1932

Abstract

Using natural scenes is an approach to studying the visual and eye movement systems approximating how these systems function in everyday life. This review examines the results from behavioral and neurophysiological studies using natural scene viewing in humans and monkeys. The use of natural scenes for the study of cerebral cortical activity is relatively new and presents challenges for data analysis. Methods and results from the use of natural scenes for the study of the visual and eye movement cortex are presented, with emphasis on new insights that this method provides enhancing what is known about these cortical regions from the use of conventional methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100720-124033
2023-09-15
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-100720-124033.html?itemId=/content/journals/10.1146/annurev-vision-100720-124033&mimeType=html&fmt=ahah

Literature Cited

  1. Araujo C, Kowler E, Pavel M. 2001. Eye movements during visual search: the costs of choosing the optimal path. Vis. Res. 41:3613–25
    [Google Scholar]
  2. Arcizet F, Mirpour K, Bisley JW. 2011. A pure salience response in posterior parietal cortex. Cereb. Cortex 21:2498–506
    [Google Scholar]
  3. Baldauf D, Desimone R. 2014. Neural mechanisms of object-based attention. Science 344:424–27
    [Google Scholar]
  4. Battistoni E, Kaiser D, Hickey C, Peelen MV. 2020. The time course of spatial attention during naturalistic visual search. Cortex 122:225–34
    [Google Scholar]
  5. Bell AJ, Sejnowski TJ. 1997. The “independent components” of natural scenes are edge filters. Vis. Res. 37:3327–38
    [Google Scholar]
  6. Benjamin AS, Fernandes HL, Tomlinson T, Ramkumar P, VerSteeg C et al. 2018. Modern machine learning as a benchmark for fitting neural responses. Front. Comput. Neurosci. 12:56
    [Google Scholar]
  7. Bichot NP, Heard MT, DeGennaro EM, Desimone R. 2015. A source for feature-based attention in the prefrontal cortex. Neuron 88:832–44
    [Google Scholar]
  8. Bisley JW, Goldberg ME. 2010. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33:1–21
    [Google Scholar]
  9. Bruce CJ, Goldberg ME. 1985. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53:603–35
    [Google Scholar]
  10. Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB. 1985. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54:714–34
    [Google Scholar]
  11. Burman DD, Segraves MA. 1994. Primate frontal eye field activity during natural scanning eye movements. J. Neurophysiol. 71:1266–71
    [Google Scholar]
  12. Bushnell MC, Goldberg ME, Robinson DL. 1981. Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 46:755–72
    [Google Scholar]
  13. Castelhano MS, Mack ML, Henderson JM. 2009. Viewing task influences eye movement control during active scene perception. J. Vis. 9:6
    [Google Scholar]
  14. Cavanaugh J, Joiner WM, Wurtz RH. 2012. Suppressive surrounds of receptive fields in monkey frontal eye field. J. Neurosci. 32:12284–93
    [Google Scholar]
  15. Chen X, Zirnsak M, Vega GM, Govil E, Lomber SG, Moore T. 2020. Parietal cortex regulates visual salience and salience-driven behavior. Neuron 106:177–87.e4
    [Google Scholar]
  16. Costa M, Gomez A, Barat E, Lio G, Duhamel JR, Sirigu A. 2018. Implicit preference for human trustworthy faces in macaque monkeys. Nat. Commun. 9:4529
    [Google Scholar]
  17. Coubard O, Kapoula Z, Muri R, Rivaud-Pechoux S. 2003. Effects of TMS over the right prefrontal cortex on latency of saccades and convergence. Investig. Ophthalmol. Vis. Sci. 44:600–9
    [Google Scholar]
  18. Cukur T, Nishimoto S, Huth AG, Gallant JL. 2013. Attention during natural vision warps semantic representation across the human brain. Nat. Neurosci. 16:763–70
    [Google Scholar]
  19. Dan Y, Atick JJ, Reid RC. 1996. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J. Neurosci. 16:3351–62
    [Google Scholar]
  20. David EJ, Beitner J, Vo ML. 2021. The importance of peripheral vision when searching 3D real-world scenes: a gaze-contingent study in virtual reality. J. Vis. 21:3
    [Google Scholar]
  21. Deng S-Y, Goldberg ME, Segraves MA, Ungerleider LG, Mishkin M 1986. The effect of unilateral ablation of the frontal eye fields on saccadic performance in the monkey. Adaptive Processes in the Visual and Oculomotor Systems EL Keller, DS Zee 201–8. Oxford, UK: Pergamon Press
    [Google Scholar]
  22. Dias EC, Segraves MA. 1999. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol. 81:2191–214
    [Google Scholar]
  23. Dotson NM, Hoffman SJ, Goodell B, Gray CM. 2017. A large-scale semi-chronic microdrive recording system for non-human primates. Neuron 96:769–82.e2
    [Google Scholar]
  24. Ebitz RB, Albarran E, Moore T. 2018. Exploration disrupts choice-predictive signals and alters dynamics in prefrontal cortex. Neuron 97:450–61.e9
    [Google Scholar]
  25. Ehinger KA, Hidalgo-Sotelo B, Torralba A, Oliva A. 2009. Modelling search for people in 900 scenes: a combined source model of eye guidance. Vis. Cogn. 17:945–78
    [Google Scholar]
  26. Einhäuser W, Kruse W, Hoffmann KP, Konig P. 2006. Differences of monkey and human overt attention under natural conditions. Vis. Res. 46:1194–209
    [Google Scholar]
  27. Einhäuser W, Rutishauser U, Koch C. 2008. Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. J. Vis. 8:2
    [Google Scholar]
  28. Enders LR, Smith RJ, Gordon SM, Ries AJ, Touryan J. 2021. Gaze behavior during navigation and visual search of an open-world virtual environment. Front. Psychol. 12:681042
    [Google Scholar]
  29. Epstein R, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:598–601
    [Google Scholar]
  30. Erofeev A, Kazakov D, Makarevich N, Bolshakova A, Gerasimov E et al. 2021. An open-source wireless electrophysiological complex for in vivo recording neuronal activity in the rodent's brain. Sensors 21:7189
    [Google Scholar]
  31. Fernandes HL, Stevenson IH, Phillips AN, Segraves MA, Kording KP. 2014. Saliency and saccade encoding in the frontal eye field during natural scene search. Cereb. Cortex 24:3232–45
    [Google Scholar]
  32. Gallant JL, Connor CE, Van Essen DC. 1998. Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport 9:2153–58
    [Google Scholar]
  33. Gamlin PD. 2002. Neural mechanisms for the control of vergence eye movements. Ann. N. Y. Acad. Sci. 956:264–72
    [Google Scholar]
  34. Gamlin PD, Yoon K. 2000. An area for vergence eye movement in primate frontal cortex. Nature 407:1003–7
    [Google Scholar]
  35. Glaser JI, Benjamin AS, Farhoodi R, Kording KP. 2019. The roles of supervised machine learning in systems neuroscience. Prog. Neurobiol. 175:126–37
    [Google Scholar]
  36. Glaser JI, Wood DK, Lawlor PN, Ramkumar P, Kording KP, Segraves MA. 2016. Role of expected reward in frontal eye field during natural scene search. J. Neurophysiol. 116:645–57
    [Google Scholar]
  37. Glaser JI, Wood DK, Lawlor PN, Segraves MA, Kording KP. 2020. From prior information to saccade selection: evolution of frontal eye field activity during natural scene search. Cereb. Cortex 30:1957–73
    [Google Scholar]
  38. Goldberg ME, Bushnell MC. 1981. Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J. Neurophysiol. 46:773–87
    [Google Scholar]
  39. Gottlieb J, Balan P, Oristaglio J, Suzuki M. 2009. Parietal control of attentional guidance: the significance of sensory, motivational and motor factors. Neurobiol. Learn. Mem. 91:121–28
    [Google Scholar]
  40. Guitton D, Buchtel HA, Douglas RM. 1985. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain. Res. 58:455–72
    [Google Scholar]
  41. Guo F, Preston TJ, Das K, Giesbrecht B, Eckstein MP. 2012. Feature-independent neural coding of target detection during search of natural scenes. J. Neurosci. 32:9499–510
    [Google Scholar]
  42. Hayhoe M, Ballard D. 2005. Eye movements in natural behavior. Trends Cogn. Sci. 9:188–94
    [Google Scholar]
  43. Hyvarinen A, Hurri J, Vayrynen J. 2003. Bubbles: a unifying framework for low-level statistical properties of natural image sequences. J. Opt. Soc. Am. A 20:1237–52
    [Google Scholar]
  44. Ipata AE, Gee AL, Goldberg ME, Bisley JW. 2006. Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J. Neurosci. 26:3656–61
    [Google Scholar]
  45. Itti L, Koch C. 2001. Computational modelling of visual attention. Nat. Rev. Neurosci. 2:194–203
    [Google Scholar]
  46. Itti L, Koch C, Niebur E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20:1254–59
    [Google Scholar]
  47. Joiner WM, Cavanaugh J, Wurtz RH, Cumming BG. 2017. Visual responses in FEF, unlike V1, primarily reflect when the visual context renders a receptive field salient. J. Neurosci. 37:9871–79
    [Google Scholar]
  48. Judge SJ, Richmond BJ, Chu FC. 1980. Implantation of magnetic search coils for measurement of eye position: an improved method. Vis. Res. 20:535–38
    [Google Scholar]
  49. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–36
    [Google Scholar]
  50. Kaiser D, Oosterhof NN, Peelen MV. 2016. The neural dynamics of attentional selection in natural scenes. J. Neurosci. 36:10522–28
    [Google Scholar]
  51. Kamienkowski JE, Varatharajah A, Sigman M, Ison MJ. 2018. Parsing a mental program: fixation-related brain signatures of unitary operations and routines in natural visual search. NeuroImage 183:73–86
    [Google Scholar]
  52. Kayser C, Kording KP, Konig P. 2004. Processing of complex stimuli and natural scenes in the visual cortex. Curr. Opin. Neurobiol. 14:468–73
    [Google Scholar]
  53. Killian NJ, Potter SM, Buffalo EA. 2015. Saccade direction encoding in the primate entorhinal cortex during visual exploration. PNAS 112:15743–48
    [Google Scholar]
  54. Kit D, Katz L, Sullivan B, Snyder K, Ballard D, Hayhoe M. 2014. Eye movements, visual search and scene memory, in an immersive virtual environment. PLOS ONE 9:e94362
    [Google Scholar]
  55. Koch C, Ullman S. 1985. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4:219–27
    [Google Scholar]
  56. Kording KP, Kayser C, Einhauser W, Konig P. 2004. How are complex cell properties adapted to the statistics of natural stimuli?. J. Neurophysiol. 91:206–12
    [Google Scholar]
  57. Kording KP, Kayser C, Konig P. 2003. On the choice of a sparse prior. Rev. Neurosci. 14:53–62
    [Google Scholar]
  58. Le Meur O, Coutrot A 2016. Introducing context-dependent and spatially-variant viewing biases in saccadic models. Vis. Res. 121:72–84
    [Google Scholar]
  59. Malinen S, Hlushchuk Y, Hari R. 2007. Towards natural stimulation in fMRI—issues of data analysis. NeuroImage 35:131–39
    [Google Scholar]
  60. Mayo JP, DiTomasso AR, Sommer MA, Smith MA. 2015. Dynamics of visual receptive fields in the macaque frontal eye field. J. Neurophysiol. 114:3201–10
    [Google Scholar]
  61. Mazer JA, Gallant JL. 2003. Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron 40:1241–50
    [Google Scholar]
  62. McCormick C, Dalton MA, Zeidman P, Maguire EA. 2021. Characterising the hippocampal response to perception, construction and complexity. Cortex 137:1–17
    [Google Scholar]
  63. McGlynn E, Nabaei V, Ren E, Galeote-Checa G, Das R et al. 2021. The future of neuroscience: flexible and wireless implantable neural electronics. Adv. Sci. 8:2002693
    [Google Scholar]
  64. Meary D, Li Z, Li W, Guo K, Pascalis O. 2014. Seeing two faces together: preference formation in humans and rhesus macaques. Anim. Cogn. 17:1107–19
    [Google Scholar]
  65. Miconi T, Groomes L, Kreiman G. 2016. There's Waldo! A normalization model of visual search predicts single-trial human fixations in an object search task. Cereb. Cortex 26:3064–82
    [Google Scholar]
  66. Moore T, Fallah M. 2004. Microstimulation of the frontal eye field and its effects on covert spatial attention. J. Neurophysiol. 91:152–62
    [Google Scholar]
  67. Movshon JA, Simoncelli EP. 2014. Representation of naturalistic image structure in the primate visual cortex. Cold Spring Harb. Symp. Quant. Biol. 79:115–22
    [Google Scholar]
  68. Musall S, Urai AE, Sussillo D, Churchland AK. 2019. Harnessing behavioral diversity to understand neural computations for cognition. Curr. Opin. Neurobiol. 58:229–38
    [Google Scholar]
  69. Naber M, Frassle S, Rutishauser U, Einhauser W. 2013. Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. J. Vis. 13:11
    [Google Scholar]
  70. Najemnik J, Geisler WS. 2005. Optimal eye movement strategies in visual search. Nature 434:387–91
    [Google Scholar]
  71. Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R et al. 2011. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31:13771–85
    [Google Scholar]
  72. Ogawa A, Macaluso E. 2015. Orienting of visuo-spatial attention in complex 3D space: search and detection. Hum. Brain Mapp. 36:2231–47
    [Google Scholar]
  73. Olshausen BA, Field DJ. 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–9
    [Google Scholar]
  74. Ortiz-Rios M, Balezeau F, Haag M, Schmid MC, Kaiser M. 2021. Dynamic reconfiguration of macaque brain networks during natural vision. NeuroImage 244:118615
    [Google Scholar]
  75. Owaki T, Vidal-Naquet M, Nam Y, Uchida G, Sato T et al. 2018. Searching for visual features that explain response variance of face neurons in inferior temporal cortex. PLOS ONE 13:e0201192
    [Google Scholar]
  76. Pantazatos SP, Yanagihara TK, Zhang X, Meitzler T, Hirsch J. 2012. Frontal-occipital connectivity during visual search. Brain Connect. 2:164–75
    [Google Scholar]
  77. Peelen MV, Kastner S. 2011. A neural basis for real-world visual search in human occipitotemporal cortex. PNAS 108:12125–30
    [Google Scholar]
  78. Peelen MV, Kastner S. 2014. Attention in the real world: toward understanding its neural basis. Trends Cogn. Sci. 18:242–50
    [Google Scholar]
  79. Peng X, Sereno ME, Silva AK, Lehky SR, Sereno AB. 2008. Shape selectivity in primate frontal eye field. J. Neurophysiol. 100:796–814
    [Google Scholar]
  80. Peters RJ, Iyer A, Itti L, Koch C. 2005. Components of bottom-up gaze allocation in natural images. Vis. Res. 45:2397–416
    [Google Scholar]
  81. Phillips AN, Segraves MA. 2010. Predictive activity in macaque frontal eye field neurons during natural scene searching. J. Neurophysiol. 103:1238–52
    [Google Scholar]
  82. Prenger R, Wu MC, David SV, Gallant JL. 2004. Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Netw. 17:663–79
    [Google Scholar]
  83. Radvansky BA, Oh JY, Climer JR, Dombeck DA. 2021. Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Rep. 36:109444
    [Google Scholar]
  84. Ramkumar P, Fernandes H, Kording K, Segraves M. 2015. Modeling peripheral visual acuity enables discovery of gaze strategies at multiple time scales during natural scene search. J. Vis. 15:19
    [Google Scholar]
  85. Ramkumar P, Lawlor PN, Glaser JI, Wood DK, Phillips AN et al. 2016. Feature-based attention and spatial selection in frontal eye fields during natural scene search. J. Neurophysiol. 116:1328–43
    [Google Scholar]
  86. Robinson DA. 1963. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10:137–45
    [Google Scholar]
  87. Rolls ET, Aggelopoulos NC, Zheng F. 2003. The receptive fields of inferior temporal cortex neurons in natural scenes. J. Neurosci. 23:339–48
    [Google Scholar]
  88. Rolls ET, Webb TJ. 2014. Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems. Front. Comput. Neurosci. 8:85
    [Google Scholar]
  89. Ross J, Morrone MC, Burr DC. 1997. Compression of visual space before saccades. Nature 386:598–601
    [Google Scholar]
  90. Salsano I, Santangelo V, Macaluso E. 2021. The lateral intraparietal sulcus takes viewpoint changes into account during memory-guided attention in natural scenes. Brain Struct. Funct. 226:989–1006
    [Google Scholar]
  91. Schall JD, Hanes DP. 1993. Neural basis of saccade target selection in frontal eye field during visual search. Nature 366:467–69
    [Google Scholar]
  92. Schwartz O, Simoncelli EP. 2001. Natural signal statistics and sensory gain control. Nat. Neurosci. 4:819–25
    [Google Scholar]
  93. Searle A, Rowe FJ. 2016. Vergence neural pathways: a systematic narrative literature review. Neuroophthalmology 40:209–18
    [Google Scholar]
  94. Segraves MA, Goldberg ME, Deng SY, Bruce CJ, Ungerleider L, Mishkin M. 1987. The role of striate cortex in the guidance of eye movements in the monkey. J. Neurosci. 7:3040–58
    [Google Scholar]
  95. Segraves MA, Kuo E, Caddigan S, Berthiaume EA, Kording KP. 2017. Predicting rhesus monkey eye movements during natural-image search. J. Vis. 17:12
    [Google Scholar]
  96. Seidl KN, Peelen MV, Kastner S. 2012. Neural evidence for distracter suppression during visual search in real-world scenes. J. Neurosci. 32:11812–19
    [Google Scholar]
  97. Sharpee T, Rust NC, Bialek W. 2004. Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput. 16:223–50
    [Google Scholar]
  98. Sheinberg DL, Logothetis NK. 2001. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J. Neurosci. 21:1340–50
    [Google Scholar]
  99. Shin H, Byun J, Roh D, Choi N, Shin HS, Cho IJ. 2022. Interference-free, lightweight wireless neural probe system for investigating brain activity during natural competition. Biosens. Bioelectron. 195:113665
    [Google Scholar]
  100. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216
    [Google Scholar]
  101. Sommer MA, Wurtz RH. 2006. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–77
    [Google Scholar]
  102. Srivastava A, Lee AB, Simoncelli EP, Zhu SC. 2003. On advances in statistical modeling of natural images. J. Math. Imaging Vis. 18:17–33
    [Google Scholar]
  103. Sutton RS, Barto AG. 2018. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press
    [Google Scholar]
  104. Takemura A, Kawano K, Quaia C, Miles FA 2003. Population coding of vergence eye movements in cortical area MST. Levels of Perception L Harris, M Jenkin 257–70. Berlin: Springer
    [Google Scholar]
  105. Talbot SA, Marshall WH. 1941. Physiological studies on neural mechanisms of visual localization and discrimination. Am. J. Ophthalmol. 24:1255–64
    [Google Scholar]
  106. Taubert J, Wardle SG, Flessert M, Leopold DA, Ungerleider LG. 2017. Face pareidolia in the rhesus monkey. Curr. Biol. 27:2505–9.e2
    [Google Scholar]
  107. Thompson KG, Bichot NP. 2005. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147:251–62
    [Google Scholar]
  108. Thompson KG, Bichot NP, Sato TR. 2005a. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. J. Neurophysiol. 93:337–51
    [Google Scholar]
  109. Thompson KG, Biscoe KL, Sato TR. 2005b. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25:9479–87
    [Google Scholar]
  110. Torralba A, Oliva A, Castelhano MS, Henderson JM. 2006. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113:766–86
    [Google Scholar]
  111. Umeno MM, Goldberg ME. 1997. Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78:1373–83
    [Google Scholar]
  112. van Hateren JH, Ruderman DL. 1998. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. Biol. Sci. 265:2315–20
    [Google Scholar]
  113. van Hateren JH, van der Schaaf A. 1998. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci. 265:359–66
    [Google Scholar]
  114. Vinje WE, Gallant JL. 2000. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–76
    [Google Scholar]
  115. Vinje WE, Gallant JL. 2002. Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. J. Neurosci. 22:2904–15
    [Google Scholar]
  116. Wainwright MJ, Schwartz O, Simoncelli EP 2002. Natural image statistics and divisive normalization: modeling nonlinearity and adaptation in cortical neurons. Probabilistic Models of the Brain: Perception and Neural Function R Rao, B Olshausen, M Lewicki 203–22. Cambridge, MA: MIT Press
    [Google Scholar]
  117. Weliky M, Fiser J, Hunt RH, Wagner DN. 2003. Coding of natural scenes in primary visual cortex. Neuron 37:703–18
    [Google Scholar]
  118. White BJ, Berg DJ, Kan JY, Marino RA, Itti L, Munoz DP. 2017. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun. 8:14263
    [Google Scholar]
  119. Willmore B, Smyth D. 2003. Methods for first-order kernel estimation: simple-cell receptive fields from responses to natural scenes. Network 14:553–77
    [Google Scholar]
  120. Wood D, Ramkumar P, Glaser J, Lawlor P, Körding K, Segraves M. 2018. Dynamic remapping in monkey frontal eye field preserves a retinotopic representation during visual search, then compresses space toward the search target. J. Vis. 18:202
    [Google Scholar]
  121. Wu CC, Kowler E. 2013. Timing of saccadic eye movements during visual search for multiple targets. J. Vis. 13:11
    [Google Scholar]
  122. Wu CC, Kwon OS, Kowler E. 2010. Fitts's Law and speed/accuracy trade-offs during sequences of saccades: implications for strategies of saccadic planning. Vis. Res. 50:2142–57
    [Google Scholar]
  123. Yarbus AL. 1967. Eye Movements and Vision New York: Plenum Press
    [Google Scholar]
  124. Zhang S, Eckstein MP. 2010. Evolution and optimality of similar neural mechanisms for perception and action during search. PLOS Comput. Biol. 6:1000930
    [Google Scholar]
  125. Zhou H, Desimone R. 2011. Feature-based attention in the frontal eye field and area V4 during visual search. Neuron 70:1205–17
    [Google Scholar]
  126. Zingale CM, Kowler E. 1987. Planning sequences of saccades. Vis. Res. 27:1327–41
    [Google Scholar]
  127. Zirnsak M, Steinmetz NA, Noudoost B, Xu KZ, Moore T. 2014. Visual space is compressed in prefrontal cortex before eye movements. Nature 507:504–7
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100720-124033
Loading
/content/journals/10.1146/annurev-vision-100720-124033
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error