1932

Abstract

Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100720-031711
2022-09-15
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100720-031711.html?itemId=/content/journals/10.1146/annurev-vision-100720-031711&mimeType=html&fmt=ahah

Literature Cited

  1. Anton-Erxleben K, Stephan VM, Treue S. 2009. Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cereb. Cortex 19:2466–78
    [Google Scholar]
  2. Arnsten AFT. 2013. The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic 1937–2003. Cereb. Cortex 23:2269–81
    [Google Scholar]
  3. Arnsten AFT, Wang MJ, Paspalas CD. 2012. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76:223–39
    [Google Scholar]
  4. Astrand E, Enel P, Ibos G, Dominey PF, Baraduc P, Hamed SB. 2014. Comparison of classifiers for decoding sensory and cognitive information from prefrontal neuronal populations. PLOS ONE 9:e86314
    [Google Scholar]
  5. Backen T, Treue S, Martinez-Trujillo JC. 2018. Encoding of spatial attention by primate prefrontal cortex neuronal ensembles. eNeuro 5:ENEURO.0372–16.2017
    [Google Scholar]
  6. Behrmann M, Geng JJ, Shomstein S. 2004. Parietal cortex and attention. Curr. Opin. Neurobiol. 14:212–17
    [Google Scholar]
  7. Bichot NP, Heard MT, DeGennaro EM, Desimone R. 2015. A source for feature-based attention in the prefrontal cortex. Neuron 88:832–44
    [Google Scholar]
  8. Bichot NP, Schall JD, Thompson KG. 1996. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381:697–99
    [Google Scholar]
  9. Bichot NP, Xu R, Ghadooshahy A, Williams ML, Desimone R. 2019. The role of prefrontal cortex in the control of feature attention in area V4. Nat. Commun. 10:5727
    [Google Scholar]
  10. Bisley JW. 2011. The neural basis of visual attention. J. Physiol. 589:49–57
    [Google Scholar]
  11. Bruce CJ, Goldberg ME. 1984. Physiology of the frontal eye fields. Trends Neurosci. 7:436–41
    [Google Scholar]
  12. Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. 1985. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54:714–34
    [Google Scholar]
  13. Buffalo EA, Fries P, Landman R, Liang H, Desimone R. 2010. A backward progression of attentional effects in the ventral stream. PNAS 107:361–65
    [Google Scholar]
  14. Bullock KR, Pieper F, Sachs AJ, Martinez-Trujillo JC. 2017. Visual and presaccadic activity in area 8Ar of the macaque monkey lateral prefrontal cortex. J. Neurophysiol. 118:15–28
    [Google Scholar]
  15. Buschman TJ, Miller EK. 2007. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–62
    [Google Scholar]
  16. Buschman TJ, Miller EK. 2009. Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations. Neuron 63:386–96
    [Google Scholar]
  17. Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62
    [Google Scholar]
  18. Carrasco M. 2011. Visual attention: the past 25 years. Vis. Res. 51:1484–525
    [Google Scholar]
  19. Clayton MS, Yeung N, Kadosh RC. 2015. The roles of cortical oscillations in sustained attention. Trends Cogn. Sci. 19:188–95
    [Google Scholar]
  20. Cohen JY, Crowder EA, Heitz RP, Subraveti CR, Thompson KG et al. 2010. Cooperation and competition among frontal eye field neurons during visual target selection. J. Neurosci. 30:3227–38
    [Google Scholar]
  21. Cohen MR, Maunsell JHR. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:1594–600
    [Google Scholar]
  22. Dasilva M, Brandt C, Gotthardt S, Gieselmann MA, Distler C, Thiele A. 2019. Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. PNAS 116:20180–89
    [Google Scholar]
  23. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222
    [Google Scholar]
  24. Duncan J, Humphreys GW. 1989. Visual search and stimulus similarity. Psychol. Rev. 96:433–58
    [Google Scholar]
  25. Duong L, Leavitt M, Pieper F, Sachs A, Martinez-Trujillo J. 2019. A normalization circuit underlying coding of spatial attention in primate lateral prefrontal cortex. eNeuro 6:ENEURO.0301–18.2019
    [Google Scholar]
  26. Ekstrom LB, Roelfsema PR, Arsenault JT, Kolster H, Vanduffel W. 2009. Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field. J. Neurosci. 29:10683–94
    [Google Scholar]
  27. Everling S, Tinsley CJ, Gaffan D, Duncan J. 2002. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nat. Neurosci. 5:671–76
    [Google Scholar]
  28. Everling S, Tinsley CJ, Gaffan D, Duncan J. 2006. Selective representation of task-relevant objects and locations in the monkey prefrontal cortex. Eur. J. Neurosci. 23:2197–214
    [Google Scholar]
  29. Felleman DJ, Essen DCV. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  30. Fries P. 2015. Rhythms for cognition: communication through coherence. Neuron 88:220–35
    [Google Scholar]
  31. Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M et al. 2021. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 109:3500–20.e13
    [Google Scholar]
  32. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61:331–49
    [Google Scholar]
  33. Fuster JM. 2015. Anatomy of the prefrontal cortex. The Prefrontal Cortex J Fuster 9–62 Amsterdam: Elsevier. , 5th ed..
    [Google Scholar]
  34. Fuster JM, Alexander GE. 1971. Neuron activity related to short-term memory. Science 173:652–54
    [Google Scholar]
  35. Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP. 2020. Machine learning for neural decoding. eNeuro 7:ENEURO.0506–19.2020
    [Google Scholar]
  36. Gregoriou GG, Gotts SJ, Desimone R. 2012. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73:581–94
    [Google Scholar]
  37. Hasegawa RP, Matsumoto M, Mikami A. 2000. Search target selection in monkey prefrontal cortex. J. Neurophysiol. 84:1692–96
    [Google Scholar]
  38. Hussar CR, Pasternak T. 2009. Flexibility of sensory representations in prefrontal cortex depends on cell type. Neuron 64:730–43
    [Google Scholar]
  39. Iba M, Sawaguchi T. 2002. Neuronal activity representing visuospatial mnemonic processes associated with target selection in the monkey dorsolateral prefrontal cortex. Neurosci. Res. 43:9–22
    [Google Scholar]
  40. Ibos G, Duhamel J-R, Hamed SB. 2013. A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J. Neurosci. 33:8359–69
    [Google Scholar]
  41. Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T. 2011. Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLOS Biol. 9:e1001224
    [Google Scholar]
  42. Kastner S, Ungerleider LG. 2000. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23:315–41
    [Google Scholar]
  43. Khayat PS, Niebergall R, Martinez-Trujillo JC. 2010. Attention differentially modulates similar neuronal responses evoked by varying contrast and direction stimuli in area MT. J. Neurosci. 30:2188–97
    [Google Scholar]
  44. Koval MJ, Lomber SG, Everling S. 2011. Prefrontal cortex deactivation in macaques alters activity in the superior colliculus and impairs voluntary control of saccades. J. Neurosci. 31:8659–68
    [Google Scholar]
  45. Lawrence BM, Snyder LH. 2009. The responses of visual neurons in the frontal eye field are biased for saccades. J. Neurosci. 29:13815–22
    [Google Scholar]
  46. Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. 2017a. Sustained activity encoding working memories: not fully distributed. Trends Neurosci. 40:328–46
    [Google Scholar]
  47. Leavitt ML, Pieper F, Sachs A, Joober R, Martinez-Trujillo JC. 2013. Structure of spike count correlations reveals functional interactions between neurons in dorsolateral prefrontal cortex area 8a of behaving primates. PLOS ONE 8:e61503
    [Google Scholar]
  48. Leavitt ML, Pieper F, Sachs AJ, Martinez-Trujillo JC. 2017b. Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles. PNAS 114:E2494–503
    [Google Scholar]
  49. Lebedev MA, Messinger A, Kralik JD, Wise SP. 2004. Representation of attended versus remembered locations in prefrontal cortex. PLOS Biol. 2:e365
    [Google Scholar]
  50. Lennert T, Martinez-Trujillo J. 2011. Strength of response suppression to distracter stimuli determines attentional-filtering performance in primate prefrontal neurons. Neuron 70:141–52
    [Google Scholar]
  51. Lennert T, Martinez-Trujillo JC. 2013. Prefrontal neurons of opposite spatial preference display distinct target selection dynamics. J. Neurosci. 33:9520–29
    [Google Scholar]
  52. Liu T, Hospadaruk L, Zhu DC, Gardner JL. 2011. Feature-specific attentional priority signals in human cortex. J. Neurosci. 31:4484–95
    [Google Scholar]
  53. Luo TZ, Maunsell JHR. 2015. Neuronal modulations in visual cortex are associated with only one of multiple components of attention. Neuron 86:1182–88
    [Google Scholar]
  54. Luo TZ, Maunsell JHR. 2018. Attentional changes in either criterion or sensitivity are associated with robust modulations in lateral prefrontal cortex. Neuron 97:1382–93.e7
    [Google Scholar]
  55. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L et al. 2014. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24:17–36
    [Google Scholar]
  56. Martinez-Trujillo J, Gulli RA. 2018. Dissecting modulatory effects of visual attention in primate lateral prefrontal cortex using signal detection theory. Neuron 97:1208–10
    [Google Scholar]
  57. Martinez-Trujillo J, Treue S. 2002. Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron 35:365–70
    [Google Scholar]
  58. Martinez-Trujillo JC, Treue S. 2004. Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr. Biol. 14:744–51
    [Google Scholar]
  59. Matsushima A, Tanaka M. 2012. Neuronal correlates of multiple top-down signals during covert tracking of moving objects in macaque prefrontal cortex. J. Cogn. Neurosci. 24:2043–56
    [Google Scholar]
  60. Maunsell JHR. 2015. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 1:373–91
    [Google Scholar]
  61. Maunsell JHR, Treue S. 2006. Feature-based attention in visual cortex. Trends Neurosci. 29:317–22
    [Google Scholar]
  62. McAdams CJ, Maunsell JH. 1999. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19:431–41
    [Google Scholar]
  63. Mendoza D, Schneiderman M, Kaul C, Martinez-Trujillo J. 2011. Combined effects of feature-based working memory and feature-based attention on the perception of visual motion direction. J. Vis. 11:111
    [Google Scholar]
  64. Mendoza-Halliday D, Martinez-Trujillo JC. 2017. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nat. Commun. 8:15471
    [Google Scholar]
  65. Mendoza-Halliday D, Torres S, Martinez-Trujillo J 2015. Working memory representations of visual motion along the primate dorsal visual pathway. Mechanisms of Sensory Working Memory P Jolicoeur, C Lefebvre, J Martinez-Trujillo 159–69 Amsterdam: Elsevier
    [Google Scholar]
  66. Mendoza-Halliday D, Torres S, Martinez-Trujillo JC. 2014. Sharp emergence of feature-selective sustained activity along the dorsal visual pathway. Nat. Neurosci. 17:1255–62
    [Google Scholar]
  67. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortical function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  68. Mitchell JF, Sundberg KA, Reynolds JH. 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–88
    [Google Scholar]
  69. Monosov IE, Thompson KG. 2009. Frontal eye field activity enhances object identification during covert visual search. J. Neurophysiol. 102:3656–72
    [Google Scholar]
  70. Monteon JA, Constantin AG, Wang H, Martinez-Trujillo J, Crawford JD. 2010. Electrical stimulation of the frontal eye fields in the head-free macaque evokes kinematically normal 3D gaze shifts. J. Neurophysiol. 104:3462–75
    [Google Scholar]
  71. Monteon JA, Wang H, Martinez-Trujillo J, Crawford JD. 2013. Frames of reference for eye-head gaze shifts evoked during frontal eye field stimulation. Eur. J. Neurosci. 37:1754–65
    [Google Scholar]
  72. Moore T, Armstrong KM. 2003. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–73
    [Google Scholar]
  73. Moore T, Armstrong KM, Fallah M. 2003. Visuomotor origins of covert spatial attention. Neuron 40:671–83
    [Google Scholar]
  74. Moore T, Fallah M. 2004. Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91:152–62
    [Google Scholar]
  75. Moran J, Desimone R. 1985. Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84
    [Google Scholar]
  76. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. 2014. Information-limiting correlations. Nat. Neurosci. 17:101410–17
    [Google Scholar]
  77. Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC. 2011a. Expansion of MT neurons excitatory receptive fields during covert attentive tracking. J. Neurosci. 31:15499–10
    [Google Scholar]
  78. Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC. 2011b. Multifocal attention filters targets from distracters within and beyond primate MT neurons’ receptive field boundaries. Neuron 72:1067–79
    [Google Scholar]
  79. Nogueira R, Peltier NE, Anzai A, DeAngelis GC, Martinez-Trujillo J, Moreno-Bote R. 2019. Identifying the most influential features of neural population responses for information encoding and behavior. bioRxiv 577379. https://doi.org/10.1101/577379
    [Crossref]
  80. Normann RA, Fernandez E. 2016. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J. Neural Eng. 13:061003
    [Google Scholar]
  81. Noudoost B, Chang MH, Steinmetz NA, Moore T 2010. Top-down control of visual attention. Curr. Opin. Neurobiol. 20:183–90
    [Google Scholar]
  82. Noudoost B, Moore T. 2011. Control of visual cortical signals by dopamine. Nature 474:372–75
    [Google Scholar]
  83. Paneri S, Gregoriou GG. 2017. Top-down control of visual attention by the prefrontal cortex: functional specialization and long-range interactions. Front. Neurosci. 11:545
    [Google Scholar]
  84. Panichello MF, Buschman TJ. 2021. Shared mechanisms underlie the control of working memory and attention. Nature 592:601–5
    [Google Scholar]
  85. Passingham RE, Wise SP. 2012. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  86. Pasternak T, Lui LL, Spinelli PM. 2015. Unilateral prefrontal lesions impair memory-guided comparisons of contralateral visual motion. J. Neurosci. 35:7095–105
    [Google Scholar]
  87. Peng X, Sereno ME, Silva AK, Lehky SR, Sereno AB. 2008. Shape selectivity in primate frontal eye field. J. Neurophysiol. 100:796–814
    [Google Scholar]
  88. Petrides M. 2005. Lateral prefrontal cortex: architectonic and functional organization. Philos. Trans. R. Soc. B 360:781–95
    [Google Scholar]
  89. Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN. 2012. The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57
    [Google Scholar]
  90. Posner MI, Rothbart MK. 2007. Research on attention networks as a model for the integration of psychological science. Annu. Rev. Psychol. 58:1–23
    [Google Scholar]
  91. Posner MI, Snyder CR, Davidson BJ. 1980. Attention and the detection of signals. J. Exp. Psychol. Gen. 109:160–74
    [Google Scholar]
  92. Preuss TM. 1995. Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J. Cogn. Neurosci. 7:1–24
    [Google Scholar]
  93. Preuss TM, Goldman-Rakic PS. 1991. Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J. Comp. Neurol. 310:507–49
    [Google Scholar]
  94. Rainer G, Asaad WF, Miller EK. 1998. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393:577–79
    [Google Scholar]
  95. Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:168–85
    [Google Scholar]
  96. Rizzolatti G, Riggio L, Dascola I, Umiltá C. 1987. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40
    [Google Scholar]
  97. Rossi AF, Bichot NP, Desimone R, Ungerleider LG. 2010. Top-down, but not bottom-up: deficits in target selection in monkeys with prefrontal lesions. J. Vis. 1:18
    [Google Scholar]
  98. Russo GS, Bruce CJ. 1996. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. J. Neurophysiol. 76:825–48
    [Google Scholar]
  99. Saalmann YB, Kastner S. 2009. Gain control in the visual thalamus during perception and cognition. Curr. Opin. Neurobiol. 19:408–14
    [Google Scholar]
  100. Saalmann YB, Pigarev IN, Vidyasagar TR. 2007. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316:1612–15
    [Google Scholar]
  101. Saenz M, Buracas GT, Boynton GM. 2002. Global effects of feature-based attention in human visual cortex. Nat. Neurosci. 5:631–32
    [Google Scholar]
  102. Sajad A, Godlove DC, Schall JD. 2019. Cortical microcircuitry of performance monitoring. Nat. Neurosci. 22:265–74
    [Google Scholar]
  103. Sajad A, Sadeh M, Crawford JD. 2020. Spatiotemporal transformations for gaze control. Physiol. Rep. 8:e14533
    [Google Scholar]
  104. Sajad A, Sadeh M, Keith GP, Yan X, Wang H, Crawford JD. 2015. Visual-motor transformations within frontal eye fields during head-unrestrained gaze shifts in the monkey. Cereb. Cortex 25:3932–52
    [Google Scholar]
  105. Schall JD. 2009. Frontal eye fields. Encyclopedia of Neuroscience, ed. LR Squire, pp. 367–74 Amsterdam: Elsevier
    [Google Scholar]
  106. Schlag J, Schlag-Rey M, Pigarev I. 1992. Supplementary eye field: influence of eye position on neural signals of fixation. Exp. Brain Res. 90:302–6
    [Google Scholar]
  107. Schneider KA, Kastner S. 2009. Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. J. Neurosci. 29:1784–95
    [Google Scholar]
  108. Schwedhelm P, Baldauf D, Treue S. 2020. The lateral prefrontal cortex of primates encodes stimulus colors and their behavioral relevance during a match-to-sample task. Sci. Rep. 10:4216
    [Google Scholar]
  109. Segraves MA. 1992. Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J. Neurophysiol. 68:1967–85
    [Google Scholar]
  110. Serences JT, Boynton GM. 2007. Feature-based attentional modulations in the absence of direct visual stimulation. Neuron 55:301–12
    [Google Scholar]
  111. Shomstein S, Gottlieb J. 2016. Spatial and non-spatial aspects of visual attention: interactive cognitive mechanisms and neural underpinnings. Neuropsychologia 92:9–19
    [Google Scholar]
  112. Simons DJ, Levin DT. 1997. Change blindness. Trends Cogn. Sci. 1:261–67
    [Google Scholar]
  113. Smith DT, Schenk T. 2012. The premotor theory of attention: time to move on?. Neuropsychologia 50:1104–14
    [Google Scholar]
  114. Spitzer H, Desimone R, Moran J. 1988. Increased attention enhances both behavioral and neuronal performance. Science 240:338–40
    [Google Scholar]
  115. Stalter M, Westendorff S, Nieder A. 2021. Feature-based attention processes in primate prefrontal cortex do not rely on feature similarity. Cell Rep 36:109470
    [Google Scholar]
  116. Stanton GB, Bruce CJ, Goldberg ME. 1995. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353:291–305
    [Google Scholar]
  117. Stanton GB, Goldberg ME, Bruce CJ. 1988. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. J. Comp. Neurol. 271:493–506
    [Google Scholar]
  118. Suzuki M, Gottlieb J. 2013. Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe. Nat. Neurosci. 16:98–104
    [Google Scholar]
  119. Tanji J, Hoshi E. 2008. Role of the lateral prefrontal cortex in executive behavioral control. Physiol. Rev. 88:37–57
    [Google Scholar]
  120. Tehovnik EJ, Sommer MA, Chou IH, Slocum WM, Schiller PH. 2000. Eye fields in the frontal lobes of primates. Brain Res. Rev. 32:413–48
    [Google Scholar]
  121. Theeuwes J. 1993. Endogenous and exogenous control of visual selection. Perception 23:429–40
    [Google Scholar]
  122. Thiele A, Bellgrove MA. 2018. Neuromodulation of attention. Neuron 97:769–85
    [Google Scholar]
  123. Thompson KG, Bichot NP, Schall JD. 1997. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol. 77:1046–50
    [Google Scholar]
  124. Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M et al. 2020. Changes in the proportion of inhibitory interneuron types from sensory to executive areas of the primate neocortex: implications for the origins of working memory representations. Cereb. Cortex 30:4544–62
    [Google Scholar]
  125. Treisman A. 1982. Perceptual grouping and attention in visual search for features and for objects. J. Exp. Psychol. Hum. Percept. Perform. 8:194–214
    [Google Scholar]
  126. Tremblay S, Pieper F, Sachs A, Martinez-Trujillo J. 2015. Attentional filtering of visual information by neuronal ensembles in the primate lateral prefrontal cortex. Neuron 85:202–15
    [Google Scholar]
  127. Treue S, Martinez-Trujillo JC. 1999. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–79
    [Google Scholar]
  128. Treue S, Maunsell JH. 1996. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–41
    [Google Scholar]
  129. Tsotsos JK, Culhane SM, Wai WYK, Lai Y, Davis N, Nuflo F. 1995. Modeling visual attention via selective tuning. Artif. Intell. 78:507–45
    [Google Scholar]
  130. Veniero D, Gross J, Morand S, Duecker F, Sack AT, Thut G. 2021. Top-down control of visual cortex by the frontal eye fields through oscillatory realignment. Nat. Commun. 12:1757
    [Google Scholar]
  131. Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A. 2014. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 8:66
    [Google Scholar]
  132. Wang M, Yang Y, Wang C-J, Gamo NJ, Jin LE et al. 2013. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77:736–49
    [Google Scholar]
  133. Wang X-J. 1999. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19:9587–603
    [Google Scholar]
  134. Wang X-J. 2001. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24:455–63
    [Google Scholar]
  135. Wang X-J, Yang GR. 2018. A disinhibitory circuit motif and flexible information routing in the brain. Curr. Opin. Neurobiol. 49:75–83
    [Google Scholar]
  136. Wardak C, Ibos G, Duhamel J-R, Olivier E 2006. Contribution of the monkey frontal eye field to covert visual attention. J. Neurosci. 26:4228–35
    [Google Scholar]
  137. Womelsdorf T, Anton-Erxleben K, Treue S 2008. Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J. Neurosci. 28:8934–44
    [Google Scholar]
  138. Yang GR, Murray JD, Wang X-J. 2016. A dendritic disinhibitory circuit mechanism for pathway-specific gating. Nat. Commun. 7:12815
    [Google Scholar]
  139. Yoo S-A, Martinez-Trujillo J, Treue S, Tsotsos J, Fallah M. 2018. Feature-based attention causes a ring-like modulation of motion direction tuning curves in areas MT and MST of macaques. J. Vis. 18:970
    [Google Scholar]
  140. Yuste R. 2015. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16:487–97
    [Google Scholar]
  141. Zaksas D, Pasternak T. 2006. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J. Neurosci. 26:11726–42
    [Google Scholar]
  142. Zhang X, Mlynaryk N, Ahmed S, Japee S, Ungerleider LG. 2018. The role of inferior frontal junction in controlling the spatially global effect of feature-based attention in human visual areas. PLOS Biol. 16:e2005399
    [Google Scholar]
  143. Zhou H, Desimone R. 2011. Feature-based attention in the frontal eye field and area V4 during visual search. Neuron 70:1205–17
    [Google Scholar]
  144. Zohary E, Shadlen MN, Newsome WT. 1994. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:6485140–43
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100720-031711
Loading
/content/journals/10.1146/annurev-vision-100720-031711
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error