1932

Abstract

Visual representations of bodies, in addition to those of faces, contribute to the recognition of con- and heterospecifics, to action recognition, and to nonverbal communication. Despite its importance, the neural basis of the visual analysis of bodies has been less studied than that of faces. In this article, I review what is known about the neural processing of bodies, focusing on the macaque temporal visual cortex. Early single-unit recording work suggested that the temporal visual cortex contains representations of body parts and bodies, with the dorsal bank of the superior temporal sulcus representing bodily actions. Subsequent functional magnetic resonance imaging studies in both humans and monkeys showed several temporal cortical regions that are strongly activated by bodies. Single-unit recordings in the macaque body patches suggest that these represent mainly body shape features. More anterior patches show a greater viewpoint-tolerant selectivity for body features, which may reflect a processing principle shared with other object categories, including faces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100720-113429
2022-09-15
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100720-113429.html?itemId=/content/journals/10.1146/annurev-vision-100720-113429&mimeType=html&fmt=ahah

Literature Cited

  1. Allison T, Puce A, McCarthy G. 2000. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4:267–78
    [Google Scholar]
  2. Altmann SA. 1962. A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann. N. Y. Acad. Sci. 102:338–435
    [Google Scholar]
  3. Anderson KC, Siegel RM. 1999. Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J. Neurosci. 19:2681–92
    [Google Scholar]
  4. Anderson KC, Siegel RM. 2005. Three-dimensional structure-from-motion selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. Cereb. Cortex 15:1299–307
    [Google Scholar]
  5. Arcaro MJ, Livingstone MS. 2021. On the relationship between maps and domains in inferotemporal cortex. Nat. Rev. Neurosci. 22:573–83
    [Google Scholar]
  6. Arcaro MJ, Ponce C, Livingstone M. 2020. The neurons that mistook a hat for a face. eLife 9:e53798
    [Google Scholar]
  7. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS. 2017. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20:1404–12
    [Google Scholar]
  8. Atkinson AP, Vuong QC, Smithson HE. 2012. Modulation of the face- and body-selective visual regions by the motion and emotion of point-light face and body stimuli. NeuroImage 59:1700–12
    [Google Scholar]
  9. Bao P, She L, McGill M, Tsao DY. 2020. A map of object space in primate inferotemporal cortex. Nature 583:103–8
    [Google Scholar]
  10. Bao P, Tsao DY. 2018. Representation of multiple objects in macaque category-selective areas. Nat. Commun. 9:1774
    [Google Scholar]
  11. Barraclough NE, Keith RH, Xiao D, Oram MW, Perrett DI. 2009. Visual adaptation to goal-directed hand actions. J. Cogn. Neurosci. 21:1806–20
    [Google Scholar]
  12. Barraclough NE, Xiao D, Oram MW, Perrett DI. 2006. The sensitivity of primate STS neurons to walking sequences and to the degree of articulation in static images. Prog. Brain Res 154:135–48
    [Google Scholar]
  13. Baylis GC, Rolls ET, Leonard CM. 1987. Functional subdivisions of the temporal lobe neocortex. J. Neurosci. 7:330–42
    [Google Scholar]
  14. Beauchamp MS, Lee KE, Haxby JV, Martin A. 2002. Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34:149–59
    [Google Scholar]
  15. Bell AH, Hadj-Bouziane F, Frihauf JB, Tootell RB, Ungerleider LG. 2009. Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J. Neurophysiol. 101:688–700
    [Google Scholar]
  16. Bell AH, Malecek NJ, Morin EL, Hadj-Bouziane F, Tootell RB, Ungerleider LG. 2011. Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. J. Neurosci. 31:12229–40
    [Google Scholar]
  17. Bindemann M, Scheepers C, Ferguson HJ, Burton AM. 2010. Face, body, and center of gravity mediate person detection in natural scenes. J. Exp. Psychol. Hum. Percept. Perform. 36:1477–85
    [Google Scholar]
  18. Blake R, Shiffrar M. 2007. Perception of human motion. Annu. Rev. Psychol. 58:47–73
    [Google Scholar]
  19. Bognar A, Vogels R. 2021. Moving a shape behind a slit: partial shape representations in inferior temporal cortex. J. Neurosci. 41:6484–501
    [Google Scholar]
  20. Borra E, Gerbella M, Rozzi S, Luppino G. 2011. Anatomical evidence for the involvement of the macaque ventrolateral prefrontal area 12r in controlling goal-directed actions. J. Neurosci. 31:12351–63
    [Google Scholar]
  21. Borra E, Luppino G. 2019. Large-scale temporo-parieto-frontal networks for motor and cognitive motor functions in the primate brain. Cortex 118:19–37
    [Google Scholar]
  22. Bracci S, Caramazza A, Peelen MV. 2015. Representational similarity of body parts in human occipitotemporal cortex. J. Neurosci. 35:12977–85
    [Google Scholar]
  23. Bracci S, Cavina-Pratesi C, Ietswaart M, Caramazza A, Peelen MV. 2012. Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. J. Neurophysiol. 107:1443–56
    [Google Scholar]
  24. Bracci S, Ietswaart M, Peelen MV, Cavina-Pratesi C. 2010. Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. J. Neurophysiol. 103:3389–97
    [Google Scholar]
  25. Bracci S, Peelen MV. 2013. Body and object effectors: the organization of object representations in high-level visual cortex reflects body-object interactions. J. Neurosci. 33:18247–58
    [Google Scholar]
  26. Bracci S, Ritchie JB, Kalfas I, Op de Beeck HP. 2019. The ventral visual pathway represents animal appearance over animacy, unlike human behavior and deep neural networks. J. Neurosci. 39:6513–25
    [Google Scholar]
  27. Bruce C, Desimone R, Gross CG. 1981. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46:369–84
    [Google Scholar]
  28. Bruce CJ, Desimone R, Gross CG. 1986. Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. J. Neurophysiol. 55:1057–75
    [Google Scholar]
  29. Caspari N, Popivanov ID, De Maziere PA, Vanduffel W, Vogels R et al. 2014. Fine-grained stimulus representations in body selective areas of human occipito-temporal cortex. NeuroImage 102:Part 248497
    [Google Scholar]
  30. Chan AWY, Kravitz DJ, Truong S, Arizpe J, Baker CI. 2010. Cortical representations of bodies and faces are strongest in commonly experienced configurations. Nat. Neurosci. 13:417–18
    [Google Scholar]
  31. Chang L, Tsao DY. 2017. The code for facial identity in the primate brain. Cell 169:1013–28.e14
    [Google Scholar]
  32. Clarke A, Tyler LK. 2015. Understanding what we see: how we derive meaning from vision. Trends Cogn. Sci. 19:677–87
    [Google Scholar]
  33. Conway BR. 2018. The organization and operation of inferior temporal cortex. Annu. Rev. Vis. Sci. 4:381–402
    [Google Scholar]
  34. Costantini M, Urgesi C, Galati G, Romani GL, Aglioti SM. 2011. Haptic perception and body representation in lateral and medial occipito-temporal cortices. Neuropsychologia 49:821–29
    [Google Scholar]
  35. Dasser V. 1987. Slides of group members as representations of the real animals (Macaca fascicularis). Ethology 76:65–73
    [Google Scholar]
  36. de Gelder B, de Borst AW, Watson R. 2015. The perception of emotion in body expressions. Wiley Interdiscip. Rev. Cogn. Sci. 6:149–58
    [Google Scholar]
  37. de Gelder B, Poyo Solanas M. 2021. A computational neuroethology perspective on body and expression perception. Trends Cogn. Sci. 25:744–56
    [Google Scholar]
  38. de Gelder B, Van den Stock J, Meeren HK, Sinke CB, Kret ME, Tamietto M. 2010. Standing up for the body: recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neurosci. Biobehav. Rev. 34:513–27
    [Google Scholar]
  39. Deen B, Koldewyn K, Kanwisher N, Saxe R. 2015. Functional organization of social perception and cognition in the superior temporal sulcus. Cereb. Cortex 25:4596–609
    [Google Scholar]
  40. Desimone R, Albright TD, Gross CG, Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:2051–62
    [Google Scholar]
  41. Downing PE, Jiang Y, Shuman M, Kanwisher N. 2001. A cortical area selective for visual processing of the human body. Science 293:2470–73
    [Google Scholar]
  42. Downing PE, Peelen MV. 2011. The role of occipitotemporal body-selective regions in person perception. Cogn. Neurosci. 2:186–203
    [Google Scholar]
  43. Downing PE, Peelen MV. 2016. Body selectivity in occipitotemporal cortex: causal evidence. Neuropsychologia 83:138–48
    [Google Scholar]
  44. Downing PE, Peelen MV, Wiggett AJ, Tew BD. 2006. The role of the extrastriate body area in action perception. Soc. Neurosci. 1:52–62
    [Google Scholar]
  45. Dubois J, de Berker AO, Tsao DY. 2015. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J. Neurosci. 35:2791–802
    [Google Scholar]
  46. Ferri S, Kolster H, Jastorff J, Orban GA. 2013. The overlap of the EBA and the MT/V5 cluster. NeuroImage 66:412–25
    [Google Scholar]
  47. Fisher C, Freiwald WA. 2015. Whole-agent selectivity within the macaque face-processing system. PNAS 112:14717–22
    [Google Scholar]
  48. Foster C, Zhao M, Bolkart T, Black MJ, Bartels A, Bulthoff I. 2021. Separated and overlapping neural coding of face and body identity. Hum. Brain Map. 42:4242–60
    [Google Scholar]
  49. Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:845–51
    [Google Scholar]
  50. Fujita I, Tanaka K, Ito M, Cheng K. 1992. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–46
    [Google Scholar]
  51. Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G. 2010. Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. Cereb. Cortex 20:141–68
    [Google Scholar]
  52. Grill-Spector K, Weiner KS, Kay K, Gomez J. 2017. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3:167–96
    [Google Scholar]
  53. Grimaldi P, Saleem KS, Tsao D. 2016. Anatomical connections of the functionally defined “face patches” in the macaque monkey. Neuron 90:1325–42
    [Google Scholar]
  54. Grosbras MH, Beaton S, Eickhoff SB. 2012. Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis. Hum. Brain Map 33:431–54
    [Google Scholar]
  55. Gross CG, Bender DB, Rocha-Miranda CE. 1969. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166:1303–6
    [Google Scholar]
  56. Gross CG, Rocha-Miranda CE, Bender DB. 1972. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35:96–111
    [Google Scholar]
  57. Gross CG, Schiller PH, Wells C, Gerstein GL. 1967. Single-unit activity in temporal association cortex of the monkey. J. Neurophysiol. 30:833–43
    [Google Scholar]
  58. Grossman ED, Blake R. 2002. Brain areas active during visual perception of biological motion. Neuron 35:1167–75
    [Google Scholar]
  59. Hahn CA, O'Toole AJ, Phillips PJ. 2016. Dissecting the time course of person recognition in natural viewing environments. Br. J. Psychol. 107:117–34
    [Google Scholar]
  60. Hesse JK, Tsao DY. 2020. The macaque face patch system: a turtle's underbelly for the brain. Nat. Rev. Neurosci. 21:695–716
    [Google Scholar]
  61. Hu Y, Baragchizadeh A, O'Toole AJ. 2020. Integrating faces and bodies: psychological and neural perspectives on whole person perception. Neurosci. Biobehav. Rev. 112:472–86
    [Google Scholar]
  62. Hutchison RM, Culham JC, Everling S, Flanagan JR, Gallivan JP. 2014. Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway. NeuroImage 96:216–36
    [Google Scholar]
  63. Jastorff J, Orban GA. 2009. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing. J. Neurosci. 29:7315–29
    [Google Scholar]
  64. Jastorff J, Popivanov ID, Vogels R, Vanduffel W, Orban GA. 2012. Integration of shape and motion cues in biological motion processing in the monkey STS. NeuroImage 60:911–21
    [Google Scholar]
  65. Jellema T, Maassen G, Perrett DI. 2004. Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey. Cereb. Cortex 14:781–90
    [Google Scholar]
  66. Jellema T, Perrett DI. 2006. Neural representations of perceived bodily actions using a categorical frame of reference. Neuropsychologia 44:1535–46
    [Google Scholar]
  67. Johansson G. 1973. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14:201–11
    [Google Scholar]
  68. Kalfas I, Kumar S, Vogels R. 2017. Shape selectivity of middle superior temporal sulcus body patch neurons. eNeuro 4:ENEURO.0113–17.2017
    [Google Scholar]
  69. Kitada R, Johnsrude IS, Kochiyama T, Lederman SJ. 2009. Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: an fMRI study. J. Cogn. Neurosci. 21:2027–45
    [Google Scholar]
  70. Kitada R, Yoshihara K, Sasaki AT, Hashiguchi M, Kochiyama T, Sadato N. 2014. The brain network underlying the recognition of hand gestures in the blind: the supramodal role of the extrastriate body area. J. Neurosci. 34:10096–108
    [Google Scholar]
  71. Koba R, Izumi A. 2006. Sex categorization of conspecific pictures in Japanese monkeys (Macaca fuscata). Anim. Cogn. 9:183–91
    [Google Scholar]
  72. Kontaris I, Wiggett AJ, Downing PE. 2009. Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency. Neuropsychologia 47:3118–24
    [Google Scholar]
  73. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:26–49
    [Google Scholar]
  74. Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2:4
    [Google Scholar]
  75. Krizhevsky A, Sutskever I, Hinton G. 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM 60:84–90
    [Google Scholar]
  76. Kumar S, Popivanov ID, Vogels R. 2017. Transformation of visual representations across ventral stream body-selective patches. Cereb. Cortex 29:215–29
    [Google Scholar]
  77. Kumar S, Vogels R. 2019. Body patches in inferior temporal cortex encode categories with different temporal dynamics. J. Cogn. Neurosci. 31:1699–709
    [Google Scholar]
  78. Lafer-Sousa R, Conway BR. 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16:1870–78
    [Google Scholar]
  79. Long B, Yu CP, Konkle T. 2018. Mid-level visual features underlie the high-level categorical organization of the ventral stream. PNAS 115:E9015–24
    [Google Scholar]
  80. Margalit E, Jamison KW, Weiner KS, Vizioli L, Zhang RY et al. 2020. Ultra-high-resolution fMRI of human ventral temporal cortex reveals differential representation of categories and domains. J. Neurosci. 40:3008–24
    [Google Scholar]
  81. Mattioni S, Rezk M, Battal C, Bottini R, Cuculiza Mendoza KE et al. 2020. Categorical representation from sound and sight in the ventral occipito-temporal cortex of sighted and blind. eLife 9:e50732
    [Google Scholar]
  82. Meunier M, Monfardini E, Boussaoud D. 2007. Learning by observation in rhesus monkeys. Neurobiol. Learn. Mem. 88:243–48
    [Google Scholar]
  83. Meyers EM, Borzello M, Freiwald WA, Tsao D. 2015. Intelligent information loss: the coding of facial identity, head pose, and non-face information in the macaque face patch system. J. Neurosci. 35:7069–81
    [Google Scholar]
  84. Moeller S, Freiwald WA, Tsao DY. 2008. Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–59
    [Google Scholar]
  85. Nelissen K, Borra E, Gerbella M, Rozzi S, Luppino G et al. 2011. Action observation circuits in the macaque monkey cortex. J. Neurosci. 31:3743–56
    [Google Scholar]
  86. Op de Beeck HP, Brants M, Baeck A, Wagemans J. 2010. Distributed subordinate specificity for bodies, faces, and buildings in human ventral visual cortex. NeuroImage 49:3414–25
    [Google Scholar]
  87. Op de Beeck HP, Pillet I, Ritchie JB. 2019. Factors determining where category-selective areas emerge in visual cortex. Trends Cogn. Sci. 23:784–97
    [Google Scholar]
  88. Oram MW, Perrett DI. 1994. Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J. Cogn. Neurosci. 6:99–116
    [Google Scholar]
  89. Oram MW, Perrett DI. 1996. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J. Neurophysiol. 76:109–29
    [Google Scholar]
  90. Orban GA, Sepe A, Bonini L. 2021. Parietal maps of visual signals for bodily action planning. Brain Struct. Funct. 226:2967–88
    [Google Scholar]
  91. Orlov T, Makin TR, Zohary E. 2010. Topographic representation of the human body in the occipitotemporal cortex. Neuron 68:586–600
    [Google Scholar]
  92. Orlov T, Porat Y, Makin TR, Zohary E. 2014. Hands in motion: An upper-limb-selective area in the occipitotemporal cortex shows sensitivity to viewed hand kinematics. J. Neurosci. 34:4882–95
    [Google Scholar]
  93. Oruc I, Balas B, Landy MS. 2019. Face perception: a brief journey through recent discoveries and current directions. Vis. Res. 157:1–9
    [Google Scholar]
  94. Paxton R, Basile BM, Adachi I, Suzuki WA, Wilson ME, Hampton RR. 2010. Rhesus monkeys (Macaca mulatta) rapidly learn to select dominant individuals in videos of artificial social interactions between unfamiliar conspecifics. J. Comp. Psychol. 124:395–401
    [Google Scholar]
  95. Peelen MV, Downing PE. 2005. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93:603–8
    [Google Scholar]
  96. Peelen MV, Downing PE. 2007. The neural basis of visual body perception. Nat. Rev. Neurosci. 8:636–48
    [Google Scholar]
  97. Perrett DI, Harries MH, Bevan R, Thomas S, Benson PJ et al. 1989. Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 146:87–113
    [Google Scholar]
  98. Perrett DI, Smith PA, Mistlin AJ, Chitty AJ, Head AS et al. 1985. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav. Brain Res. 16:153–70
    [Google Scholar]
  99. Peuskens H, Vanrie J, Verfaillie K, Orban GA. 2005. Specificity of regions processing biological motion. Eur. J. Neurosci. 21:2864–75
    [Google Scholar]
  100. Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ et al. 2009. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J. Neurophysiol. 101:2581–600
    [Google Scholar]
  101. Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S. 2005. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. PNAS 102:6996–7001
    [Google Scholar]
  102. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. 2011. Differential selectivity for dynamic versus static information in face-selective cortical regions. NeuroImage 56:2356–63
    [Google Scholar]
  103. Pitcher D, Ungerleider LG. 2021. Evidence for a third visual pathway specialized for social perception. Trends Cogn. Sci. 25:100–10
    [Google Scholar]
  104. Popivanov ID, Jastorff J, Vanduffel W, Vogels R. 2012. Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. NeuroImage 63:723–41
    [Google Scholar]
  105. Popivanov ID, Jastorff J, Vanduffel W, Vogels R. 2014. Heterogeneous single-unit selectivity in an fMRI-defined body-selective patch. J. Neurosci. 34:95–111
    [Google Scholar]
  106. Popivanov ID, Jastorff J, Vanduffel W, Vogels R. 2015. Tolerance of macaque middle STS body patch neurons to shape-preserving stimulus transformations. J. Cogn. Neurosci. 27:1001–16
    [Google Scholar]
  107. Popivanov ID, Schyns PG, Vogels R. 2016. Stimulus features coded by single neurons of a macaque body category selective patch. PNAS 113:E2450–59
    [Google Scholar]
  108. Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W. 2016. Effective connectivity reveals largely independent parallel networks of face and body patches. Curr. Biol. 26:3269–79
    [Google Scholar]
  109. Rajimehr R, Young JC, Tootell RB. 2009. An anterior temporal face patch in human cortex, predicted by macaque maps. PNAS 106:1995–2000
    [Google Scholar]
  110. Ratan Murty NA, Bashivan P, Abate A, DiCarlo JJ, Kanwisher N. 2021. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nat. Commun. 12: 5540.
    [Google Scholar]
  111. Rice A, Phillips PJ, Natu V, An X, O'Toole AJ. 2013. Unaware person recognition from the body when face identification fails. Psychol. Sci. 24:2235–43
    [Google Scholar]
  112. Rice GE, Watson DM, Hartley T, Andrews TJ. 2014. Low-level image properties of visual objects predict patterns of neural response across category-selective regions of the ventral visual pathway. J. Neurosci. 34:8837–44
    [Google Scholar]
  113. Ritchie JB, Zeman AA, Bosmans J, Sun S, Verhaegen K, Op de Beeck HP. 2021. Untangling the animacy organization of occipitotemporal cortex. J. Neurosci. 41:7103–19
    [Google Scholar]
  114. Robbins RA, Coltheart M. 2012. The effects of inversion and familiarity on face versus body cues to person recognition. J. Exp. Psychol. Hum. Percept. Perform. 38:1098–104
    [Google Scholar]
  115. Ross PD, de Gelder B, Crabbe F, Grosbras M-H. 2014. Body-selective areas in the visual cortex are less active in children than in adults. Front. Hum. Neurosci. 8:941
    [Google Scholar]
  116. Sadagopan S, Zarco W, Freiwald WA. 2017. A causal relationship between face-patch activity and face-detection behavior. eLife 6:e18558
    [Google Scholar]
  117. Sade DS. 1973. An ethogram for rhesus monkeys. I. Antithetical contrasts in posture and movement. Am. J. Phys. Anthropol. 38:537–42
    [Google Scholar]
  118. Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S et al. 2017. Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. PNAS 114:12285–90
    [Google Scholar]
  119. Schwartz EL, Desimone R, Albright TD, Gross CG. 1983. Shape recognition and inferior temporal neurons. PNAS 80:5776–78
    [Google Scholar]
  120. Schwarzlose RF, Baker CI, Kanwisher N. 2005. Separate face and body selectivity on the fusiform gyrus. J. Neurosci. 25:11055–59
    [Google Scholar]
  121. Schwarzlose RF, Swisher JD, Dang S, Kanwisher N. 2008. The distribution of category and location information across object-selective regions in human visual cortex. PNAS 105:4447–52
    [Google Scholar]
  122. Seltzer B, Pandya DN. 1991. Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 312:625–40
    [Google Scholar]
  123. Singer JM, Sheinberg DL. 2010. Temporal cortex neurons encode articulated actions as slow sequences of integrated poses. J. Neurosci. 30:3133–45
    [Google Scholar]
  124. Sliwa J, Freiwald WA. 2017. A dedicated network for social interaction processing in the primate brain. Science 356:745–49
    [Google Scholar]
  125. Striem-Amit E, Amedi A. 2014. Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds. Curr. Biol. 24:687–92
    [Google Scholar]
  126. Tanaka K. 2003. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb. Cortex 13:90–99
    [Google Scholar]
  127. Taylor JC, Downing PE. 2011. Division of labor between lateral and ventral extrastriate representations of faces, bodies, and objects. J. Cogn. Neurosci. 23:4122–37
    [Google Scholar]
  128. Taylor JC, Wiggett AJ, Downing PE. 2007. Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. J. Neurophysiol. 98:1626–33
    [Google Scholar]
  129. Thompson JC, Clarke M, Stewart T, Puce A. 2005. Configural processing of biological motion in human superior temporal sulcus. J. Neurosci. 25:9059–66
    [Google Scholar]
  130. Tracy JL, Matsumoto D. 2008. The spontaneous expression of pride and shame: evidence for biologically innate nonverbal displays. PNAS 105:11655–60
    [Google Scholar]
  131. Tremblay S, Sharika KM, Platt ML. 2017. Social decision-making and the brain: a comparative perspective. Trends Cogn. Sci. 21:265–76
    [Google Scholar]
  132. Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB. 2003. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6:989–95
    [Google Scholar]
  133. Tsao DY, Moeller S, Freiwald WA. 2008. Comparing face patch systems in macaques and humans. PNAS 105:19514–19
    [Google Scholar]
  134. van den Hurk J, Van Baelen M, Op de Beeck HP. 2017. Development of visual category selectivity in ventral visual cortex does not require visual experience. PNAS 114:E4501–10
    [Google Scholar]
  135. Vangeneugden J, De Maziere PA, Van Hulle MM, Jaeggli T, Van Gool L, Vogels R. 2011. Distinct mechanisms for coding of visual actions in macaque temporal cortex. J. Neurosci. 31:385–401
    [Google Scholar]
  136. Vangeneugden J, Pollick F, Vogels R. 2009. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space. Cereb. Cortex 19:593–611
    [Google Scholar]
  137. Verhoef BE, Vogels R, Janssen P. 2012. Inferotemporal cortex subserves three-dimensional structure categorization. Neuron 73:171–82
    [Google Scholar]
  138. Vogt BA, Pandya DN. 1987. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262:271–89
    [Google Scholar]
  139. Wachsmuth E, Oram MW, Perrett DI. 1994. Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb. Cortex 4:509–22
    [Google Scholar]
  140. Weiner KS, Grill-Spector K. 2011. Not one extrastriate body area: using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. NeuroImage 56:2183–99
    [Google Scholar]
  141. Weiner KS, Grill-Spector K. 2013. Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychol. Res. 77:74–97
    [Google Scholar]
  142. Wittmann MK, Lockwood PL, Rushworth MFS. 2018. Neural mechanisms of social cognition in primates. Annu. Rev. Neurosci. 41:99–118
    [Google Scholar]
  143. Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:8619–24
    [Google Scholar]
  144. Yanagi A, Berman CM. 2014. Body signals during social play in free-ranging rhesus macaques (Macaca mulatta): a systematic analysis. Am. J. Primatol. 76:168–79
    [Google Scholar]
  145. Yovel G, Freiwald WA. 2013. Face recognition systems in monkey and human: Are they the same thing?. F1000Prime Rep 510
    [Google Scholar]
  146. Yovel G, O'Toole AJ. 2016. Recognizing people in motion. Trends Cogn. Sci. 20:383–95
    [Google Scholar]
  147. Zhu Q, Vanduffel W. 2019. Submillimeter fMRI reveals a layout of dorsal visual cortex in macaques, remarkably similar to New World monkeys. PNAS 116:2306–11
    [Google Scholar]
  148. Zimmermann M, Mars RB, de Lange FP, Toni I, Verhagen L. 2018. Is the extrastriate body area part of the dorsal visuomotor stream?. Brain Struct. Funct. 223:31–46
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100720-113429
Loading
/content/journals/10.1146/annurev-vision-100720-113429
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error