1932

Abstract

The quantification of vision impairments dates to the mid-nineteenth century with standardization of visual acuity and visual field measures in the eye clinic. Attempts to quantify the impact of vision impairments on patients’ lives did not receive clinical attention until the close of the twentieth century. Although formal psychometric theories and measurement instruments were well developed and commonplace in educational testing, as well as in various areas in psychology and rehabilitation medicine, the late start applying them to clinical vision research created a vacuum that invited poorly developed and poorly functioning instruments and analytic methods. Although this research is still burdened with legacy instruments, mandates by regulatory agencies to include the patients’ perspectives and preferences in the evaluation of clinical outcomes have stimulated the development and validation of self-report instruments grounded in modern psychometric theory and methods. Here I review the progress and accomplishments of applying modern psychometrics to clinical vision research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100620-022121
2022-09-15
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100620-022121.html?itemId=/content/journals/10.1146/annurev-vision-100620-022121&mimeType=html&fmt=ahah

Literature Cited

  1. AAO (Am. Acad. Ophthalmol.) 2017. Vision Rehabilitation Preferred Practice Pattern San Francisco: AAO
    [Google Scholar]
  2. Adams RJ, Wu ML, Wilson M. 2012. The Rasch rating model and the disordered threshold controversy. Educ. Psychol. Meas. 72:547–73
    [Google Scholar]
  3. Adeyemo O, Jeter PE, Rozanski C, Arnold E, Dalvin LA et al. 2017. Living with ultra-low vision: an inventory of self-reported visually guided activities by individuals with profound visual impairment. Transl. Vis. Sci. Technol. 8:10
    [Google Scholar]
  4. Ahmadian L, Massof R. 2008. Does functional vision behave differently in low vision patients with diabetic retinopathy? A case-matched study. Investig. Ophthalmol. Vis. Sci. 49:4051–57
    [Google Scholar]
  5. Aitchison J, Silvey SD. 1957. The generalization of probit analysis to the case of multiple responses. Biometrika 44:131–40
    [Google Scholar]
  6. Altangerel U, Spaeth GL, Steinmann WC. 2006. Assessment of function related to vision (AFREV). Ophthalmic Epidemiol. 13:67–80
    [Google Scholar]
  7. Andrich D. 1978. A rating formulation for ordered response categories. Psychometrika 43:561–73
    [Google Scholar]
  8. Andrich D. 1995a. Distinctive and incompatible properties of two common classes of IRT models for graded responses. Appl. Psychol. Meas. 19:101–19
    [Google Scholar]
  9. Andrich D. 1995b. Further remarks on nondichotomization of graded responses. Psychometrika 60:37–46
    [Google Scholar]
  10. Andrich D. 1995c. Models for measurement, precision, and the nondichotomization of graded responses. Psychometrika 60:7–26
    [Google Scholar]
  11. Andrich D. 2013. An expanded derivation of the threshold structure of the polytomous Rasch model that dispels any “threshold disorder controversy. .” Educ. Psychol. Meas. 73:78–124
    [Google Scholar]
  12. AOA (Am. Optometric Assoc.) 2007. Optometric Clinical Practice Guideline: Care of the Patient with Visual Impairment (Low Vision Rehabilitation) St. Louis, MO: AOA
    [Google Scholar]
  13. Aryadoust V, Tan HAH, Ng YL. 2019. A scientometric review of Rasch measurement: the rise and progress of a specialty. Front. Psychol. 10:2197
    [Google Scholar]
  14. Attneave F. 1949. A method of graded dichotomies for the scaling of judgments. Psychol. Rev. 56:334–40
    [Google Scholar]
  15. Bambara JK, Wadley V, Owsley C, Martin RC, Porter C, Dreer LE. 2005. Family functioning and low vision: a systematic review. J. Vis. Impair. Blind. 103:137–49
    [Google Scholar]
  16. Bernth-Petersen P. 1981. Visual functioning in cataract patients. Methods of measuring and results. Acta Ophthalmol 59:198–205
    [Google Scholar]
  17. Black NM, Snell AC, Patton J, Gradle HS. 1925. Report of Committee on Compensation for Eye Injuries. JAMA 85:113–15
    [Google Scholar]
  18. Bond TG, Fox CM. 2015. Applying the Rasch Model: Fundamental Measurement in the Human Sciences New York: Routledge. , 3rd ed..
    [Google Scholar]
  19. Bradley C, Massof RW. 2018. Method of successive dichotomizations: an improved method for estimating measures of latent variables from rating scale data. PLOS ONE 13:e0206106
    [Google Scholar]
  20. Bradley C, Massof RW. 2019. Estimating measures of latent variables from m-alternative forced choice responses. PLOS ONE 14:e0225581
    [Google Scholar]
  21. Brazier J, Roberts J, Deverill M. 2002. The estimation of a preference-based measure of health from the SF-36. J. Health Econ. 21:271–92
    [Google Scholar]
  22. Brown MM, Brown GC, Sharma S, Landy J. 2003. Healthcare economic analyses and value-based medicine. Surv. Ophthalmol. 48:204–23
    [Google Scholar]
  23. Burmedi D, Becker S, Heyl V, Wahl HW, Himmelsbach I. 2002. Emotional and social consequences of age-related low vision: a narrative review. Vis. Impair. Res. 4:47–71
    [Google Scholar]
  24. Casten RC, Rovner BW. 2013. Update on depression and age-related macular degeneration. Curr. Opin. Ophthalmol. 24:239–43
    [Google Scholar]
  25. CDC (Cent. Dis. Control Prev.) 2004. Prevalence of visual impairment and selected eye diseases among persons aged ≥50 years with and without diabetes – United States; 2002. Morb. Mortal. Wkly. Rep. 53:1069–71
    [Google Scholar]
  26. Chan T, Friedman DS, Bradley C, Massof R. 2018. Updated estimates of incidence and prevalence of visual impairment, low vision, and blindness in the U.S. JAMA Ophthalmol. 136:12–19
    [Google Scholar]
  27. Chiang PPC, Zheng Y, Wong TY, Lamoureux EL. 2013. Vision impairment and major causes of vision loss impacts on vision-specific functioning independent of socioeconomic factors. Ophthalmology 120:415–22
    [Google Scholar]
  28. Colenbrander A 2000. The visual system. Guides to the Evaluation of Permanent Impairment L Cocchiarella, BJ Andersson 277–304 Chicago: Am. Med. Assoc. Press. , 5th ed..
    [Google Scholar]
  29. Congdon N, O'Colmain B, Klaver CC, Klein T, Muñoz B et al. 2004. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122:477–85
    [Google Scholar]
  30. Crews JE, Campbell VA. 2001. Health conditions, activity limitations, and participation restrictions among older people with visual impairments. J. Vis. Impair. Blind. 95:453–67
    [Google Scholar]
  31. Culham LE, Chabra A, Rubin GS. 2004. Clinical performance of electronic, head-mounted low-vision devices. Ophthalmic Physiol. Opt. 24:281–90
    [Google Scholar]
  32. de Boer MR, Moll AC, de Vet HCW, Terwee CB, Volker-Dieben HJM, van Rens GHMB. 2004. Psychometric properties of vision-related quality of life questionnaires: a systematic review. Ophthalmic Physiol. Opt. 24:257–73
    [Google Scholar]
  33. Deemer AD, Bradley CK, Ross NC, Natale DM, Itthipanichpong R et al. 2018. Low vision enhancement with head-mounted video display systems: Are we there yet?. Optom. Vis. Sci. 95:694–703
    [Google Scholar]
  34. Deemer AD, Massof RW, Rovner BW, Casten RJ, Piersol CV. 2017. Functional outcomes of the Low Vision Depression Prevention Trial in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 58:1514–20
    [Google Scholar]
  35. Deemer AD, Swenor BK, Fujiwara K, Deremeik JT, Ross NC et al. 2019. Preliminary evaluation of two digital image processing strategies for head-mounted magnification for low vision patients. Transl. Vis. Sci. Technol. 8:23
    [Google Scholar]
  36. Dickinson CM, Taylor J. 2011. The effect of simulated visual impairment on speech-reading ability. Ophthalmic Physiol. Opt. 31:249–57
    [Google Scholar]
  37. Dougherty BE, Nichols JJ, Nichols KK. 2011. Rasch analysis of the Ocular Surface Disease Index (OSDI). Investig. Ophthalmol. Vis. Sci. 52:8630–35
    [Google Scholar]
  38. EMA (Eur. Med. Agencies) 2005. Reflection paper on the regulatory guidance for the use of health-related quality of life (HRQL) measures in the evaluation of medicinal products Pap. London: EMA https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-regulatory-guidance-use-healthrelated-quality-life-hrql-measures-evaluation_en.pdf
    [Google Scholar]
  39. EuroQoL Group 1990. EuroQoL - a new facility for the measurement of health-related quality of life. Health Policy 16:199–208
    [Google Scholar]
  40. FDA (US Food Drug Adm.) 2009. Guidance for industry on patient-reported outcome measures: use in medical product development to support labeling claims Rep. Rockville, MD, FDA: https://www.regulations.gov/docket/FDA-2006-D-0362
    [Google Scholar]
  41. FDA (US Food Drug Adm.) 2016. Patient preference information: voluntary submission, review in premarket approval applications, humanitarian device exemption applications, and de novo request, and inclusion in decision summaries and device labeling Rep. Rockville, MD: FDA https://www.fda.gov/media/92593/download
    [Google Scholar]
  42. Feeny D, Furlong W, Torrance GW, Goldsmith CH, Zhu Z et al. 2002. Multiattribute and single-attribute utility functions for the Health Utilities Index Mark 3 System. Med. Care 40:113–28
    [Google Scholar]
  43. Finger RP, Fenwick E, Marella M, Dirani M, Holz FG et al. 2011. The impact of vision impairment on vision-specific quality of life in Germany. Investig. Ophthalmol. Vis. Sci. 52:3613–19
    [Google Scholar]
  44. Frick KD, Massof RW. 2009. Use of global visual acuity data in a time trade-off approach to calculate the cost utility of cataract surgery: Methodological issues of cost-utility comparisons. Arch. Ophthalmol. 127:1205–6
    [Google Scholar]
  45. Friedman DS, Muñoz B, Roche KB, Massof R, Broman A, West SK. 2005. Poor uptake of cataract surgery in nursing home residents: the Salisbury Eye Evaluation in Nursing Home Groups study. Arch. Ophthalmol. 123:1581–87
    [Google Scholar]
  46. Garamendi E, Pesudovs K, Stevens MJ, Elliott DB. 2006. The refractive status and vision profile: evaluation of psychometric properties and comparison of Rasch and summated Likert-scaling. Vis. Res. 46:1375–83
    [Google Scholar]
  47. Giorgi RG, Woods RL, Peli E. 2000. Clinical and laboratory evaluation of peripheral prism glasses for hemianopia. Optom. Vis. Sci. 86:492–502
    [Google Scholar]
  48. Gleeson M, Sherrington C, Keay L. 2014. Exercise and physical training improve physical function in older adults with visual impairments but their effect on falls is unclear: a systematic review. J. Physiother. 60:130–35
    [Google Scholar]
  49. Gobeille M, Bradley C, Goldstein JE, Massof RW. 2021. Calibration of the Activity Inventory item bank: a patient-reported outcome measurement instrument for low vision rehabilitation. Transl. Vis. Sci. Technol. 10:12
    [Google Scholar]
  50. Gobeille M, Malkin A, Jamara R, Ross NC. 2018. Clinical outcomes of low vision rehabilitation delivered by a mobile clinic. Ophthalmic Physiol. Opt. 38:193–202
    [Google Scholar]
  51. Goldstein JE, Bradley C, Gross A, Jackson ML, Bressler NM, Massof RW. 2020. Calibration of the NEI VFQ-25 questionnaire in common retinal diseases. Investig. Ophthalmol. Vis. Sci. 61:2655 (Abstr.)
    [Google Scholar]
  52. Goldstein JE, Chun MW, Fletcher DC, Deremeik JT, Massof RW. 2014. Visual ability of patients seeking outpatient low vision services in the United States. JAMA Ophthalmol. 132:1169–77
    [Google Scholar]
  53. Goldstein JE, Fenwick E, Finger RP, Gothwal V, Jackson ML et al. 2018. Calibrating the Impact of Vision Impairment (IVI): creation of a sample-independent visual function measure for patient-centered outcomes research. Transl. Vis. Sci. Technol. 7:38
    [Google Scholar]
  54. Goldstein JE, Jackson ML, Fox SM, Dermeik JT, Massof RW. 2015. Clinically meaningful rehabilitation outcomes of low vision patients served by outpatient clinical centers. JAMA Ophthalmol. 133:762–69
    [Google Scholar]
  55. Goldstein JE, Massof RW, Deremeik JT, Braudway S, Jackson ML et al. 2012. Baseline traits of low vision patients served by private outpatient clinical centers in the United States. Arch. Ophthalmol. 130:10228–37
    [Google Scholar]
  56. González-Pérez M, Pérez-Garmendia C, Barrio AR, García-Montero M, Antona B. 2020. Spanish cross-cultural adaptation and Rasch analysis of the Convergence Insufficiency Symptom Survey (CISS). Transl. Vis. Sci. Technol. 9:23
    [Google Scholar]
  57. Gothwal VK, Pesudovs K, Wright TA, McMonnies CW. 2010. McMonnies questionnaire: enhancing screening for dry eye syndromes with Rasch analysis. Investig. Ophthalmol. Vis. Sci. 51:1401–7
    [Google Scholar]
  58. Grover LL. 2008. Evaluation and management of the patient with low vision: entrée into vision rehabilitation. Albert & Jakobiec's Principles and Practice of Ophthalmology RW Massof 5353–63 Philadelphia: Saunders. , 3rd ed..
    [Google Scholar]
  59. Guttman L. 1944. A basis for scaling quantitative data. Am. Soc. Rev. 9:139–50
    [Google Scholar]
  60. Guttman L. 1950. The basis of scalogram analysis. Measurement and Prediction SA Stouffer 60–90 New York: Wiley
    [Google Scholar]
  61. Han T, Han X, Shang J, Zeng L, Zhou L. 2020. Quality of life impact of refractive correction (QIRC) results three years after SMILE and FS-LASIK. Health Qual. . Life Outcomes 18:107
    [Google Scholar]
  62. Hassell JB, Lamoureux EL, Keeffe JE. 2006. Impact of age related macular degeneration on quality of life. Br. J. Ophthalmol. 90:593–96
    [Google Scholar]
  63. Hawthorne G, Richardson J, Osborne R. 1999. The Assessment of Quality of Life (AQoL) instrument: a psychometric measure of health-related quality of life. Qual. Life Res. 8:209–24
    [Google Scholar]
  64. Heitz RP. 2014. The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Front. Neurosci. 8:150
    [Google Scholar]
  65. Jansen PGW, Roskam EE. 1986. Latent trait models and dichotomization of graded responses. Psychometrika 51:69–91
    [Google Scholar]
  66. Kaplan RM, Bush JW, Berry CC. 1979. Health status index: category rating versus magnitude estimation for measuring levels of well-being. Med. Care 17:501–25
    [Google Scholar]
  67. Karakus S, Akpek EK, Agrawal D, Massof RW. 2018. Validation of an objective measure of dry eye severity. Transl. Vis. Sci. Technol. 7:26
    [Google Scholar]
  68. Kempen GI, Zijlstra GA. 2014. Clinically relevant symptoms of anxiety and depression in low-vision community-living older adults. Am. J. Geriatr. Psychiatry 22:309–13
    [Google Scholar]
  69. Khadka J, Fenwick E, Lamoureux E, Pesudovs K. 2016. Methods to develop the Eye-tem Bank to measure ophthalmic quality of life. Optom. Vis. Sci. 93:1485–94
    [Google Scholar]
  70. Khadka J, McAlinden C, Pesudovs K. 2013. Quality assessment of ophthalmic questionnaires: review and recommendations. Optom. Vis. Sci. 90:720–44
    [Google Scholar]
  71. Klein BE, Klein R, Lee KE, Cruickshanks KJ. 1998. Performance-based and self-assessed measures of visual function as related to history of falls, hip fractures, and measured gait time. The Beaver Dam Eye Study. Ophthalmology 105:160–64
    [Google Scholar]
  72. Kumaran N, Ali RR, Tyler NA, Bainbridge JWB, Michaelides M, Rubin GS. 2020. Validation of a vision-guided mobility assessment for RPE65-associated retinal dystrophy. Transl. Vis. Sci. Technol. 9:5
    [Google Scholar]
  73. Kymes SM, Lee BS. 2007. Preference-based quality of life measures in people with visual impairment. Optom. Vis. Sci. 84:809–16
    [Google Scholar]
  74. Lamoureux E, Pesudovs K. 2011. Vision-specific quality-of-life research: a need to improve the quality. Am. J. Ophthalmol. 151:195–97
    [Google Scholar]
  75. Lamoureux EL, Hassell JB, Keeffe JE. 2004. The determinants of participation in activities of daily living in people with impaired vision. Am. J. Ophthalmol. 137:25–70
    [Google Scholar]
  76. Lamoureux EL, Pallant JF, Pesudovs K, Rees G, Hassell JB, Keeffee JE. 2007. The effectiveness of low vision rehabilitation on participation in daily living and quality of life. Investig. Ophthalmol. Vis. Sci. 48:1476–82
    [Google Scholar]
  77. Lange R, Kumagai A, Weiss S, Zaffke KB, Day S. 2021. Vision-related quality of life in adults with severe peripheral vision loss: a qualitative interview study. J. Patient Rep. Outcomes 135:17
    [Google Scholar]
  78. Lee BS, Kymes SM, Nease RF Jr., Sumner W, Siegfried CJ, Gordon MO. 2008. The impact of anchor point on utilities for 5 common ophthalmic diseases. Ophthalmology 115:898–903
    [Google Scholar]
  79. Leske DA, Hatt SR, Liebermann L, Holmes JM. 2012. Evaluation of the Adult Strabismus-20 (AS-20) questionnaire using Rasch analysis. Investig. Ophthalmol. Vis. Sci. 53:2630–39
    [Google Scholar]
  80. Leske DA, Hatt SR, Liebermann L, Holmes JM. 2016. Lookup tables versus stacked Rasch analysis in comparing pre- and postintervention Adult Strabismus-20 data. Transl. Vis. Sci. Technol. 5:11
    [Google Scholar]
  81. Likert RA. 1932. A technique for the measurement of attitudes. Arch Psychol 140:55
    [Google Scholar]
  82. Liljas AEM, Carvalho LA, Papachristou E, DeOliveira C, Wannamethee SG et al. 2017. Self-reported vision impairment and incident prefrailty and frailty in English community-dwelling older adults: findings from a 4-year follow-up study. J. Epidemiol. Community Health 71:1053–58
    [Google Scholar]
  83. Lundstrom M, Behndig A, Kugelberg M, Montan P, Stenevi U, Pesudovs K. 2011. The outcome of cataract surgery measured with the Catquest-9SF. Acta Ophthalmol 89:718–23
    [Google Scholar]
  84. Maino JH 2001. Low vision and blindness rehabilitation in the VA: inpatient rehabilitation. Issues in Low Vision Rehabilitation: Service Delivery, Policy, and Funding RW Massof, L Lidoff 187–202 New York: AFB Press
    [Google Scholar]
  85. Malkin A, Foret L, Davis G, Fujiwara K, Smith T, Massof R. 2015. Comparison of low vision rehabilitation outcome measures. Investig. Ophthalmol. Vis. Sci. 56:7494 (Abstr.)
    [Google Scholar]
  86. Malkin AG, Goldstein JE, Massof RW. 2012. Interpretation of health and vision utilities in low vision patients. Optom. Vis. Sci. 89:288–95
    [Google Scholar]
  87. Malkin AG, Goldstein JE, Massof RW. 2017. Multivariable regression model of the EuroQol 5-Dimension Questionnaire in patients seeking outpatient low vision rehabilitation. Ophthalmic Epidemiol. 24:174–80
    [Google Scholar]
  88. Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Berry S, Hays RD. 2001. Development of the 25-item National Eye Institute visual function questionnaire. Arch. Ophthalmol. 119:1050–58
    [Google Scholar]
  89. Markowitz M. 2006. Occupational therapy intervention low vision rehabilitation. Can. J. Ophthalmol. 41:340–47
    [Google Scholar]
  90. Massof RW. 1995. A systems model for low vision rehabilitation. I. Basic concepts. Optom. Vis. Sci. 72:725–36
    [Google Scholar]
  91. Massof RW. 1998. A systems model for low vision rehabilitation. II. Measurement of vision disabilities. Optom. Vis. Sci. 75:349–73
    [Google Scholar]
  92. Massof RW. 2002a. A model of the prevalence and incidence of low vision and blindness among adults in the U.S. Optom. Vis. Sci. 79:31–38
    [Google Scholar]
  93. Massof RW. 2002b. The measurement of vision disability. Optom. Vis. Sci. 79:516–52
    [Google Scholar]
  94. Massof RW. 2004. Likert and Guttman scaling of visual function rating scale questionnaires. Ophthalmic Epidemiol. 11:381–99
    [Google Scholar]
  95. Massof RW. 2005. Application of stochastic measurement models to visual function rating scale questionnaires. Ophthalmic Epidemiol. 12:103–24
    [Google Scholar]
  96. Massof RW. 2011. Understanding Rasch and item response theory models: applications to the estimation and validation of interval latent trait measures from responses to rating scale questionnaires. Ophthalmic Epidemiol. 18:1–19
    [Google Scholar]
  97. Massof RW. 2012. Is the partial credit model a Rasch model?. J. Appl. Meas. 13:114–31
    [Google Scholar]
  98. Massof RW. 2014. A general theoretical framework for interpreting patient-reported outcomes estimated from ordinally scaled item responses. Stat. Methods Med. Res. 23:409–29
    [Google Scholar]
  99. Massof RW, Ahmadian L, Grover LL, Deremeik JT, Goldstein JE et al. 2007. The Activity Inventory: an adaptive visual function questionnaire. Optom. Vis. Sci. 84:763–74
    [Google Scholar]
  100. Massof RW, Fletcher DC. 2001. Evaluation of the NEI visual functioning questionnaire as an interval measure of visual ability in low vision. Vis. Res. 41:397–413
    [Google Scholar]
  101. Massof RW, Hsu CT, Baker FH, Barnett GD, Park WL et al. 2005a. Visual disability variables. I: The importance and difficulty of activity goals for a sample of low-vision patients. Arch. Phys. Med. Rehabil. 86:946–53
    [Google Scholar]
  102. Massof RW, Hsu CT, Baker FH, Barnett GD, Park WL et al. 2005b. Visual disability variables. II: The difficulty of tasks for a sample of low-vision patients. Arch. Phys. Med. Rehabil. 86:954–67
    [Google Scholar]
  103. Massof RW, Rubin GS. 2001. Visual function assessment questionnaires. Surv. Ophthalmol. 45:531–48
    [Google Scholar]
  104. Massof RW, Stelmack JA. 2013. Interpretation of low-vision rehabilitation outcome measures. Optom. Vis. Sci. 90:788–98
    [Google Scholar]
  105. Masters GN. 1982. A Rasch model for partial credit scoring. Psychometrika 47:149–74
    [Google Scholar]
  106. McCann RM, Jackson AJ, Stevenson M, Dempster M, McElnay JC, Cupples ME. 2012. Help needed in medication self-management for people with visual impairment: case-control study. Br. J. Gen. Pract. 62:530–37
    [Google Scholar]
  107. Mederios FA, Gracitelli CPB, Boer ER, Weinreb RN, Zangwill LM, Rosen PN. 2015. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology 122:293–301
    [Google Scholar]
  108. Nguyen AM, Arora KS, Swenor BK, Friedman DS, Ramulu PY. 2015. Physical activity restriction in age-related eye disease: a cross-sectional study exploring fear of falling as a potential mediator. BMC Geriatr 15:64
    [Google Scholar]
  109. Owsley C, McGwin G, Lee PP, Wasserman N, Searcey K. 2009. Characteristics of low vision rehabilitation services in the United States. Arch. Ophthalmol. 127:681–89
    [Google Scholar]
  110. Owsley C, McGwin G, Sloane ME, Stalvey BT, Wells J. 2001. Timed instrumental activities of daily living tasks: relationship to visual function in older adults. Optom. Vis. Sci. 78:350–59
    [Google Scholar]
  111. Pesudovs K. 2010. Item banking: a generational change in patient-reported outcome measurement. Optom. Vis. Sci. 87:285–93
    [Google Scholar]
  112. Pondorfer SG, Terheyden JH, Heinemann M, Wintergerst MWM, Holz FG, Finger RP. 2019. Association of vision-related quality of life function in age-related macular degeneration. Nat. Rep. 9:15326
    [Google Scholar]
  113. Radner W. 2017. Reading charts in ophthalmology. Graefes Arch. Clin. Exp. Ophthalmol. 255:1465–82
    [Google Scholar]
  114. Ramulu PY, van Landingham DW, Massof RW, Chan ES, Ferrucci L, Friedman DS. 2012. Fear of falling and visual field loss from glaucoma. Ophthalmology 119:1352–58
    [Google Scholar]
  115. Roskam EE. 1995. Graded responses and joining categories: a rejoinder to Andrich’ “Models for measurement, precision, and nondichotomization of graded responses. .” Psychometrika 60:27–35
    [Google Scholar]
  116. Roskam EE, Jansen PGW. 1989. Conditions for Rasch-dichotomizability of the unidimensional polytomous Rasch model. Psychometrika 54:317–32
    [Google Scholar]
  117. Rovner BW, Casten RJ, Hegel MT, Massof RW, Leiby BE et al. 2014. Low vision depression prevention trial in age-related macular degeneration: a randomized clinical trial. Ophthalmology 121:2204–11
    [Google Scholar]
  118. Russell PW, Sekuler R, Fetkenhour C. 1985. Visual function after pan-retinal photocoagulation: a survey. Diabetes Care 8:57–63
    [Google Scholar]
  119. Senra H, Barbosa F, Ferreira P, Vieira CR, Perrin PB et al. 2015. Psychologic adjustment to irreversible vision loss in adults: a systematic review. Ophthalmology 122:851–61
    [Google Scholar]
  120. Senthill MP, Khadka J, Pesudovs K. 2017. Assessment of patient-reported outcomes in retinal diseases: a systematic review. Surv. Ophthalmol. 62:546–82
    [Google Scholar]
  121. Sharma S, Brown GC, Brown MM, Hollands H, Robins R, Shah GK. 2002. Validity of the time trade-off and standard gamble methods of utility assessment in retinal patients. Br. J. Ophthalmol. 86:493–96
    [Google Scholar]
  122. Shaw JW, Johnson JA, Coons SJ. 2005. US valuation of the EQ-5D health states: development and testing of the D1 valuation model. Med. Care 43:203–20
    [Google Scholar]
  123. Sintonen H. 1993. Terveyteen liittyvän elämänlaadun mittaamisesta [Health related quality of life measures]. Sairaanhoitaja 4:17–19 (In Finnish)
    [Google Scholar]
  124. Steinberg EP, Tielsch JM, Schein OD, Javitt JC, Sharkey P et al. 1994. The VF-14, an index of functional impairment in patients with cataract. Arch. Ophthalmol. 112:630–38
    [Google Scholar]
  125. Stelmack JA, Stelmack TR, Massof RW. 2002. Measuring low vision rehabilitation outcomes with the NEI VFQ-25. Investig. Ophthalmol. Vis. Sci. 43:2859–68
    [Google Scholar]
  126. Stelmack JA, Szlyk JP, Stelmack TR, Demers-Turco P, Williams RT et al. 2004. Psychometric properties of the Veterans Affairs low-vision visual functioning questionnaire. Investig. Ophthalmol. Vis. Sci. 45:3919–28
    [Google Scholar]
  127. Stelmack JA, Szlyk JP, Stelmack TR, Demers-Turco P, Williams RT et al. 2006. Measuring outcomes of vision rehabilitation with the Veterans Affairs low vision visual functioning questionnaire. Investig. Ophthalmol. Vis. Sci. 47:3253–61
    [Google Scholar]
  128. Stelmack JA, Tang XC, Reda DJ, Moran D, Rinne S et al. 2007. The Veterans Affairs Low Vision Intervention Trial (LOVIT): design and methodology. Clin. Trials 4:650–60
    [Google Scholar]
  129. Stelmack JA, Tang XC, Reda DJ, Rinne S, Mancil RM, Massof RW. 2008. Outcomes of the Veterans Affairs Low Vision Intervention Trial (LOVIT). Arch. Ophthalmol. 126:608–17
    [Google Scholar]
  130. Stelmack JA, Tang XC, Wei Y, Thomas-Wilcox D, Morand T et al. 2017. Outcomes of the Veterans Affairs Low Vision Intervention Trial II (LOVIT II). JAMA Ophthalmol. 135:96–104
    [Google Scholar]
  131. Tan JCK, Nguyen V, Fenwick E, Ferdi A, Dinh A, Watson SL. 2019. Vision-related quality of life in keratoconus: a Save Sight Keratoconus Registry Study. Cornea 38:600–4
    [Google Scholar]
  132. Torgerson WS. 1958. Theory and Methods of Scaling New York: Wiley
    [Google Scholar]
  133. Torrance GW, Boyle MH, Horwood SP. 1982. Application of multi-attribute utility theory to measure social preferences for health states. Oper. Res. 30:1043–69
    [Google Scholar]
  134. Turano KA, Geruschat DR, Stahl JW, Massof RW. 1999. Perceived visual ability for independent mobility in persons with retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 40:865–77
    [Google Scholar]
  135. Turano KA, Massof RW, Quigley HA. 2002. A self-assessment instrument designed for measuring independent mobility in RP patients: generalizability to glaucoma patients. Investig. Ophthalmol. Vis. Sci. 43:2874–81
    [Google Scholar]
  136. Vianya-Estopa M, Elliott DB, Barrett B. 2010. An evaluation of the Amblyopia and Strabismus Questionnaire using Rasch analysis. Investig. Ophthalmol. Vis. Sci. 51:2494–503
    [Google Scholar]
  137. Wang JJ, Mitchell P, Smith W, Cumming RG, Leeder SR. 2001. Incidence of nursing home placement in a defined community. Med. J. Aust. 174:271–75
    [Google Scholar]
  138. Ware JE, Sherbourne CD. 1992. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30:473–83
    [Google Scholar]
  139. Warren M 2008. Low Vision: Occupational Therapy Evaluation and Intervention with Older Adults Bethesda, MD: AOTA Press
    [Google Scholar]
  140. Weih LM, Hassell JB, Keeffe JE. 2002. Assessment of the impact of vision impairment. Investig. Ophthalmol. Vis. Sci. 43:927–35
    [Google Scholar]
  141. Weinstein MC, Siegle JE, Gold MR, Kamlet MS, Russell LB. 1996. Recommendations of the Panel on Cost-effectiveness in Health and Medicine. JAMA 276:1253–58
    [Google Scholar]
  142. Whittaker SG, Scheiman M, Sokol-McKay DA. 2016. Low Vision Rehabilitation: A Practical Guide of Occupational Therapists Thorofare, NJ: Slack Inc. , 2nd ed..
    [Google Scholar]
  143. WHO (World Health Organ.) 1980. International Classification of Impairments, Disabilities and Handicaps: A Manual of Classification Relating to the Consequences of Disease Geneva: WHO
    [Google Scholar]
  144. WHO (World Health Organ.) 1998. The World Health Organization Quality of Life Assessment (WHOQOL): development and general psychometric properties. Soc. Sci. Med. 46:1569–85
    [Google Scholar]
  145. WHO (World Health Organ.) 2001. International Classification of Functioning, Disability and Health (ICF) Geneva: WHO
    [Google Scholar]
  146. Wilson A, Wilson A, ten Hove MW, Paré M, Munhall KG. 2008. Loss of central vision and audiovisual speech perception. Vis. Impair. Res. 10:23–34
    [Google Scholar]
  147. Zheng DD, Christ SL, Lam BL, Arheart L, Galor A, Lee DJ. 2012. Increased mortality risk among the visually impaired: the roles of mental well-being and preventive care practices. Investig. Ophthalmol. Vis. Sci. 53:2685–92
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100620-022121
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error