1932

Abstract

For over 100 years, eye movements have been studied and used as indicators of human sensory and cognitive functions. This review evaluates how eye movements contribute to our understanding of the processes that underlie decision-making. Eye movement metrics signify the visual and task contexts in which information is accumulated and weighed. They indicate the efficiency with which we evaluate the instructions for decision tasks, the timing and duration of decision formation, the expected reward associated with a decision, the accuracy of the decision outcome, and our ability to predict and feel confident about a decision. Because of their continuous nature, eye movements provide an exciting opportunity to probe decision processes noninvasively in real time.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100720-125029
2022-09-15
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100720-125029.html?itemId=/content/journals/10.1146/annurev-vision-100720-125029&mimeType=html&fmt=ahah

Literature Cited

  1. Abeles D, Amit R, Tal-Perry N, Carrasco M, Yuval-Greenberg S. 2020. Oculomotor inhibition precedes temporally expected auditory targets. Nat. Commun. 11:3524
    [Google Scholar]
  2. Ang JWA, Maus GW. 2020. Boosted visual performance after eye blinks. J. Vis. 20:102
    [Google Scholar]
  3. Armel KC, Beaumel A, Rangel A. 2008. Biasing simple choices by manipulating relative visual attention. Judgm. Decis. Mak. 3:396–403
    [Google Scholar]
  4. Badde S, Myers CF, Yuval-Greenberg S, Carrasco M 2020. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat. Commun. 11:3341
    [Google Scholar]
  5. Bahuguna J, Aertsen A, Kumar A. 2015. Existence and control of Go/No-Go decision transition threshold in the striatum. PLOS Comput. Biol. 11:4e1004233
    [Google Scholar]
  6. Balsdon T, Wyart V, Mamassian P. 2020. Confidence controls perceptual evidence accumulation. Nat. Commun. 11:1753
    [Google Scholar]
  7. Barbosa P, Kaski D, Castro P, Lees AJ, Warner TT, Djamshidian A. 2019. Saccadic direction errors are associated with impulsive compulsive behaviours in Parkinson's disease patients. J. Park. Dis. 9:625–30
    [Google Scholar]
  8. Bargary G, Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Hogg RE, Mollon JD. 2017. Individual differences in human eye movements: an oculomotor signature?. Vis. Res. 141:157–69
    [Google Scholar]
  9. Basso AM, May JP. 2019. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3:197–226
    [Google Scholar]
  10. Bekkering H, Adam JJ, Kingma H, Huson A, Whiting HTA. 1994. Reaction time latencies of eye and hand movements in single- and dual-task conditions. Exp. Brain Res. 97:471–76
    [Google Scholar]
  11. Cavanagh JF, Wiecki TV, Kochar A, Frank MJ. 2014. Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143:1476–88
    [Google Scholar]
  12. Cherkasova MV, Clark L, Barton JJS, Schulzer M, Shafiee M et al. 2018. Win-concurrent sensory cues can promote riskier choice. J. Neurosci. 38:10362–70
    [Google Scholar]
  13. Cherkasova MV, Corrow JS, Taylor A, Yeung SC, Stubbs JL et al. 2019. Dopamine replacement remediates risk aversion in Parkinson's disease in a value-independent manner. Park. Relat. Disord. 66:189–94
    [Google Scholar]
  14. Coe BC, Munoz DP. 2017. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos. Trans. R. Soc. B 372:171820160192
    [Google Scholar]
  15. Colizoli O, De Gee JW, Urai AE, Donner TH. 2018. Task-evoked pupil responses reflect internal belief states. Sci. Rep. 8:113702. Erratum. 2018. Sci. Rep. 8:115904
    [Google Scholar]
  16. Colzato LS, van den Wildenberg WPM, van Wouwe NC, Pannebakker MM, Hommel B. 2009. Dopamine and inhibitory action control: evidence from spontaneous eye blink rates. Exp. Brain Res. 196:467–74
    [Google Scholar]
  17. de Gee JW, Knapen T, Donner TH. 2014. Decision-related pupil dilation reflects upcoming choice and individual bias. PNAS 111:618–25
    [Google Scholar]
  18. Delgado-García JM, Gruart A, Trigo JA. 2003. Physiology of the eyelid motor system. Annu. Rev. N. Y. Acad. Sci. 1004:1–9
    [Google Scholar]
  19. Ebitz RB, Moore T. 2019. Both a gauge and a filter: cognitive modulations of pupil size. Front. Neurol. 9:1190
    [Google Scholar]
  20. Eckstein MP. 2011. Visual search: a retrospective. J. Vis. 11:514
    [Google Scholar]
  21. Fabre-Thorpe M, Delorme A, Marlot C, Thorpe SJ. 2001. A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. J. Cogn. Neurosci. 13:2171–80
    [Google Scholar]
  22. Fecteau JH, Munoz DP. 2006. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10:382–90
    [Google Scholar]
  23. Fischer B. 1986. Express saccades in man and monkey. Prog. Brain Res. 64:155–60
    [Google Scholar]
  24. Fooken J, Patel P, Jones CB, McKeown MJ, Spering M. 2021. Preservation of eye movements in Parkinson's disease is stimulus- and task-specific. J. Neurosci. 42:487–99
    [Google Scholar]
  25. Fooken J, Spering M. 2019. Decoding go/no-go decisions from eye movements. J. Vis. 19:25
    [Google Scholar]
  26. Fooken J, Spering M. 2020. Eye movements as a readout of sensorimotor decision processes. J. Neurophysiol. 123:1439–47
    [Google Scholar]
  27. Fuchs AF, Binder MD. 1983. Fatigue resistance of human extraocular muscles. J. Neurophysiol. 49:28–34
    [Google Scholar]
  28. Gellman RS, Carl JR, Miles FA. 1990. Short-latency ocular following responses in man. Vis. Neurosci. 5:107–200
    [Google Scholar]
  29. Glaholt MG, Reingold EM. 2011. Eye movement monitoring as a process tracing methodology in decision making research. J. Neurosci. Psychol. Econ. 4:125–46
    [Google Scholar]
  30. Glimcher PW. 2001. Making choices: the neurophysiology of visual-saccadic decision making. Trends Neurosci. 24:654–59
    [Google Scholar]
  31. Godlove DC, Schall JD. 2016. Microsaccade production during saccade cancelation in a stop-signal task. Vis. Res. 118:5–16
    [Google Scholar]
  32. Godwin HJ, Hout MC, Alexdóttir KJ, Walenchok SC, Barnhart AS. 2021. Avoiding potential pitfalls in visual search and eye-movement experiments: a tutorial review. Atten. Percept. Psychophys. 83:72753–83
    [Google Scholar]
  33. Goettker A, Gegenfurtner KR. 2021. A change in perspective: the interaction of saccadic and pursuit eye movements in oculomotor control and perception. Vis. Res. 188:283–96
    [Google Scholar]
  34. Gold JI, Shadlen MN. 2000. Representation of a perceptual decision in developing oculomotor commands. Nature 406:390–94
    [Google Scholar]
  35. Gold JI, Shadlen MN. 2007. The neural basis of decision making. Annu. Rev. Neurosci. 30:535–74
    [Google Scholar]
  36. Gottlieb J, Oudeyer P-Y. 2018. Toward a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19:758–70
    [Google Scholar]
  37. Groman SM, James AS, Seu E, Tran S, Clark TA et al. 2014. In the blink of an eye: relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate. J. Neurosci. 34:14443–54
    [Google Scholar]
  38. Hanes DP, Carpenter RHS. 1999. Countermanding saccades in humans. Vis. Res. 39:2777–91
    [Google Scholar]
  39. Hanes DP, Schall JD. 1995. Countermanding saccades in macaque. Vis. Neurosci. 12:929–37
    [Google Scholar]
  40. Herman JP, Katz LN, Krauzlis RJ. 2018. Midbrain activity can explain perceptual decisions during an attention task. Nat. Neurosci. 21:1651–55
    [Google Scholar]
  41. Hikosaka O, Kim HF, Yasuda M, Yamamoto S. 2014. Basal ganglia circuits for reward value-guided behavior. Annu. Rev. Neurosci. 37:289–306
    [Google Scholar]
  42. Hoppe D, Helfmann S, Rothkopf CA. 2018. Humans quickly learn to blink strategically in response to environmental task demands. PNAS 115:2246–51
    [Google Scholar]
  43. Huk AC, Katz LN, Yates JL. 2017. The role of the lateral intraparietal area in (the study of) decision making. Annu. Rev. Neurosci. 40:349–72
    [Google Scholar]
  44. Huk AC, Shadlen MN. 2005. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25:10420–36
    [Google Scholar]
  45. Itti L, Koch C. 2000. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40:1489–506
    [Google Scholar]
  46. Jarrett CB, Barnes GR. 2003. The volitional inhibition of anticipatory ocular pursuit using a stop signal. Cogn. Brain Res. 17:759–69
    [Google Scholar]
  47. Jongkees BJ, Colzato LS. 2016. Spontaneous eye blink rate as predictor of dopamine-related cognitive function—a review. Neurosci. Biobehav. Rev. 71:58–82
    [Google Scholar]
  48. Joo SJ, Katz LN, Huk AC. 2018. Decision-related perturbations of decision-irrelevant eye movements. PNAS 113:1925–30
    [Google Scholar]
  49. Joshi S, Gold JI. 2020. Pupil size as a window on neural substrates of cognition. Trends Cogn. Sci. 24:466–80
    [Google Scholar]
  50. Katz LN, Yates JL, Pillow JW, Huk AC. 2016. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535:285–88
    [Google Scholar]
  51. Kawaguchi K, Clery S, Pourriahi P, Seillier L, Haefner RM, Nienborg H. 2018. Differentiating between models of perceptual decision making using pupil size inferred confidence. J. Neurosci. 38:8874–88
    [Google Scholar]
  52. Kennerley SW, Walton ME. 2011. Decision making and reward in frontal cortex: complementary evidence from neurophysiological and neuropsychological studies. Behav. Neurosci. 125:297–317
    [Google Scholar]
  53. Kepecs A, Uchida N, Zariwala HA, Mainen ZF. 2008. Neural correlates, computation and behavioural impact of decision confidence. Nature 455:227–31
    [Google Scholar]
  54. Kim Y-G, Badler JB, Heinen SJ. 2005. Trajectory interpretation by supplementary eye field neurons during ocular baseball. J. Neurophysiol. 94:1385–91
    [Google Scholar]
  55. Kimmel DL, Moore T. 2007. Temporal patterning of saccadic eye movements signals. J. Neurosci. 27:7619–30
    [Google Scholar]
  56. Kirchner H, Thorpe SJ. 2006. Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vis. Res. 46:1762–76
    [Google Scholar]
  57. Klein RM, MacInnes WJ. 1999. Inhibition of return is a foraging facilitator in visual search. Psychol. Sci. 10:346–52
    [Google Scholar]
  58. Kornylo K, Dill N, Saenz M, Krauzlis RJ. 2003. Cancelling of pursuit and saccadic eye movements in humans and monkeys. J. Neurophysiol. 89:2984–99
    [Google Scholar]
  59. Krajbich I, Armel C, Rangel A. 2010. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13:1292–98
    [Google Scholar]
  60. Krauzlis RJ. 2005. The control of voluntary eye movements: new perspectives. Neuroscientist 11:124–37
    [Google Scholar]
  61. Krauzlis RJ, Miles FA. 1996. Release of fixation for pursuit and saccades in humans: evidence for shared inputs acting on different neural substrates. J. Neurophysiol. 76:2822–33
    [Google Scholar]
  62. Krupinski EA. 2010. Current perspectives in medical image perception. Atten. Percept. Psychophys. 72:1205–17
    [Google Scholar]
  63. Lehmann SJ, Corneil BD. 2016. Transient pupil dilation after subsaccadic microstimulation of primate frontal eye fields. J. Neurosci. 36:3765–76
    [Google Scholar]
  64. Leigh RJ, Zee DS. 2015. The Neurology of Eye Movements Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  65. Lempert KM, Chen YL, Fleming SM. 2015. Relating pupil dilation and metacognitive confidence during auditory decision-making. PLOS ONE 10:5e0126588
    [Google Scholar]
  66. Levi AJ, Huk AC. 2020. Interpreting temporal dynamics during sensory decision-making. Curr. Opin. Physiol. 16:27–32
    [Google Scholar]
  67. Li Z-W, Ma WJ. 2021. An uncertainty-based model of the effects of fixation on choice. PLOS Comput. Biol. 17:8e1009190
    [Google Scholar]
  68. Lisberger SG. 2015. Visual guidance of smooth pursuit eye movements. Annu. Rev. Vis. Sci. 1:447–68
    [Google Scholar]
  69. Locke SM, Mamassian P, Landy MS. 2020. Performance monitoring for sensorimotor confidence: a visuomotor tracking study. Cognition 205:104396
    [Google Scholar]
  70. Logan GD. 1994. On the ability to inhibit thought and action: a users’ guide to the stop signal paradigm. Inhibitory Processes in Attention, Memory and Language D Dagenbach, TH Carr 189–39 San Diego, CA: Academic
    [Google Scholar]
  71. McCoy B, Theeuwes J. 2016. Effects of reward on oculomotor control. J. Neurophysiol. 116:2453–66
    [Google Scholar]
  72. McSorley E, McCloy R. 2009. Saccadic eye movements as an index of perceptual decision-making. Exp. Brain Res. 198:513–20
    [Google Scholar]
  73. Meeter M, Van der Stigchel S, Theeuwes J. 2010. A competitive integration model of exogenous and endogenous eye movements. Biol. Cybern. 102:271–91
    [Google Scholar]
  74. Mirpour K, Bisley JW. 2021. The roles of the lateral intraparietal area and frontal eye field in guiding eye movements in free viewing search behavior. J. Neurophysiol. 125:2144–57
    [Google Scholar]
  75. Mirpour K, Bolandnazar Z, Bisley JW. 2019. Neurons in FEF keep track of items that have been previously fixated in free viewing visual search. J. Neurosci. 39:2114–24
    [Google Scholar]
  76. Missal M, Heinen SJ. 2017. Stopping smooth pursuit. Philos. Trans. R. Soc. B 372:20160200
    [Google Scholar]
  77. Munoz DP, Coe BC. 2011. Saccade, search and orient – the neural control of saccadic eye movements. Eur. J. Neurosci. 33:1945–47
    [Google Scholar]
  78. Munoz DP, Everling S. 2004. Look away: the anti-saccade task and the voluntary control of eye movement. Nat. Rev. Neurosci. 5:218–28
    [Google Scholar]
  79. Murphy PE, Wilming N, Hernandez-Bocanegra DC, Prat-Ortega G, Donner TH. 2021. Adaptive circuit dynamics across human cortex during evidence accumulation in changing environments. Nat. Neurosci. 24:987–97
    [Google Scholar]
  80. Najafi F, Churchland AK. 2018. Perceptual decision-making: a field in the midst of a transformation. Neuron 100:453–62
    [Google Scholar]
  81. Newsome WT, Britten KH, Movshon JA. 1989. Neuronal correlates of a perceptual decision. Nature 341:52–54
    [Google Scholar]
  82. Nienborg H, Cumming BG. 2009. Decision related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459:89–92
    [Google Scholar]
  83. Olmos-Solis K, van Loon AM, Los SA, Olivers CNL. 2017. Oculomotor measures reveal the temporal dynamics of preparing for search. Prog. Brain Res. 236:1–23
    [Google Scholar]
  84. Orban de Xivry JJ, Lefèvre P. 2007. Saccades and pursuit: two outcomes of a single sensorimotor process. J. Physiol. 584:11–23
    [Google Scholar]
  85. Padoa-Schioppa C, Conen KE. 2017. Orbitofrontal cortex: a neural circuit for economic decisions. Neuron 96:736–54
    [Google Scholar]
  86. Pärnamets P, Johansson P, Hall L, Balkenius C, Spivey MJ, Richardson DC. 2015. Biasing moral decisions by exploiting the dynamics of eye gaze. PNAS 112:4170–75
    [Google Scholar]
  87. Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–38
    [Google Scholar]
  88. Pouget A, Drugowitsch J, Kepecs A. 2016. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19:366–74
    [Google Scholar]
  89. Preciado D, Theeuwes J. 2018. To look or not to look? Reward, selection history, and oculomotor guidance. J. Neurophysiol. 120:1740–52
    [Google Scholar]
  90. Preuschoff K, ‘t Hart BM, Einhäuser W. 2011. Pupil dilation signals surprise: evidence for noradrenaline's role in decision making. Front. Neurosci. 5:115
    [Google Scholar]
  91. Ratcliff R, McKoon G. 2008. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20:873–922
    [Google Scholar]
  92. Reppert TR, Lempert KM, Glimcher PW, Shadmehr R. 2015. Modulation of saccade vigor during value-based decision making. J. Neurosci. 35:15369–78
    [Google Scholar]
  93. Rolfs M. 2009. Microsaccades: small steps on a long way. Vis. Res. 49:2415–41
    [Google Scholar]
  94. Salinas E, Steinberg BR, Sussman LA, Fry SM, Hauser CK et al. 2019. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. eLife 8:e46359
    [Google Scholar]
  95. Satterthwaite TD, Green L, Myerson J, Parker J, Ramaratnam M, Buckner RL. 2007. Dissociable but inter-related systems of cognitive control and reward during decision making: evidence from pupillometry and event-related fMRI. Neuroimage 37:1017–31
    [Google Scholar]
  96. Sauter M, Hanning NM, Liesefeld HR, Müller HJ. 2021. Post-capture processes contribute to statistical learning of distractor locations in visual search. Cortex 135:108–26
    [Google Scholar]
  97. Schall JD. 2001. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2:33–42
    [Google Scholar]
  98. Schall JD. 2005. Decision making. Curr. Biol. 15:R9–11
    [Google Scholar]
  99. Schall JD. 2013. Macrocircuits: decision networks. Curr. Opin. Neurobiol. 23:269–74
    [Google Scholar]
  100. Schall JD. 2015. Visuomotor functions in the frontal lobe. Annu. Rev. Vis. Sci. 1:469–98
    [Google Scholar]
  101. Schall JD, Hanes DP. 1993. Neural basis of saccade target selection in frontal eye field during visual search. Nature 366:467–69
    [Google Scholar]
  102. Schall JD, Hanes DP, Taylor TL. 2000. Neural control of behavior: countermanding eye movements. Psychol. Res. 63:299–307
    [Google Scholar]
  103. Seideman JA, Stanford TR, Salinas E. 2018. Saccade metrics reflect decision-making dynamics during urgent choices. Nat. Commun. 9:2907
    [Google Scholar]
  104. Shadlen MN, Kiani R. 2013. Decision making as a window on cognition. Neuron 80:791–806
    [Google Scholar]
  105. Shadmehr R, Reppert TR, Summerside EM, Yoon T, Ahmed AA. 2019. Movement vigor as a reflection of subjective economic utility. Trends Neurosci. 42:323–36
    [Google Scholar]
  106. Shaffer B, Jobe FW, Pink M, Perry J. 1993. Baseball batting: an electromyographic study. Clin. Orthop. Relat. Res. 292:285–93
    [Google Scholar]
  107. Sharp ME, Viswanathan J, Lanyon LJ, Barton JJS. 2012. Sensitivity and bias in decision-making under risk: evaluating the perception of reward, its probability and value. PLOS ONE 7:4e33460
    [Google Scholar]
  108. Shimojo S, Simion C, Shimojo E, Scheier C. 2003. Gaze bias both reflects and influences preference. Nat. Neurosci. 6:1317–22
    [Google Scholar]
  109. Simioni AC, Dagher A, Fellows LK. 2012. Dissecting the effects of disease and treatment on impulsivity in Parkinson's disease. J. Int. Neuropsychol. Soc. 18:942–51
    [Google Scholar]
  110. Slagter HA, Georgopoulou K, Frank MJ. 2015. Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes. Neuropsychologia 71:126–32
    [Google Scholar]
  111. Stanford TR, Freedman EG, Sparks DL. 1996. Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. J. Neurophysiol. 76:3360–81
    [Google Scholar]
  112. Stanford TR, Salinas E. 2021. Urgent decision making: resolving visuomotor interactions at high temporal resolution. Annu. Rev. Vis. Sci. 7:323–48
    [Google Scholar]
  113. Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E. 2010. Perceptual decision making in less than 30 milliseconds. Nat. Neurosci. 13:379–85
    [Google Scholar]
  114. Sternberg S. 1969. The discovery of processing stages: extensions of Donders’ method. Attention and Performance II WG Koster 276–315 Amsterdam: North-Holland
    [Google Scholar]
  115. Theeuwes J. 2004. Top-down search strategies cannot override attentional capture. Psychon. Bull. Rev. 11:65–70
    [Google Scholar]
  116. Thomas AW, Molter F, Krajbich I 2021. Uncovering the computational mechanisms underlying many-alternative choice. eLife 10:e57012
    [Google Scholar]
  117. Thomas AW, Molter F, Krajbich I, Heekeren HR, Mohr PNC. 2019. Gaze bias differences capture individual choice behaviour. Nat. Hum. Behav. 3:625–35
    [Google Scholar]
  118. Thura D, Cos I, Trung J, Cisek P. 2014. Context-dependent urgency influences speed-accuracy trade-offs in decision-making and movement execution. J. Neurosci. 34:16442–54
    [Google Scholar]
  119. Toole AJ, Fogt N. 2021. Review: head and eye movements and gaze tracking in baseball batting. Optom. Vis. Sci. 98:750–58
    [Google Scholar]
  120. Towal RB, Mormann M, Koch C. 2013. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. PNAS 110:3858–67
    [Google Scholar]
  121. Urai AE, Braun A, Donner TH. 2017. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat. Commun. 8:14637
    [Google Scholar]
  122. Vaidya AR, Fellows LK. 2020. Under construction: ventral and lateral frontal lobe contributions to value-based decision-making and learning. F1000 Res. 9:158
    [Google Scholar]
  123. Van den Berg R, Zylberberg A, Kiani R, Shadlen MN, Wolpert DM. 2018. Confidence is the bridge between multi-stage decisions. Curr. Biol. 26:3157–68
    [Google Scholar]
  124. Van Slooten JC, Jahfari S, Knapen T, Theeuwes J. 2018. How pupil responses track value-based decision-making during and after reinforcement learning. PLOS Comput. Biol. 14:11e1006632
    [Google Scholar]
  125. Van Slooten JC, Jahfari S, Theeuwes J. 2019. Spontaneous eye blink rate predicts individual differences in exploration and exploitation during reinforcement learning. Sci. Rep. 9:17436
    [Google Scholar]
  126. Waldthaler J, Stock L, Student J, Sommerkorn J, Dowiasch S, Timmermann L. 2021. Antisaccades in Parkinson's disease: a meta-analysis. Neuropsychol. Rev. 31:4628–42
    [Google Scholar]
  127. Wang CA, Brien DC, Munoz DP. 2015. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. Eur. J. Neurosci. 41:1102–10
    [Google Scholar]
  128. Wascher E, Heppner H, Möckel T, Kobald SO, Getzmann S. 2015. Eye-blinks in choice response tasks uncover hidden aspects of information processing. J. Exp. Clin. Sci. 14:1207–18
    [Google Scholar]
  129. Watanabe M, Munoz DP. 2009. Neural correlates of conflict resolution between automatic and volitional actions by basal ganglia. Eur. J. Neurosci. 30:2165–76
    [Google Scholar]
  130. Wu C-C, Wolfe JM. 2019. Eye movements in medical image perception: a selective review of past, present and future. Vision 3:232
    [Google Scholar]
  131. Yates JL, Park IM, Katz LN, Pillow JW, Huk AC. 2017. Functional dissection of signal and noise in MT and LIP during decision making. Nat. Neurosci. 20:1285–92
    [Google Scholar]
  132. Yoon T, Geary RB, Ahmed AA, Shadmehr R. 2018. Control of movement vigor and decision making during foraging. PNAS 115:10476–85
    [Google Scholar]
  133. Zhang M, Xiao W, Rose O, Bendtz K, Livingstone M et al. 2021. Look twice: a computational model of return fixations across tasks and species. arXiv 01611. https://arxiv.org/abs/2101.01611
/content/journals/10.1146/annurev-vision-100720-125029
Loading
/content/journals/10.1146/annurev-vision-100720-125029
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error