1932

Abstract

The continuous function of vertebrate photoreceptors requires regeneration of their visual pigment following its destruction upon activation by light (photobleaching). For rods, the chromophore required for the regeneration of rhodopsin is derived from the adjacent retinal pigmented epithelium (RPE) cells through a series of reactions collectively known as the RPE visual cycle. Mounting biochemical and functional evidence demonstrates that, for cones, pigment regeneration is supported by the parallel supply with chromophore by two pathways—the canonical RPE visual cycle and a second, cone-specific retina visual cycle that involves the Müller glial cells in the neural retina. In this article, we review historical information that led to the discovery of the retina visual cycle and discuss what is currently known about the reactions and molecular components of this pathway and its functional role in supporting cone-mediated vision.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100820-083937
2024-09-18
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-100820-083937.html?itemId=/content/journals/10.1146/annurev-vision-100820-083937&mimeType=html&fmt=ahah

Literature Cited

  1. Abbas F, Becker S, Jones BW, Mure LS, Panda S, et al. 2022.. Revival of light signalling in the postmortem mouse and human retina. . Nature 606::35157
    [Crossref] [Google Scholar]
  2. Adler AJ, Edwards RB. 2000.. Human interphotoreceptor matrix contains serum albumin and retinol-binding protein. . Exp. Eye Res. 70::22734
    [Crossref] [Google Scholar]
  3. Adler AJ, Spencer SA. 1991.. Effect of light on endogenous ligands carried by interphotoreceptor retinoid-binding protein. . Exp. Eye Res. 53::33746
    [Crossref] [Google Scholar]
  4. Ait-Ali N, Fridlich R, Millet-Puel G, Clerin E, Delalande F, et al. 2015.. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. . Cell 161::81732
    [Crossref] [Google Scholar]
  5. Ala-Laurila P, Cornwall MC, Crouch RK, Kono M. 2009.. The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. . J. Biol. Chem. 284::16492500
    [Crossref] [Google Scholar]
  6. Ala-Laurila P, Kolesnikov AV, Crouch RK, Tsina E, Shukolyukov SA, et al. 2006.. Visual cycle: dependence of retinol production and removal on photoproduct decay and cell morphology. . J. Gen. Physiol. 128::15369
    [Crossref] [Google Scholar]
  7. Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE. 2004.. Visual pigment composition in zebrafish: evidence for a rhodopsin-porphyropsin interchange system. . Vis. Neurosci. 21::94552
    [Crossref] [Google Scholar]
  8. Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, et al. 2004.. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. . J. Biol. Chem. 279::1042232
    [Crossref] [Google Scholar]
  9. Belyaeva OV, Johnson MP, Kedishvili NY. 2008.. Kinetic analysis of human enzyme RDH10 defines the characteristics of a physiologically relevant retinol dehydrogenase. . J. Biol. Chem. 283::20299308
    [Crossref] [Google Scholar]
  10. Belyaeva OV, Korkina OV, Stetsenko AV, Kim T, Nelson PS, Kedishvili NY. 2005.. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. . Biochemistry 44::703547
    [Crossref] [Google Scholar]
  11. Betts-Obregon BS, Gonzalez-Fernandez F, Tsin AT. 2014.. Interphotoreceptor retinoid-binding protein (IRBP) promotes retinol uptake and release by rat Müller cells (rMC-1) in vitro: implications for the cone visual cycle. . Investig. Ophthalmol. Vis. Sci. 55::626571
    [Crossref] [Google Scholar]
  12. Bilotta J, Saszik S, Sutherland SE. 2001.. Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. . Dev. Dyn. 222::56470
    [Crossref] [Google Scholar]
  13. Bridges CD, Alvarez RA, Fong SL, Gonzalez-Fernandez F, Lam DM, Liou GI. 1984.. Visual cycle in the mammalian eye. Retinoid-binding proteins and the distribution of 11-cis retinoids. . Vis. Res. 24::158194
    [Crossref] [Google Scholar]
  14. Bridges CD, Alvarez RA, Fong SL, Liou GI, Ulshafer RJ. 1987.. Rhodopsin, vitamin A, and interstitial retinol-binding protein in the rd chicken. . Investig. Ophthalmol. Vis. Sci. 28::61317
    [Google Scholar]
  15. Bunt-Milam AH, Saari JC. 1983.. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. . J. Cell Biol. 97::70312
    [Crossref] [Google Scholar]
  16. Carter-Dawson LD, LaVail MM. 1979.. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. . J. Comp. Neurol. 188::24562
    [Crossref] [Google Scholar]
  17. Chen C, Adler L IV, Goletz P, Gonzalez-Fernandez F, Thompson DA, Koutalos Y. 2017.. Interphotoreceptor retinoid-binding protein removes all-trans-retinol and retinal from rod outer segments, preventing lipofuscin precursor formation. . J. Biol. Chem. 292::1935665
    [Crossref] [Google Scholar]
  18. Chen C, Thompson DA, Koutalos Y. 2012.. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. . J. Biol. Chem. 287::2466270
    [Crossref] [Google Scholar]
  19. Chen J, Rattner A, Nathans J. 2005.. The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. . J. Neurosci. 25::11829
    [Crossref] [Google Scholar]
  20. Chen Y, Noy N. 1994.. Retinoid specificity of interphotoreceptor retinoid-binding protein. . Biochemistry 33::1065865
    [Crossref] [Google Scholar]
  21. Chrispell JD, Feathers KL, Kane MA, Kim CY, Brooks M, et al. 2009.. Rdh12 activity and effects on retinoid processing in the murine retina. . J. Biol. Chem. 284::2146877
    [Crossref] [Google Scholar]
  22. Collery R, McLoughlin S, Vendrell V, Finnegan J, Crabb JW, et al. 2008.. Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Müller-CRALBP in cone vision. . Investig. Ophthalmol. Vis. Sci. 49::381220
    [Crossref] [Google Scholar]
  23. Corbo JC, Cepko CL. 2005.. A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced S-cone syndrome. . PLOS Genet. 1::e11
    [Crossref] [Google Scholar]
  24. Das SR, Bhardwaj N, Kjeldbye H, Gouras P. 1992.. Müller cells of chicken retina synthesize 11-cis-retinol. . Biochem. J. 285:(Part 3):90713
    [Crossref] [Google Scholar]
  25. Diaz NM, Morera LP, Tempesti T, Guido ME. 2017.. The visual cycle in the inner retina of chicken and the involvement of retinal G-protein-coupled receptor (RGR). . Mol. Neurobiol. 54::250717
    [Crossref] [Google Scholar]
  26. Doyle SE, Castrucci AM, McCall M, Provencio I, Menaker M. 2006.. Nonvisual light responses in the Rpe65 knockout mouse: Rod loss restores sensitivity to the melanopsin system. . PNAS 103::1043237
    [Crossref] [Google Scholar]
  27. Emanuel AJ, Do MT. 2015.. Melanopsin tristability for sustained and broadband phototransduction. . Neuron 85::104355
    [Crossref] [Google Scholar]
  28. Fadool JM. 2003.. Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. . Dev. Biol. 258::27790
    [Crossref] [Google Scholar]
  29. Farjo KM, Moiseyev G, Takahashi Y, Crouch RK, Ma JX. 2009.. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. . Investig. Ophthalmol. Vis. Sci. 50::508997
    [Crossref] [Google Scholar]
  30. Feathers KL, Lyubarsky AL, Khan NW, Teofilo K, Swaroop A, et al. 2008.. Nrl-knockout mice deficient in Rpe65 fail to synthesize 11-cis retinal and cone outer segments. . Investig. Ophthalmol. Vis. Sci. 49::112635
    [Crossref] [Google Scholar]
  31. Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC. 2008.. Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. . J. Neurosci. 28::820816
    [Crossref] [Google Scholar]
  32. Frederiksen R, Boyer NP, Nickle B, Chakrabarti KS, Koutalos Y, et al. 2012.. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. . J. Gen. Physiol. 139::493505
    [Crossref] [Google Scholar]
  33. Gao S, Kahremany S, Zhang J, Jastrzebska B, Querubin J, et al. 2018.. Retinal-chitosan conjugates effectively deliver active chromophores to retinal photoreceptor cells in blind mice and dogs. . Mol. Pharmacol. 93::43852
    [Crossref] [Google Scholar]
  34. Gao SQ, Maeda T, Okano K, Palczewski K. 2012.. A microparticle/hydrogel combination drug-delivery system for sustained release of retinoids. . Investig. Ophthalmol. Vis. Sci. 53::631423
    [Crossref] [Google Scholar]
  35. Garlipp MA, Gonzalez-Fernandez F. 2013.. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). . Exp. Eye Res. 113::192202
    [Crossref] [Google Scholar]
  36. Garlipp MA, Nowak KR, Gonzalez-Fernandez F. 2012.. Cone outer segment extracellular matrix as binding domain for interphotoreceptor retinoid-binding protein. . J. Comp. Neurol. 520::75669
    [Crossref] [Google Scholar]
  37. Gaucher D, Arnault E, Husson Z, Froger N, Dubus E, et al. 2012.. Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. . Amino Acids 43::197993
    [Crossref] [Google Scholar]
  38. Gearhart PM, Gearhart C, Thompson DA, Petersen-Jones SM. 2010.. Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. . Arch. Ophthalmol. 128::144248
    [Crossref] [Google Scholar]
  39. Goldstein EB. 1970.. Cone pigment regeneration in the isolated frog retina. . Vis. Res. 10::106568
    [Crossref] [Google Scholar]
  40. Gonzalez-Fernandez F, Betts-Obregon B, Yust B, Mimun J, Sung D, et al. 2015.. Interphotoreceptor retinoid-binding protein protects retinoids from photodegradation. . Photochem. Photobiol. 91::37178
    [Crossref] [Google Scholar]
  41. Gonzalez-Fernandez F, Ghosh D. 2008.. Focus on molecules: interphotoreceptor retinoid-binding protein (IRBP). . Exp. Eye Res. 86::16970
    [Crossref] [Google Scholar]
  42. Haeseleer F, Jang GF, Imanishi Y, Driessen C, Matsumura M, et al. 2002.. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. . J. Biol. Chem. 277::4553746
    [Crossref] [Google Scholar]
  43. Hao W, Fong HK. 1999.. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. . J. Biol. Chem. 274::608590
    [Crossref] [Google Scholar]
  44. Harrison KR, Reifler AN, Chervenak AP, Wong KY. 2021.. Prolonged melanopsin-based photoresponses depend in part on RPE65 and cellular retinaldehyde-binding protein (CRALBP). . Curr. Eye Res. 46::51523
    [Crossref] [Google Scholar]
  45. Hecht S. 1937.. Rods, cones, and the chemical basis of vision. . Physiol. Rev. 17::23990
    [Crossref] [Google Scholar]
  46. Hoang QV, Linsenmeier RA, Chung CK, Curcio CA. 2002.. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. . Vis. Neurosci. 19::395407
    [Crossref] [Google Scholar]
  47. Huang J, Possin DE, Saari JC. 2009.. Localizations of visual cycle components in retinal pigment epithelium. . Mol. Vis. 15::22334
    [Google Scholar]
  48. Huh CYL, Leinonen H, Nakayama T, Tomasello JR, Zhang J, et al. 2022.. Retinoid therapy restores eye-specific cortical responses in adult mice with retinal degeneration. . Curr. Biol. 32::453846.e5
    [Crossref] [Google Scholar]
  49. Jang GF, McBee JK, Alekseev AM, Haeseleer F, Palczewski K. 2000.. Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. . J. Biol. Chem. 275::2812838
    [Crossref] [Google Scholar]
  50. Januschka MM, Burkhardt DA, Erlandsen SL, Purple RL. 1987.. The ultrastructure of cones in the walleye retina. . Vis. Res. 27::32741
    [Crossref] [Google Scholar]
  51. Jin J, Jones GJ, Cornwall MC. 1994.. Movement of retinal along cone and rod photoreceptors. . Vis. Neurosci. 11::38999
    [Crossref] [Google Scholar]
  52. Jin M, Li S, Nusinowitz S, Lloyd M, Hu J, et al. 2009.. The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. . J. Neurosci. 29::148695
    [Crossref] [Google Scholar]
  53. Jones GJ, Crouch RK, Wiggert B, Cornwall MC, Chader GJ. 1989.. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. . PNAS 86::960610
    [Crossref] [Google Scholar]
  54. Kanan Y, Kasus-Jacobi A, Moiseyev G, Sawyer K, Ma JX, Al-Ubaidi MR. 2008.. Retinoid processing in cone and Müller cell lines. . Exp. Eye Res. 86::34454
    [Crossref] [Google Scholar]
  55. Kaplan L, Drexler C, Pfaller AM, Brenna S, Wunderlich KA, . 2023.. Retinal regions shape human and murine Müller cell proteome profile and functionality. . Glia 71::391414
    [Crossref] [Google Scholar]
  56. Kasus-Jacobi A, Ou J, Bashmakov YK, Shelton JM, Richardson JA, et al. 2003.. Characterization of mouse short-chain aldehyde reductase (SCALD), an enzyme regulated by sterol regulatory element-binding proteins. . J. Biol. Chem. 278::3238089
    [Crossref] [Google Scholar]
  57. Kasus-Jacobi A, Ou J, Birch DG, Locke KG, Shelton JM, et al. 2005.. Functional characterization of mouse RDH11 as a retinol dehydrogenase involved in dark adaptation in vivo. . J. Biol. Chem. 280::2041320
    [Crossref] [Google Scholar]
  58. Kawamura S, Tachibanaki S. 2022.. Molecular bases of rod and cone differences. . Prog. Retin. Eye Res. 90::101040
    [Crossref] [Google Scholar]
  59. Kaylor JJ, Cook JD, Makshanoff J, Bischoff N, Yong J, Travis GH. 2014.. Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). . PNAS 111::73027
    [Crossref] [Google Scholar]
  60. Kaylor JJ, Xu T, Ingram NT, Tsan A, Hakobyan H, et al. 2017.. Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. . Nat. Commun. 8::16
    [Crossref] [Google Scholar]
  61. Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, et al. 2013.. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. . Nat. Chem. Biol. 9::3036
    [Crossref] [Google Scholar]
  62. Kefalov VJ. 2012.. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. . J. Biol. Chem. 287::163541
    [Crossref] [Google Scholar]
  63. Kefalov VJ, Estevez ME, Kono M, Goletz PW, Crouch RK, et al. 2005.. Breaking the covalent bond—a pigment property that contributes to desensitization in cones. . Neuron 46::87990
    [Crossref] [Google Scholar]
  64. Kelly M, Widjaja-Adhi MA, Palczewski G, von Lintig J. 2016.. Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. . FASEB J. 30::298595
    [Crossref] [Google Scholar]
  65. Kim HJ, Zhao J, Sparrow JR. 2020.. Vitamin A aldehyde-taurine adduct and the visual cycle. . PNAS 117::2486775
    [Crossref] [Google Scholar]
  66. Kim HJ, Zhao J, Sparrow JR. 2022.. Vitamin A aldehyde-taurine adducts function in photoreceptor cells. . Redox Biol. 54::102386
    [Crossref] [Google Scholar]
  67. Kim TS, Maeda A, Maeda T, Heinlein C, Kedishvili N, et al. 2005.. Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: a role of RDH11 in visual processes in vivo. . J. Biol. Chem. 280::8694704
    [Crossref] [Google Scholar]
  68. Kiser PD, Kolesnikov AV, Kiser JZ, Dong Z, Chaurasia B, et al. 2019.. Conditional deletion of Des1 in the mouse retina does not impair the visual cycle in cones. . FASEB J. 33::578292
    [Crossref] [Google Scholar]
  69. Kiser PD, Palczewski K. 2016.. Retinoids and retinal diseases. . Annu. Rev. Vis. Sci. 2::197234
    [Crossref] [Google Scholar]
  70. Kiser PD, Palczewski K. 2021.. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. . J. Biol. Chem. 296::100072
    [Crossref] [Google Scholar]
  71. Kiser PD, Zhang J, Sharma A, Angueyra JM, Kolesnikov AV, et al. 2018.. Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. . J. Gen. Physiol. 150::57190
    [Crossref] [Google Scholar]
  72. Kolesnikov AV, Kiser PD, Palczewski K, Kefalov VJ. 2021.. Function of mammalian M-cones depends on the level of CRALBP in Muller cells. . J. Gen. Physiol. 153::e202012675
    [Crossref] [Google Scholar]
  73. Kolesnikov AV, Maeda A, Tang PH, Imanishi Y, Palczewski K, Kefalov VJ. 2015.. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina. . J. Physiol. 593::492341
    [Crossref] [Google Scholar]
  74. Kolesnikov AV, Tang PH, Kefalov VJ. 2018.. Examining the role of cone-expressed RPE65 in mouse cone function. . Sci. Rep. 8::14201
    [Crossref] [Google Scholar]
  75. Kolesnikov AV, Tang PH, Parker RO, Crouch RK, Kefalov VJ. 2011.. The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein. . J. Neurosci. 31::79009
    [Crossref] [Google Scholar]
  76. Kubota R, Al-Fayoumi S, Mallikaarjun S, Patil S, Bavik C, Chandler JW. 2014.. Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. . Retina 34::6039
    [Crossref] [Google Scholar]
  77. Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D. 2012.. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. . Retina 32::18388
    [Crossref] [Google Scholar]
  78. Kurth I, Thompson DA, Ruther K, Feathers KL, Chrispell JD, et al. 2007.. Targeted disruption of the murine retinal dehydrogenase gene Rdh12 does not limit visual cycle function. . Mol. Cell. Biol. 27::137079
    [Crossref] [Google Scholar]
  79. Lake N, Verdone-Smith C. 1989.. Immunocytochemical localization of taurine in the mammalian retina. . Curr. Eye Res. 8::16373
    [Crossref] [Google Scholar]
  80. Lamb TD, Pugh EN Jr. 2004.. Dark adaptation and the retinoid cycle of vision. . Prog. Retin. Eye Res. 23::30780
    [Crossref] [Google Scholar]
  81. Lima de Carvalho JR Jr., Kim HJ, Ueda K, Zhao J, Owji AP, et al. 2020.. Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice. . J. Biol. Chem. 295::676780
    [Crossref] [Google Scholar]
  82. Lin ZS, Fong SL, Bridges CD. 1989.. Retinoids bound to interstitial retinol-binding protein during light and dark-adaptation. . Vis. Res. 29::1699709
    [Crossref] [Google Scholar]
  83. Liou GI, Fei Y, Peachey NS, Matragoon S, Wei S, et al. 1998.. Early onset photoreceptor abnormalities induced by targeted disruption of the interphotoreceptor retinoid-binding protein gene. . J. Neurosci. 18::451120
    [Crossref] [Google Scholar]
  84. Luo DG, Silverman D, Frederiksen R, Adhikari R, Cao LH, et al. 2020.. Apo-opsin and its dark constitutive activity across retinal cone subtypes. . Curr. Biol. 30::492131.e5
    [Crossref] [Google Scholar]
  85. Ma J, Znoiko S, Othersen KL, Ryan JC, Das J, et al. 2001.. A visual pigment expressed in both rod and cone photoreceptors. . Neuron 32::45161
    [Crossref] [Google Scholar]
  86. Maeda A, Maeda T, Imanishi Y, Kuksa V, Alekseev A, et al. 2005.. Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. . J. Biol. Chem. 280::1882232
    [Crossref] [Google Scholar]
  87. Maeda A, Maeda T, Imanishi Y, Sun W, Jastrzebska B, et al. 2006.. Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice. . J. Biol. Chem. 281::37697704
    [Crossref] [Google Scholar]
  88. Maeda A, Maeda T, Sun W, Zhang H, Baehr W, Palczewski K. 2007.. Redundant and unique roles of retinol dehydrogenases in the mouse retina. . PNAS 104::1956570
    [Crossref] [Google Scholar]
  89. Makino CL, Groesbeek M, Lugtenburg J, Baylor DA. 1999.. Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores. . Biophys. J. 77::102435
    [Crossref] [Google Scholar]
  90. Mata NL, Radu RA, Clemmons RC, Travis GH. 2002.. Isomerization and oxidation of vitamin a in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. . Neuron 36::6980
    [Crossref] [Google Scholar]
  91. Matsuyama T, Yamashita T, Imamoto Y, Shichida Y. 2012.. Photochemical properties of mammalian melanopsin. . Biochemistry 51::545462
    [Crossref] [Google Scholar]
  92. McBee JK, Van Hooser JP, Jang GF, Palczewski K. 2001.. Isomerization of 11-cis-retinoids to all-trans-retinoids in vitro and in vivo. . J. Biol. Chem. 276::4848393
    [Crossref] [Google Scholar]
  93. Meyer DB, May HC Jr. 1973.. The topographical distribution of rods and cones in the adult chicken retina. . Exp. Eye Res. 17::34755
    [Crossref] [Google Scholar]
  94. Miyagishima KJ, Cornwall MC, Sampath AP. 2009.. Metabolic constraints on the recovery of sensitivity after visual pigment bleaching in retinal rods. . J. Gen. Physiol. 134::16575
    [Crossref] [Google Scholar]
  95. Miyazono S, Shimauchi-Matsukawa Y, Tachibanaki S, Kawamura S. 2008.. Highly efficient retinal metabolism in cones. . PNAS 105::1605156
    [Crossref] [Google Scholar]
  96. Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, et al. 2019.. Light-driven regeneration of cone visual pigments through a mechanism involving RGR opsin in Müller glial cells. . Neuron 102::117283.e5
    [Crossref] [Google Scholar]
  97. Muniz A, Betts BS, Trevino AR, Buddavarapu K, Roman R, et al. 2009.. Evidence for two retinoid cycles in the cone-dominated chicken eye. . Biochemistry 48::685463
    [Crossref] [Google Scholar]
  98. Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr. 2006.. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. . J. Gen. Physiol. 127::35974
    [Crossref] [Google Scholar]
  99. Nymark S, Frederiksen R, Woodruff ML, Cornwall MC, Fain GL. 2012.. Bleaching of mouse rods: microspectrophotometry and suction-electrode recording. . J. Physiol. 590::235364
    [Crossref] [Google Scholar]
  100. Omura Y, Inagaki M. 2000.. Immunocytochemical localization of taurine in the fish retina under light and dark adaptations. . Amino Acids 19::593604
    [Crossref] [Google Scholar]
  101. Ozaki T, Nakazawa M, Kudo T, Hirano S, Suzuki K, Ishiguro S. 2014.. Protection of cone photoreceptor M-opsin degradation with 9-cis-β-carotene-rich alga Dunaliella bardawil in Rpe65−/− mouse retinal explant culture. . Curr. Eye Res. 39::122131
    [Crossref] [Google Scholar]
  102. Palczewski K, Van Hooser JP, Garwin GG, Chen J, Liou GI, Saari JC. 1999.. Kinetics of visual pigment regeneration in excised mouse eyes and in mice with a targeted disruption of the gene encoding interphotoreceptor retinoid-binding protein or arrestin. . Biochemistry 38::1201219
    [Crossref] [Google Scholar]
  103. Parker R, Wang JS, Kefalov VJ, Crouch RK. 2011.. Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle. . J. Neurosci. 31::471419
    [Crossref] [Google Scholar]
  104. Parker RO, Crouch RK. 2010.. Retinol dehydrogenases (RDHs) in the visual cycle. . Exp. Eye Res. 91::78892
    [Crossref] [Google Scholar]
  105. Parker RO, Fan J, Nickerson JM, Liou GI, Crouch RK. 2009.. Normal cone function requires the interphotoreceptor retinoid binding protein. . J. Neurosci. 29::461621
    [Crossref] [Google Scholar]
  106. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, et al. 1998.. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. . Nat. Genet. 20::34451
    [Crossref] [Google Scholar]
  107. Ripps H, Peachey NS, Xu X, Nozell SE, Smith SB, Liou GI. 2000.. The rhodopsin cycle is preserved in IRBP “knockout” mice despite abnormalities in retinal structure and function. . Vis. Neurosci. 17::97105
    [Crossref] [Google Scholar]
  108. Ripps H, Shen W. 2012.. Review: taurine: a “very essential” amino acid. . Mol. Vis. 18::267386
    [Google Scholar]
  109. Rohrer B, Lohr HR, Humphries P, Redmond TM, Seeliger MW, Crouch RK. 2005.. Cone opsin mislocalization in Rpe65−/− mice: a defect that can be corrected by 11-cis retinal. . Investig. Ophthalmol. Vis. Sci. 46::387682
    [Crossref] [Google Scholar]
  110. Rushton WA, Powell DS. 1972.. The rhodopsin content and the visual threshold of human rods. . Vis. Res. 12::107381
    [Crossref] [Google Scholar]
  111. Saari JC. 2012.. Vitamin A metabolism in rod and cone visual cycles. . Annu. Rev. Nutr. 32::12545
    [Crossref] [Google Scholar]
  112. Saari JC, Bredberg DL. 1987.. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. . J. Biol. Chem. 262::761822
    [Crossref] [Google Scholar]
  113. Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, et al. 2001.. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. . Neuron 29::73948
    [Crossref] [Google Scholar]
  114. Saha A, Capowski E, Fernandez Zepeda MA, Nelson EC, Gamm DM, Sinha R. 2022.. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. . Cell Stem Cell 29::46071.e3
    [Crossref] [Google Scholar]
  115. Sahu B, Maeda A. 2016.. Retinol dehydrogenases regulate vitamin A metabolism for visual function. . Nutrients 8::746
    [Crossref] [Google Scholar]
  116. Sahu B, Sun W, Perusek L, Parmar V, Le YZ, et al. 2015.. Conditional ablation of retinol dehydrogenase 10 in the retinal pigmented epithelium causes delayed dark adaption in mice. . J. Biol. Chem. 290::2723947
    [Crossref] [Google Scholar]
  117. Samardzija M, Tanimoto N, Kostic C, Beck S, Oberhauser V, et al. 2009.. In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death. . Hum. Mol. Genet. 18::126675
    [Crossref] [Google Scholar]
  118. Sato S, Frederiksen R, Cornwall MC, Kefalov VJ. 2017.. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones. . Vis. Neurosci. 34::E004
    [Crossref] [Google Scholar]
  119. Sato S, Fukagawa T, Tachibanaki S, Yamano Y, Wada A, Kawamura S. 2013.. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones. . J. Biol. Chem. 288::3658997
    [Crossref] [Google Scholar]
  120. Sato S, Kefalov VJ. 2016.. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration. . J. Physiol. 594::675365
    [Crossref] [Google Scholar]
  121. Sato S, Miyazono S, Tachibanaki S, Kawamura S. 2015.. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle. . J. Biol. Chem. 290::298392
    [Crossref] [Google Scholar]
  122. Schlegel DK, Ramkumar S, von Lintig J, Neuhauss SC. 2021.. Disturbed retinoid metabolism upon loss of rlbp1a impairs cone function and leads to subretinal lipid deposits and photoreceptor degeneration in the zebrafish retina. . eLife 10::e71473
    [Crossref] [Google Scholar]
  123. Sexton TJ, Golczak M, Palczewski K, Van Gelder RN. 2012.. Melanopsin is highly resistant to light and chemical bleaching in vivo. . J. Biol. Chem. 287::2088897
    [Crossref] [Google Scholar]
  124. Sherry DM, Bui DD, Degrip WJ. 1998.. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. . Vis. Neurosci. 15::117587
    [Crossref] [Google Scholar]
  125. Shichi H, Somers RL. 1974.. Possible involvement of retinylidene phospholipid in photoisomerization of all-trans-retinal to 11-cis-retinal. . J. Biol. Chem. 249::657077
    [Crossref] [Google Scholar]
  126. Shichida Y, Imai H, Imamoto Y, Fukada Y, Yoshizawa T. 1994.. Is chicken green-sensitive cone visual pigment a rhodopsin-like pigment? A comparative study of the molecular properties between chicken green and rhodopsin. . Biochemistry 33::904044
    [Crossref] [Google Scholar]
  127. Stenkamp DL, Calderwood JL, Van Niel EE, Daniels LM, Gonzalez-Fernandez F. 2005.. The interphotoreceptor retinoid-binding protein (IRBP) of the chicken (Gallus gallus domesticus). . Mol. Vis. 11::83345
    [Google Scholar]
  128. Sun W, Gerth C, Maeda A, Lodowski DT, Van Der Kraak L, et al. 2007.. Novel RDH12 mutations associated with Leber congenital amaurosis and cone-rod dystrophy: biochemical and clinical evaluations. . Vis. Res. 47::205566
    [Crossref] [Google Scholar]
  129. Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma JX. 2011.. An alternative isomerohydrolase in the retinal Müller cells of a cone-dominant species. . FEBS J. 278::291326
    [Crossref] [Google Scholar]
  130. Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. 2013.. New insights into retinoid metabolism and cycling within the retina. . Prog. Retin. Eye Res. 32::4863
    [Crossref] [Google Scholar]
  131. Tang PH, Wheless L, Crouch RK. 2011.. Regeneration of photopigment is enhanced in mouse cone photoreceptors expressing RPE65 protein. . J. Neurosci. 31::1040311
    [Crossref] [Google Scholar]
  132. Terakita A, Hara R, Hara T. 1989.. Retinal-binding protein as a shuttle for retinal in the rhodopsin-retinochrome system of the squid visual cells. . Vis. Res. 29::63952
    [Crossref] [Google Scholar]
  133. Trevino SG, Villazana-Espinoza ET, Muniz A, Tsin AT. 2005.. Retinoid cycles in the cone-dominated chicken retina. . J. Exp. Biol. 208::415157
    [Crossref] [Google Scholar]
  134. Tu DC, Owens LA, Anderson L, Golczak M, Doyle SE, et al. 2006.. Inner retinal photoreception independent of the visual retinoid cycle. . PNAS 103::1042631
    [Crossref] [Google Scholar]
  135. Tworak A, Kolesnikov AV, Hong JD, Choi EH, Luu JC, et al. 2023.. Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia. . Cell Rep. 42::112982
    [Crossref] [Google Scholar]
  136. van Norren D, van de Kraats J. 1989.. Retinal densitometer with the size of a fundus camera. . Vis. Res. 29::36974
    [Crossref] [Google Scholar]
  137. Vinberg F, Kolesnikov AV, Kefalov VJ. 2014.. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. . Vis. Res. 101::10817
    [Crossref] [Google Scholar]
  138. Wang H, Cui X, Gu Q, Chen Y, Zhou J, et al. 2012.. Retinol dehydrogenase 13 protects the mouse retina from acute light damage. . Mol. Vis. 18::102130
    [Google Scholar]
  139. Wang JS, Estevez ME, Cornwall MC, Kefalov VJ. 2009.. Intra-retinal visual cycle required for rapid and complete cone dark adaptation. . Nat. Neurosci. 12::295302
    [Crossref] [Google Scholar]
  140. Wang JS, Kefalov VJ. 2009.. An alternative pathway mediates the mouse and human cone visual cycle. . Curr. Biol. 19::166569
    [Crossref] [Google Scholar]
  141. Wang JS, Nymark S, Frederiksen R, Estevez ME, Shen SQ, et al. 2014.. Chromophore supply rate-limits mammalian photoreceptor dark adaptation. . J. Neurosci. 34::1121221
    [Crossref] [Google Scholar]
  142. Ward R, Kaylor JJ, Cobice DF, Pepe DA, McGarrigle EM, et al. 2020.. Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision. . J. Biol. Chem. 295::648297
    [Crossref] [Google Scholar]
  143. West RW, Dowling JE. 1975.. Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. . J. Comp. Neurol. 159::43960
    [Crossref] [Google Scholar]
  144. Widjaja-Adhi MAK, Kolesnikov AV, Vasudevan S, Park PS, Kefalov VJ, Golczak M. 2022.. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina. . FASEB J. 36::e22390
    [Crossref] [Google Scholar]
  145. Wu BX, Chen Y, Chen Y, Fan J, Rohrer B, et al. 2002.. Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE. . Investig. Ophthalmol. Vis. Sci. 43::336572
    [Google Scholar]
  146. Xue Y, Sato S, Razafsky D, Sahu B, Shen SQ, et al. 2017.. The role of retinol dehydrogenase 10 in the cone visual cycle. . Sci. Rep. 7::2390
    [Crossref] [Google Scholar]
  147. Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, et al. 2015.. CRALBP supports the mammalian retinal visual cycle and cone vision. . J. Clin. Investig. 125::72738
    [Crossref] [Google Scholar]
  148. Yamaoka H, Tachibanaki S, Kawamura S. 2015.. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes. . J. Biol. Chem. 290::2438190
    [Crossref] [Google Scholar]
  149. Yen C-LE, Brown CH IV, Monetti M, Farese RV Jr. 2005.. A human skin multifunctional O-acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. . J. Lipid Res. 46::238897
    [Crossref] [Google Scholar]
  150. Zhang H, Fan J, Li S, Karan S, Rohrer B, et al. 2008.. Trafficking of membrane-associated proteins to cone photoreceptor outer segments requires the chromophore 11-cis-retinal. . J. Neurosci. 28::400814
    [Crossref] [Google Scholar]
  151. Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, et al. 2019.. Photic generation of 11-cis-retinal in bovine retinal pigment epithelium. . J. Biol. Chem. 294::1913754
    [Crossref] [Google Scholar]
  152. Zhao X, Pack W, Khan NW, Wong KY. 2016.. Prolonged inner retinal photoreception depends on the visual retinoid cycle. . J. Neurosci. 36::420917
    [Crossref] [Google Scholar]
  153. Zimmermann MJY, Nevala NE, Yoshimatsu T, Osorio D, Nilsson DE, et al. 2018.. Zebrafish differentially process color across visual space to match natural scenes. . Curr. Biol. 28::201832.e5
    [Crossref] [Google Scholar]
  154. Znoiko SL, Crouch RK, Moiseyev G, Ma JX. 2002.. Identification of the RPE65 protein in mammalian cone photoreceptors. . Investig. Ophthalmol. Vis. Sci. 43::16049
    [Google Scholar]
  155. Znoiko SL, Rohrer B, Lu K, Lohr HR, Crouch RK, Ma JX. 2005.. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65−/− mouse at early ages. . Investig. Ophthalmol. Vis. Sci. 46::147379
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-100820-083937
Loading
/content/journals/10.1146/annurev-vision-100820-083937
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error