Google Scholar]
  116. Shams L, Kamitani Y, Shimojo S. 2000. What you see is what you hear. Nature 408:6814788
    [Google Scholar]
  117. Shepard RN. 1990. Mindsights New York: W. H. Freeman
  118. Shevell SK 2003. Color appearance. The Science of Color SK Shevell 149–90 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  119. Shevell SK. 2019. Ambiguous chromatic neural representations: perceptual resolution by grouping. Curr. Opin. Behav. Sci. 30:194–202
    [Google Scholar]
  120. Shevell SK, Kingdom FAA. 2008. Color in complex scenes. Annu. Rev. Psychol. 59:143–66
    [Google Scholar]
  121. Shimojo S, Nakayama K. 1990. Real world occlusion constraints and binocular rivalry. Vis. Res. 30:169–80
    [Google Scholar]
  122. Silver MA, Logothetis NK. 2007. Temporal frequency and contrast tagging bias the type of competition in interocular switch rivalry. Vis. Res. 47:532–43
    [Google Scholar]
  123. Slezak E, Shevell SK. 2018. Perceptual resolution of color for multiple chromatically ambiguous objects. J. Opt. Soc. Am. A 35:B85–91
    [Google Scholar]
  124. Smith VC, Pokorny J. 2003. Color matching and color discrimination. The Science of Color SK Shevell 103–48 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  125. Stuit SM, Paffen CLE, van der Smagt MJ, Verstraten FAJ. 2011. What is grouping during binocular rivalry?. Front. Hum. Neurosci. 5:117
    [Google Scholar]
  126. Tadin D, Lappin J, Gilroy L, Blake R. 2003. Perceptual consequences of centre–surround antagonism in visual motion processing. Nature 424:6946312–15
    [Google Scholar]
  127. Tanaka Y, Sagi D 1998. A perceptual memory for low-contrast visual signals. PNAS 95:2112729–33
    [Google Scholar]
  128. Tong F, Nakayama K, Vaughan J, Kanwisher N. 1998. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21:4753–59
    [Google Scholar]
  129. Toscani M, Gegenfurtner KR, Doerschner K. 2017. Differences in illumination estimation in #thedress. J. Vis. 17:122
    [Google Scholar]
  130. Treisman A. 1962. Binocular rivalry and stereoscopic depth perception. Q. J. Exp. Psychol. 14:23–29
    [Google Scholar]
  131. Troje NF 2017. The Kayahara silhouette illusion. The Oxford Compendium of Visual Illusions AG Shapiro, D Todorovic 582–85 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  132. Tsutsui K-I, Sakata H, Naganuma T, Taira M. 2002. Neural correlates for perception of 3D surface orientation from texture gradient. Science 298:409–12
    [Google Scholar]
  133. Von der Heydt R 2004. Image parsing mechanisms of the visual cortex. The Visual Neurosciences LM Chalupa, JS Werner 665–80 Cambridge, MA: MIT Press
    [Google Scholar]
  134. von Helmholtz H. 1867. Concerning the perceptions in general. Treatise on Physiological Optics III transl. JPC Southall New York: Dover, 3rd ed..
    [Google Scholar]
  135. Webster MA. 2020. The Verriest Lecture: adventures in blue and yellow. J. Opt. Soc. Am. A 37:V1–14
    [Google Scholar]
  136. Webster MA, Mollon JD. 1997. Adaptation and the color statistics of natural images. Vis. Res. 37:3283–98
    [Google Scholar]
  137. Wheatstone C. 1838. Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128:371–79
    [Google Scholar]
  138. Winawer J, Huk A, Boroditsky L 2010. A motion aftereffect from visual imagery of motion. 114276–84
  139. Wolfe J. 1984. Reversing ocular dominance and suppression in a single flash. Vis. Res. 24:5471–78
    [Google Scholar]
  140. Xing J, Heeger D. 2001. Measurement and modeling of center-surround suppression and enhancement. Vis. Res. 41:5571–83
    [Google Scholar]
  141. Yang JN, Maloney LT. 2001. Illuminant cues in surface color perception: tests of three candidate cues. Vis. Res. 41:2581–600
    [Google Scholar]
  142. Young M, Landy M, Maloney L. 1993. A perturbation analysis of depth perception from combinations of texture and motion cues. Vis. Res. 33:182685–96
    [Google Scholar]
  143. Zhang P, Jamison K, Engel S, He B, He S. 2011. Binocular rivalry requires visual attention. Neuron 71:2362–69
    [Google Scholar]
  144. Zhang X, Qiu J, Zhang Y, Han S, Fang F. 2014. Misbinding of color and motion in human visual cortex. Curr. Biol. 24:1354–60
    [Google Scholar]
  145. Zipf G. 1949. Human Behavior and the Principle of Least Effort New York: Addison-Wesley
  146. Zou J, He S, Zhang P 2016. Binocular rivalry from invisible patterns. PNAS 113:308408–13
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-125929
Loading
/content/journals/10.1146/annurev-vision-100419-125929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error