1932

Abstract

The choriocapillaris, a dense capillary network located at the posterior pole of the eye, is essential for supporting normal vision, supplying nutrients, and removing waste products from photoreceptor cells and the retinal pigment epithelium. The anatomical location, heterogeneity, and homeostatic interactions with surrounding cell types make the choroid complex to study both in vivo and in vitro. Recent advances in single-cell RNA sequencing, in vivo imaging, and in vitro cell modeling are vastly improving our knowledge of the choroid and its role in normal health and in age-related macular degeneration (AMD). Histologically, loss of endothelial cells (ECs) of the choriocapillaris occurs early in AMD concomitant with elevated formation of the membrane attack complex of complement. Advanced imaging has allowed us to visualize early choroidal blood flow changes in AMD in living patients, supporting histological findings of loss of choroidal ECs. Single-cell RNA sequencing is being used to characterize choroidal cell types transcriptionally and discover their altered patterns of gene expression in aging and disease. Advances in induced pluripotent stem cell protocols and 3D cultures will allow us to closely mimic the in vivo microenvironment of the choroid in vitro to better understand the mechanism leading to choriocapillaris loss in AMD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100820-085958
2022-09-15
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100820-085958.html?itemId=/content/journals/10.1146/annurev-vision-100820-085958&mimeType=html&fmt=ahah

Literature Cited

  1. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T et al. 2012. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging 2012:940585
    [Google Scholar]
  2. Ames A 3rd. 1992. Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can. J. Physiol. Pharmacol. 70:S1S158–64
    [Google Scholar]
  3. Armento A, Ueffing M, Clark SJ. 2021. The complement system in age-related macular degeneration. Cell. Mol. Life Sci. 78:4487–505
    [Google Scholar]
  4. Arora KS, Jefferys JL, Maul EA, Quigley HA. 2012. Choroidal thickness change after water drinking is greater in angle closure than in open angle eyes. Investig. Ophthalmol. Vis. Sci. 53:6393–402
    [Google Scholar]
  5. Baba T, Grebe R, Hasegawa T, Bhutto I, Merges C, McLeod DS, Lutty GA. 2009. Maturation of the fetal human choriocapillaris. Investig. Ophthalmol. Vis. Sci. 50:3503–11
    [Google Scholar]
  6. Bharti K, Song MJ, Quinn R, Nguyen E, Park TS et al. 2022. Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Research Square. https://doi.org/10.21203/rs.3.rs-135775/v1
    [Crossref]
  7. Bhutto IA, Baba T, Merges C, Juriasinghani V, McLeod DS, Lutty GA. 2011. C-reactive protein and complement factor H in aged human eyes and eyes with age-related macular degeneration. Br. J. Ophthalmol. 95:1323–30
    [Google Scholar]
  8. Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR. 1994. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina 14:130–42
    [Google Scholar]
  9. Browning AC, Halligan EP, Stewart EA, Swan DC, Dove R et al. 2012. Comparative gene expression profiling of human umbilical vein endothelial cells and ocular vascular endothelial cells. Br. J. Ophthalmol. 96:128–32
    [Google Scholar]
  10. Cao J, McLeod S, Merges CA, Lutty GA. 1998. Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch. Ophthalmol. 116:589–97
    [Google Scholar]
  11. Chen L, Messinger JD, Kar D, Duncan JL, Curcio CA. 2021. Biometrics, impact, and significance of basal linear deposit and subretinal drusenoid deposit in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 62:33
    [Google Scholar]
  12. Chen L, Messinger JD, Sloan KR, Swain TA, Sugiura Y et al. 2020a. Non-exudative neovascularization supporting outer retina in age-related macular degeneration: a clinicopathologic correlation. Ophthalmology 127:931–47
    [Google Scholar]
  13. Chen L, Messinger JD, Sloan KR, Wong J, Roorda A et al. 2020b. Abundance and multimodal visibility of soft drusen in early age-related macular degeneration: a clinicopathologic correlation. Retina 40:1644–48
    [Google Scholar]
  14. Chen RC, Palestine AG, Lynch AM, Patnaik JL, Wagner BD et al. 2021. Increased systemic C-reactive protein is associated with choroidal thinning in intermediate age-related macular degeneration. Transl. Vis. Sci. Technol. 10:7
    [Google Scholar]
  15. Chirco KR, Flamme-Wiese MJ, Wiley JS, Potempa LA, Stone EM et al. 2018. Evaluation of serum and ocular levels of membrane attack complex and C-reactive protein in CFH-genotyped human donors. Eye 32:1740–42
    [Google Scholar]
  16. Chirco KR, Sohn EH, Stone EM, Tucker BA, Mullins RF. 2017. Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye 31:10–25
    [Google Scholar]
  17. Choi W, Mohler KJ, Potsaid B, Lu CD, Liu JJ, Jayaraman V et al. 2013. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLOS ONE 8:e81499
    [Google Scholar]
  18. Chong NH, Keonin J, Luthert PJ, Frennesson CI, Weingeist DM et al. 2005. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am. J. Pathol. 166:241–51
    [Google Scholar]
  19. Curcio CA, Johnson M, Rudolf M, Huang JD 2011. The oil spill in ageing Bruch membrane. Br. J. Ophthalmol. 95:1638–45
    [Google Scholar]
  20. De Oliveira GS Jr., Errea M, Bialek J, Kendall MC, McCarthy RJ. 2018. The impact of health literacy on shared decision making before elective surgery: a propensity matched case control analysis. BMC Health Serv. Res. 18:958
    [Google Scholar]
  21. Djigo AD, Bérubé J, Landreville S, Proulx S. 2019. Characterization of a tissue-engineered choroid. Acta Biomater. 84:305–16
    [Google Scholar]
  22. Fan W, Zheng JJ, McLaughlin BJ. 2002. An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell. Dev. Biol. Anim. 38:228–34
    [Google Scholar]
  23. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S. 2016. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48:134–43
    [Google Scholar]
  24. Gass JD, Sever RJ, Sparks D, Goren J. 1967. A combined technique of fluorescein funduscopy and angiography of the eye. Arch. Ophthalmol 78:455–61
    [Google Scholar]
  25. Gautam P, Hamashima K, Chen Y, Zeng Y, Makovoz B et al. 2021. Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nat. Commun. 12:5675
    [Google Scholar]
  26. Geisen P, McColm JR, Hartnett ME. 2006. Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp. Eye Res. 82:608–19
    [Google Scholar]
  27. Gemenetzi M, Patel PJ. 2017. A systematic review of the treat and extend treatment regimen with anti-VEGF agents for neovascular age-related macular degeneration. Ophthalmol. Ther. 6:79–92
    [Google Scholar]
  28. Grossniklaus HE, Martinez JA, Brown VB, Lambert HM, Sternberg P Jr. et al. 1992. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am. J. Ophthalmol. 114:464–72
    [Google Scholar]
  29. Hageman GS, Zhu XL, Waheed A, Sly WS. 1991. Localization of carbonic anhydrase IV in a specific capillary bed of the human eye. PNAS 88:2716–20
    [Google Scholar]
  30. Hamilton RD, Foss AJ, Leach L. 2007. Establishment of a human in vitro model of the outer blood-retinal barrier. J. Anat. 211:707–16
    [Google Scholar]
  31. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA et al. 1999. Increase in the advanced glycation end product pentosidine in Bruch's membrane with age. Investig. Ophthalmol. Vis. Sci. 40:775–79
    [Google Scholar]
  32. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG et al. 1991. Optical coherence tomography. Science 254:1178–81
    [Google Scholar]
  33. Hurley JB, Lindsay KJ, Du J. 2015. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J. Neurosci. Res. 93:1079–92
    [Google Scholar]
  34. Khan S, Taverna F, Rohlenova K, Treps L, Geldhof V et al. 2019. EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Res. 47:D736–744
    [Google Scholar]
  35. Kim DY, Fingler J, Zawadzki RJ, Park SS, Morse LS et al. 2013. Optical imaging of the chorioretinal vasculature in the living human eye. PNAS 110:14354–59
    [Google Scholar]
  36. Lehmann GL, Hanke-Gogokhia C, Hu Y, Bareja R, Salfati Z et al. 2020. Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. J. Exp. Med. 217:6e20190730
    [Google Scholar]
  37. Li C, Fitzgerald MEC, Del Mar N, Wang H, Haughey C et al. 2021. Role of the superior salivatory nucleus in parasympathetic control of choroidal blood flow and in maintenance of retinal health. Exp. Eye Res. 206:108541
    [Google Scholar]
  38. Lutty GA, McLeod DS, Bhutto IA, Edwards MM, Seddon JM. 2020. Choriocapillaris dropout in early age-related macular degeneration. Exp. Eye Res. 192:107939
    [Google Scholar]
  39. Macular Photocoagulation Study Group 1991. Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the Macular Photocoagulation Study. Arch. Ophthalmol. 109:1242–57
    [Google Scholar]
  40. Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA et al. 2021. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell 28:846–62.e8
    [Google Scholar]
  41. Margolis R, Spaide RF. 2009. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am. J. Ophthalmol. 147:811–15
    [Google Scholar]
  42. Mihlan M, Blom AM, Kupreishvili K, Lauer N, Stelzner K et al. 2011. Monomeric C-reactive protein modulates classic complement activation on necrotic cells. FASEB J. 25:4198–210
    [Google Scholar]
  43. Miller AR, Roisman L, Zhang Q, Zheng F, de Oliveira Dias JR et al. 2017. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 58:1499–505Erratum 2017. Investig. Ophthalmol. Vis. Sci 58:2166
    [Google Scholar]
  44. Moreira-Neto CA, Moult EM, Fujimoto JG, Waheed NK, Ferrara D. 2018. Choriocapillaris loss in advanced age-related macular degeneration. J. Ophthalmol. 2018.8125267
    [Google Scholar]
  45. Moult EM, Waheed NK, Novais EA, Choi W, Lee B et al. 2016. Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina 36:Suppl. 1S2–11
    [Google Scholar]
  46. Mulfaul K, Giacalone JC, Voigt AP, Riker MJ, Ochoa D et al. 2020. Stepwise differentiation and functional characterization of human induced pluripotent stem cell-derived choroidal endothelial cells. Stem Cell Res. Ther. 11:409
    [Google Scholar]
  47. Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J. 2011. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 52:1606–12
    [Google Scholar]
  48. Mullins RF, Schoo DP, Sohn EH, Flamme-Wiese MJ, Workamelahu G et al. 2014. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning. Am. J. Pathol. 184:3142–53
    [Google Scholar]
  49. Nickla DL, Wallman J. 2010. The multifunctional choroid. Prog. Retin. Eye Res. 29:144–68
    [Google Scholar]
  50. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG et al. 2013. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26:204–19
    [Google Scholar]
  51. Owsley C, McGwin G Jr., Clark ME, Jackson GR, Callahan MA et al. 2016. Delayed rod-mediated dark adaptation is a functional biomarker for incident early age-related macular degeneration. Ophthalmology 123:344–51
    [Google Scholar]
  52. Parver LM. 1991. Temperature modulating action of choroidal blood flow. Eye 5:Part 2181–85
    [Google Scholar]
  53. Querques G, Srour M, Massamba N, Georges A, Ben Moussa N et al. 2013. Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 54:6886–92
    [Google Scholar]
  54. Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC et al. 1994. Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging. Investig. Ophthalmol. Vis. Sci. 35:2857–64
    [Google Scholar]
  55. Rinella NT, Zhou H, Wong J, Zhang Q, Nattagh K et al. 2021. Correlation between localized choriocapillaris perfusion and macular function in eyes with geographic atrophy: Choriocapillaris flow relates to macular function in AMD with GA. Am. J. Ophthalmol. 234:174–82
    [Google Scholar]
  56. Rohlenova K, Goveia J, García-Caballero M, Subramanian A, Kalucka J et al. 2020. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 31:86277.e14
    [Google Scholar]
  57. Russell JF, Shi Y, Hinkle JW, Scott NL, Fan KC et al. 2019. Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol. Retina 3:350–61
    [Google Scholar]
  58. Russell JF, Zhou H, Shi Y, Shen M, Gregori G et al. 2022. Longitudinal analysis of diabetic choroidopathy in proliferative diabetic retinopathy treated with panretinal photocoagulation using widefield swept-source optical coherence tomography. Retina 42:341725
    [Google Scholar]
  59. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D'Amore PA. 2009. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. PNAS 106:18751–56
    [Google Scholar]
  60. Sakamoto T, Sakamoto H, Murphy TL, Spee C, Soriano D et al. 1995. Vessel formation by choroidal endothelial cells in vitro is modulated by retinal pigment epithelial cells. Arch. Ophthalmol. 113:512–20
    [Google Scholar]
  61. Sarks SH. 1973. New vessel formation beneath the retinal pigment epithelium in senile eyes. Br. J. Ophthalmol. 57:951–65
    [Google Scholar]
  62. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N. 2004. Association between C-reactive protein and age-related macular degeneration. JAMA 291:704–10
    [Google Scholar]
  63. Seddon JM, George S, Rosner B, Rifai N. 2005. Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch. Ophthalmol. 123:774–82
    [Google Scholar]
  64. Sekiyama E, Saint-Geniez M, Yoneda K, Hisatomi T, Nakao S et al. 2012. Heat treatment of retinal pigment epithelium induces production of elastic lamina components and antiangiogenic activity. FASEB J. 26:567–75
    [Google Scholar]
  65. Shi Y, Zhang Q, Zhou H, Wang L, Chu Z et al. 2021. Correlations between choriocapillaris and choroidal measurements and the growth of geographic atrophy using swept source OCT imaging. Am. J. Ophthalmol. 224:321–31
    [Google Scholar]
  66. Singh SR, Vupparaboina KK, Goud A, Dansingani KK, Chhablani J. 2019. Choroidal imaging biomarkers. Surv. Ophthalmol. 64:312–33
    [Google Scholar]
  67. Sohn EH, Flamme-Wiese MJ, Whitmore SS, Workalemahu G, Marneros AG et al. 2019. Choriocapillaris degeneration in geographic atrophy. Am. J. Pathol. 189:1473–80
    [Google Scholar]
  68. Sohn EH, Khanna A, Tucker BA, Abràmoff MD, Stone EM, Mullins RF. 2014. Structural and biochemical analyses of choroidal thickness in human donor eyes. Investig. Ophthalmol. Vis. Sci. 55:1352–60
    [Google Scholar]
  69. Songstad AE, Wiley LA, Duong K, Kaalberg E, Flamme-Wiese MJ et al. 2015. Generating iPSC-derived choroidal endothelial cells to study age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 56:138258–67
    [Google Scholar]
  70. Songstad AE, Worthington KS, Chirco KR, Giacalone JC, Whitmore SS et al. 2017. Connective tissue growth factor promotes efficient generation of human induced pluripotent stem cell-derived choroidal endothelium. Stem Cells Transl. Med. 6:61533–46
    [Google Scholar]
  71. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. 2018. Optical coherence tomography angiography. Prog. Retin. Eye Res. 64:1–55
    [Google Scholar]
  72. Spaide RF, Koizumi H, Pozzoni MC. 2008. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 146:496–500
    [Google Scholar]
  73. Spencer C, Abend S, McHugh KJ, Saint-Geniez M. 2017. Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium. J. Cell. Mol. Med. 21:2542–52
    [Google Scholar]
  74. Spraul CW, Lang GE, Grossniklaus HE. 1996. Morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in eyes with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 37:2724–35
    [Google Scholar]
  75. Steinle JJ, Smith PG. 2002. Role of adrenergic receptors in vascular remodelling of the rat choroid. Br. J. Pharmacol. 136:730–34
    [Google Scholar]
  76. Sura AA, Chen L, Messinger JD, Swain TA, McGwin G Jr. et al. 2020. Measuring the contributions of basal laminar deposit and Bruch's membrane in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 61:19
    [Google Scholar]
  77. Thulliez M, Zhang Q, Shi Y, Zhou H, Chu Z et al. 2019. Correlations between choriocapillaris flow deficits around geographic atrophy and enlargement rates based on swept-source OCT imaging. Ophthalmol. Retina 3:478–88
    [Google Scholar]
  78. Uno K, Bhutto IA, McLeod DS, Merges C, Lutty GA. 2006. Impaired expression of thrombospondin-1 in eyes with age related macular degeneration. Br. J. Ophthalmol. 90:48–54
    [Google Scholar]
  79. Voigt AP, Mulfaul K, Mullin NK, Flamme-Wiese MJ, Giacalone JC et al. 2019. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. PNAS 116:24100–7
    [Google Scholar]
  80. Voigt AP, Mullin NK, Stone EM, Tucker BA, Scheetz TE, Mullins RF. 2020a. Single-cell RNA sequencing in vision research: insights into human retinal health and disease. Prog. Retin. Eye Res. 83:100934
    [Google Scholar]
  81. Voigt AP, Whitmore SS, Lessing ND, DeLuca AP, Tucker BA et al. 2020b. Spectacle: an interactive resource for ocular single-cell RNA sequencing data analysis. Exp. Eye Res. 200:108204
    [Google Scholar]
  82. Voigt AP, Whitmore SS, Mulfaul K, Chirco KR, Giacalone JC et al. 2020c. Bulk and single-cell gene expression analyses reveal aging human choriocapillaris has pro-inflammatory phenotype. Microvasc. Res. 131:104031
    [Google Scholar]
  83. Wakatsuki Y, Shinojima A, Kawamura A, Yuzawa M. 2015. Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes. PLOS ONE 10:e0144156
    [Google Scholar]
  84. Wei WB, Xu L, Jonas JB, Shao L, Du KF et al. 2013. Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–80
    [Google Scholar]
  85. Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM et al. 2015. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog. Retin. Eye Res. 45:1–29
    [Google Scholar]
  86. Wolfe DR. 1986. Fluorescein angiography basic science and engineering. Ophthalmology 93:1617–20
    [Google Scholar]
  87. Wykoff CC, Rosenfeld PJ, Waheed NK, Singh RP, Ronca N et al. 2021. Characterizing new-onset exudation in the randomized phase 2 FILLY trial of complement inhibitor pegcetacoplan for geographic atrophy. Ophthalmology 128:1325–36
    [Google Scholar]
  88. Yang J, Zhang Q, Motulsky EH, Thulliez M, Shi Y et al. 2019. Two-year risk of exudation in eyes with nonexudative age-related macular degeneration and subclinical neovascularization detected with swept source optical coherence tomography angiography. Am. J. Ophthalmol. 208:1–11
    [Google Scholar]
  89. Yannuzzi LA, Rohrer KT, Tindel LJ, Sobel RS, Costanza MA et al. 1986. Fluorescein angiography complication survey. Ophthalmology 93:611–17
    [Google Scholar]
  90. Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J. 1998. Binding properties of indocyanine green in human blood. Investig. Ophthalmol. Vis. Sci. 39:1286–90
    [Google Scholar]
  91. Zeng S, Wen KK, Workalemahu G, Sohn EH, Wu M et al. 2018. Imidazole compounds for protecting choroidal endothelial cells from complement injury. . Sci. Rep. 8:13387
    [Google Scholar]
  92. Zhang Q, Shi Y, Zhou H, Gregori G, Chu Z et al. 2018. Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. Quant. Imaging Med. Surg. 8:658–66
    [Google Scholar]
  93. Zheng F, Zhang Q, Shi Y, Russell JF, Motulsky EH et al. 2019. Age-dependent changes in the macular choriocapillaris of normal eyes imaged with swept-source optical coherence tomography angiography. Am. J. Ophthalmol. 200:110–22
    [Google Scholar]
  94. Zhou H, Dai Y, Shi Y, Russell JF, Lyu C et al. 2020. Age-related changes in choroidal thickness and the volume of vessels and stroma using swept-source OCT and fully automated algorithms. Ophthalmol. Retina 4:204–15
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100820-085958
Loading
/content/journals/10.1146/annurev-vision-100820-085958
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error