1932

Abstract

The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100820-103154
2022-09-15
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100820-103154.html?itemId=/content/journals/10.1146/annurev-vision-100820-103154&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi T, Inoue T, Miyoshi G, Bessho Y, Takahashi M et al. 2004. Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification. J. Biol. Chem. 279:2728492–98
    [Google Scholar]
  2. Alvarez-Delfin K, Morris AC, Snelson CD, Gamse JT, Gupta T et al. 2009. Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development. PNAS 106:62023–28
    [Google Scholar]
  3. Baden T, Osorio D. 2019. The retinal basis of vertebrate color vision. Annu. Rev. Vis. Sci. 5:177–200
    [Google Scholar]
  4. Bao Z-Z, Cepko CL. 1997. The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci. 17:41425–34
    [Google Scholar]
  5. Barabino SML, Spada F, Cotelli F, Boncinelli E. 1997. Inactivation of the zebrafish homologue of Chx10 by antisense oligonucleotides causes eye malformations similar to the ocular retardation phenotype. Mech. Dev. 63:2133–43
    [Google Scholar]
  6. Baye LM, Link BA. 2007. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J. Neurosci. 27:3810143–52
    [Google Scholar]
  7. Belliveau MJ, Cepko CL. 1999. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Dev. Camb. Engl. 126:3555–66
    [Google Scholar]
  8. Belliveau MJ, Young TL, Cepko CL. 2000. Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J. Neurosci. 20:62247–54
    [Google Scholar]
  9. Bernardos RL, Lentz SI, Wolfe MS, Raymond PA. 2005. Notch-Delta signaling is required for spatial patterning and Müller glia differentiation in the zebrafish retina. Dev. Biol. 278:2381–95
    [Google Scholar]
  10. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H et al. 2004. Genomic analysis of mouse retinal development. PLOS Biol 2:9e247
    [Google Scholar]
  11. Boije H, Edqvist P-HD, Hallböök F. 2009. Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina. Dev. Biol. 330:1105–13
    [Google Scholar]
  12. Boije H, Rulands S, Dudczig S, Simons BD, Harris WA. 2015. The independent probabilistic firing of transcription factors: a paradigm for clonal variability in the zebrafish retina. Dev. Cell 34:5532–43
    [Google Scholar]
  13. Bramblett DE, Pennesi ME, Wu SM, Tsai M-J. 2004. The transcription factor Bhlhb4 is required for rod bipolar cell maturation. Neuron 43:6779–93
    [Google Scholar]
  14. Brodie-Kommit J, Clark BS, Shi Q, Shiau F, Kim DW et al. 2021. Atoh7-independent specification of retinal ganglion cell identity. Sci. Adv. 7:11eabe4983
    [Google Scholar]
  15. Brown NL, Patel S, Brzezinski J, Glaser T. 2001. Math5 is required for retinal ganglion cell and optic nerve formation. Dev. Camb. Engl. 128:132497–508
    [Google Scholar]
  16. Brzezinski JA IV, Lamba DA, Reh TA 2010. Blimp1 controls photoreceptor versus bipolar cell fate choice during retinal development. Development 137:4619–29
    [Google Scholar]
  17. Brzezinski JA IV, Park KU, Reh TA 2013. Blimp1 (Prdm1) prevents re-specification of photoreceptors into retinal bipolar cells by restricting competence. Dev. Biol. 384:2194–204
    [Google Scholar]
  18. Brzezinski JA IV, Prasov L, Glaser T 2012. Math5 defines the ganglion cell competence state in a subpopulation of retinal progenitor cells exiting the cell cycle. Dev. Biol. 365:2395–413
    [Google Scholar]
  19. Burmeister M, Novak J, Liang M-Y, Basu S, Ploder L et al. 1996. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12:4376–84
    [Google Scholar]
  20. Carter-Dawson LD, Lavail MM 1979. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188:2245–62
    [Google Scholar]
  21. Cayouette M, Barres BA, Raff M. 2003. Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron 40:5897–904
    [Google Scholar]
  22. Cayouette M, Poggi L, Harris WA. 2006. Lineage in the vertebrate retina. Trends Neurosci. 29:10563–70
    [Google Scholar]
  23. Cayouette M, Raff M. 2003. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 130:112329–39
    [Google Scholar]
  24. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. 1996. Cell fate determination in the vertebrate retina. PNAS 93:2589–95
    [Google Scholar]
  25. Chan CSY, Lonfat N, Zhao R, Davis AE, Li L et al. 2020. Cell type- and stage-specific expression of Otx2 is regulated by multiple transcription factors and cis-regulatory modules in the retina. Development 147:14dev187922
    [Google Scholar]
  26. Chen J. 2005. The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J. Neurosci. 25:1118–29
    [Google Scholar]
  27. Cheng CW, Chow RL, Lebel M, Sakuma R, Cheung HO-L et al. 2005. The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev. Biol. 287:148–60
    [Google Scholar]
  28. Chow RL, Snow B, Novak J, Looser J, Freund C et al. 2001. Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells. Mech. Dev. 109:2315–22
    [Google Scholar]
  29. Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C et al. 2004. Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. PNAS 101:61754–59
    [Google Scholar]
  30. Clark AM, Yun S, Veien ES, Wu YY, Chow RL et al. 2008. Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina. Brain Res 1192:99–113
    [Google Scholar]
  31. Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E et al. 2019. Single-cell RNA-Seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102:61111–26.e5
    [Google Scholar]
  32. De la Huerta I, Kim I-J, Voinescu PE, Sanes JR. 2012. Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. PNAS 109:4317663–68
    [Google Scholar]
  33. de Melo J, Clark BS, Blackshaw S. 2016a. Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Sci. Rep. 6:32757
    [Google Scholar]
  34. de Melo J, Clark BS, Venkataraman A, Shiau F, Zibetti C, Blackshaw S. 2018. Ldb1 and Rnf12-dependent regulation of Lhx2 controls the relative balance between neurogenesis and gliogenesis in retina. Development 145:9dev159970
    [Google Scholar]
  35. de Melo J, Zibetti C, Clark BS, Hwang W, Miranda-Angulo AL et al. 2016b. Lhx2 is an essential factor for retinal gliogenesis and Notch signaling. J. Neurosci. 36:82391–405
    [Google Scholar]
  36. Dorval KM, Bobechko BP, Ahmad KF, Bremner R. 2005. Transcriptional activity of the paired-like homeodomain proteins CHX10 and VSX1. J. Biol. Chem. 280:1110100–8
    [Google Scholar]
  37. Dowling JE. 2012. The Retina: An Approachable Part of the Brain Cambridge, MA: Belknap Press. , 2nd ed..
    [Google Scholar]
  38. Dullin J-P, Locker M, Robach M, Henningfeld KA, Parain K et al. 2007. Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev. Biol. 7:1110
    [Google Scholar]
  39. Dyer MA, Livesey FJ, Cepko CL, Oliver G. 2003. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet. 34:153–58
    [Google Scholar]
  40. Elliott J, Jolicoeur C, Ramamurthy V, Cayouette M. 2008. Ikaros confers early temporal competence to mouse retinal progenitor cells. Neuron 60:126–39
    [Google Scholar]
  41. Elshatory Y, Deng M, Xie X, Gan L. 2007a. Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J. Comp. Neurol. 503:1182–97
    [Google Scholar]
  42. Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L. 2007b. Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J. Neurosci. 27:4612707–20
    [Google Scholar]
  43. Emerson MM, Surzenko N, Goetz JJ, Trimarchi J, Cepko CL. 2013. Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors. Dev. Cell 26:159–72
    [Google Scholar]
  44. Engerer P, Petridou E, Williams PR, Suzuki SC, Yoshimatsu T et al. 2021. Notch-mediated re-specification of neuronal identity during central nervous system development. Curr. Biol. 31:214870–78.e5
    [Google Scholar]
  45. Engerer P, Suzuki SC, Yoshimatsu T, Chapouton P, Obeng N et al. 2017. Uncoupling of neurogenesis and differentiation during retinal development. EMBO J 36:91134–46
    [Google Scholar]
  46. Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K et al. 2006. Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development 133:244815–25
    [Google Scholar]
  47. Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J et al. 2006. Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 133:224439–50
    [Google Scholar]
  48. Furukawa T, Mukherjee S, Bao Z-Z, Morrow EM, Cepko CL. 2000. rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron 26:2383–94
    [Google Scholar]
  49. Gan L, Wang SW, Huang Z, Klein WH. 1999. POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev. Biol. 210:2469–80
    [Google Scholar]
  50. Godinho L, Williams PR, Claassen Y, Provost E, Leach SD et al. 2007. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron 56:4597–603
    [Google Scholar]
  51. Gomes FLAF, Zhang G, Carbonell F, Correa JA, Harris WA et al. 2011. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138:2227–35
    [Google Scholar]
  52. Goodson NB, Kaufman MA, Park KU, Brzezinski JA IV. 2020a. Simultaneous deletion of Prdm1 and Vsx2 enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes. Development 147:13dev190272
    [Google Scholar]
  53. Goodson NB, Park KU, Silver JS, Chiodo VA, Hauswirth WW, Brzezinski JA IV. 2020b. Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells. Dev. Biol. 464:2111–23
    [Google Scholar]
  54. Green ES, Stubbs JL, Levine EM. 2003. Genetic rescue of cell number in a mouse model of microphthalmia: interactions between Chx10 and G1-phase cell cycle regulators. Development 130:3539–52
    [Google Scholar]
  55. Hafler BP, Surzenko N, Beier KT, Punzo C, Trimarchi JM et al. 2012. Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. PNAS 109:207882–87
    [Google Scholar]
  56. Hatakeyama J, Tomita K, Inoue T, Kageyama R. 2001. Roles of homeobox and bHLH genes in specification of a retinal cell type. Dev. Camb. Engl. 128:81313–22
    [Google Scholar]
  57. He J, Zhang G, Almeida AD, Cayouette M, Simons BD, Harris WA. 2012. How variable clones build an invariant retina. Neuron 75:5786–98
    [Google Scholar]
  58. Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. 2000. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Dev. Camb. Engl. 127:122515–22
    [Google Scholar]
  59. Holt CE, Bertsch TW, Ellis HM, Harris WA. 1988. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1:115–26
    [Google Scholar]
  60. Horsford DJ, Nguyen M-TT, Sellar GC, Kothary R, Arnheiter H, McInnes RR. 2004. Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132:1177–87
    [Google Scholar]
  61. Hu M, Easter SS. 1999. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Dev. Biol. 207:2309–21
    [Google Scholar]
  62. Hu X-L, Wang Y, Shen Q 2012. Epigenetic control on cell fate choice in neural stem cells. Protein Cell 3:4278–90
    [Google Scholar]
  63. Huang L, Hu F, Feng L, Luo X, Liang G et al. 2014. Bhlhb5 is required for the subtype development of retinal amacrine and bipolar cells in mice. Dev. Dyn. 243:2279–89
    [Google Scholar]
  64. Iida A, Iwagawa T, Kuribayashi H, Satoh S, Mochizuki Y et al. 2014. Histone demethylase Jmjd3 is required for the development of subsets of retinal bipolar cells. PNAS 111:103751–56
    [Google Scholar]
  65. Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R. 2002. Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129:4831–42
    [Google Scholar]
  66. Jadhav AP, Cho S-H, Cepko CL. 2006a. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. PNAS 103:5018998–9003
    [Google Scholar]
  67. Jadhav AP, Mason HA, Cepko CL. 2006b. Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133:5913–23
    [Google Scholar]
  68. Javed A, Mattar P, Lu S, Kruczek K, Kloc M et al. 2020. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development 147:18dev188730
    [Google Scholar]
  69. Jiang Y, Ding Q, Xie X, Libby RT, Lefebvre V, Gan L. 2013. Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J. Biol. Chem. 288:2518429–38
    [Google Scholar]
  70. Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS et al. 2017. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548:7665103–7
    [Google Scholar]
  71. Jung CC, Atan D, Ng D, Ploder L, Ross SE et al. 2015. Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity. PNAS 112:23E3010–19
    [Google Scholar]
  72. Jusuf PR, Almeida AD, Randlett O, Joubin K, Poggi L, Harris WA. 2011. Origin and determination of inhibitory cell lineages in the vertebrate retina. J. Neurosci. 31:72549–62
    [Google Scholar]
  73. Kærn M, Elston TC, Blake WJ, Collins JJ. 2005. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6:6451–64
    [Google Scholar]
  74. Katoh K, Omori Y, Onishi A, Sato S, Kondo M, Furukawa T. 2010. Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development. J. Neurosci. 30:196515–26
    [Google Scholar]
  75. Kay JN, Finger-Baier KC, Roeser T, Staub W, Baier H. 2001. Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homolog. Neuron 30:3725–36
    [Google Scholar]
  76. Kechad A, Jolicoeur C, Tufford A, Mattar P, Chow RWY et al. 2012. Numb is required for the production of terminal asymmetric cell divisions in the developing mouse retina. J. Neurosci. 32:4817197–210
    [Google Scholar]
  77. Kim DS, Matsuda T, Cepko CL. 2008a. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J. Neurosci. 28:317748–64
    [Google Scholar]
  78. Kim DS, Ross SE, Trimarchi JM, Aach J, Greenberg ME, Cepko CL. 2008b. Identification of molecular markers of bipolar cells in the murine retina. J. Comp. Neurol. 507:51795–810
    [Google Scholar]
  79. Koike C, Nishida A, Ueno S, Saito H, Sanuki R et al. 2007. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol. Cell. Biol. 27:238318–29
    [Google Scholar]
  80. Krebs LT, Deftos ML, Bevan MJ, Gridley T. 2001. The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the Notch signaling pathway. Dev. Biol. 238:1110–19
    [Google Scholar]
  81. Lamar E, Deblandre G, Wettstein D, Gawantka V, Pollet N et al. 2001. Nrarp is a novel intracellular component of the Notch signaling pathway. Gene Dev 15:151885–99
    [Google Scholar]
  82. Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. 2004. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43:6795–807
    [Google Scholar]
  83. Liu H, Kim S-Y, Fu Y, Wu X, Ng L et al. 2013. An isoform of retinoid-related orphan receptor β directs differentiation of retinal amacrine and horizontal interneurons. Nat. Commun. 4:11813
    [Google Scholar]
  84. Liu ISC, Chen J, Ploder L, Vidgen D, van der Kooy D et al. 1994. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13:2377–93
    [Google Scholar]
  85. Liu S, Liu X, Li S, Huang X, Qian H et al. 2020. Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and involved in retinal synaptogenesis. PNAS 117:95016–27
    [Google Scholar]
  86. Livesey FJ, Cepko CL. 2001. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2:2109–18
    [Google Scholar]
  87. Livne-Bar I, Pacal M, Cheung MC, Hankin M, Trogadis J et al. 2006. Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. PNAS 103:134988–93
    [Google Scholar]
  88. Lu Y, Shiau F, Yi W, Lu S, Wu Q et al. 2020. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev. Cell 53:4473–91.e9
    [Google Scholar]
  89. Mao C-A, Cho J-H, Wang J, Gao Z, Pan P et al. 2013. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. Development 140:3541–51
    [Google Scholar]
  90. Mattar P, Ericson J, Blackshaw S, Cayouette M. 2015. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85:3497–504
    [Google Scholar]
  91. Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. 2021. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci. Rep. 11:3858
    [Google Scholar]
  92. McIlvain VA, Knox BE. 2007. Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina. Dev. Dyn. 236:71970–79
    [Google Scholar]
  93. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA et al. 2001. Nrl is required for rod photoreceptor development. Nat. Genet. 29:4447–52
    [Google Scholar]
  94. Mills TS, Eliseeva T, Bersie SM, Randazzo G, Nahreini J et al. 2017. Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLOS ONE 12:8e0176905
    [Google Scholar]
  95. Mizeracka K, DeMaso CR, Cepko CL. 2013a. Notch1 is required in newly postmitotic cells to inhibit the rod photoreceptor fate. Development 140:153188–97
    [Google Scholar]
  96. Mizeracka K, Trimarchi JM, Stadler MB, Cepko CL. 2013b. Analysis of gene expression in wild-type and Notch1 mutant retinal cells by single cell profiling. Dev. Dyn. 242:101147–59
    [Google Scholar]
  97. Mu X, Fu X, Sun H, Beremand PD, Thomas TL, Klein WH. 2005. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev. Biol. 280:2467–81
    [Google Scholar]
  98. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F et al. 2007. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134:61151–60
    [Google Scholar]
  99. Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S et al. 2011. Genome-wide analysis of Müller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLOS ONE 6:8e22817
    [Google Scholar]
  100. Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C et al. 2001. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27:194–98
    [Google Scholar]
  101. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S et al. 2003. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6:121255–63
    [Google Scholar]
  102. Norrie JL, Lupo MS, Xu B, Diri IA, Valentine M et al. 2019. Nucleome dynamics during retinal development. Neuron 104:3512–28.e11
    [Google Scholar]
  103. Oh ECT, Khan N, Novelli E, Khanna H, Strettoi E, Swaroop A. 2007. Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL. PNAS 104:51679–84
    [Google Scholar]
  104. Ohtoshi A, Justice MJ, Behringer RR. 2001. Isolation and characterization of Vsx1, a novel mouse CVC paired-like homeobox gene expressed during embryogenesis and in the retina. Biochem. Biophys. Res. Commun. 286:1133–40
    [Google Scholar]
  105. Ohtoshi A, Wang SW, Maeda H, Saszik SM, Frishman LJ et al. 2004. Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1. Curr. Biol. 14:6530–36
    [Google Scholar]
  106. Pan L, Deng M, Xie X, Gan L. 2008. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:111981–90
    [Google Scholar]
  107. Park KU, Randazzo G, Jones KL, Brzezinski JA IV 2017. Gsg1, Trnp1, and Tmem215 mark subpopulations of bipolar interneurons in the mouse retina identifying bipolar-specific genes. Investig. Ophthalmol. Vis. Sci. 58:21137–50
    [Google Scholar]
  108. Passini MA, Levine EM, Canger AK, Raymond PA, Schechter N. 1997. Vsx-1 and Vsx-2: differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. J. Comp. Neurol. 388:3495–505
    [Google Scholar]
  109. Peichl L, González-Soriano J. 1994. Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis. Neurosci. 11:3501–17
    [Google Scholar]
  110. Perron M, Kanekar S, Vetter ML, Harris WA. 1998. The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev. Biol. 199:2185–200
    [Google Scholar]
  111. Pirot P, van Grunsven LA, Marine J-C, Huylebroeck D, Bellefroid EJ. 2004. Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem. Biophys. Res. Commun. 322:2526–34
    [Google Scholar]
  112. Poché RA, Kwan KM, Raven MA, Furuta Y, Reese BE, Behringer RR. 2007. Lim1 is essential for the correct laminar positioning of retinal horizontal cells. J. Neurosci. 27:5114099–107
    [Google Scholar]
  113. Poggi L, Vitorino M, Masai I, Harris WA. 2005. Influences on neural lineage and mode of division in the zebrafish retina in vivo. J. Cell Biol. 171:6991–99
    [Google Scholar]
  114. Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM 2021. Epigenetic regulation of retinal development. Epigenetics Chromatin 14:111
    [Google Scholar]
  115. Rapaport DH, Patheal SL, Harris WA. 2001. Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. J. Neurobiol. 49:2129–41
    [Google Scholar]
  116. Rompani SB, Cepko CL. 2008. Retinal progenitor cells can produce restricted subsets of horizontal cells. PNAS 105:1192–97
    [Google Scholar]
  117. Rowan S, Cepko CL. 2004. Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev. Biol. 271:2388–402
    [Google Scholar]
  118. Sapkota D, Chintala H, Wu F, Fliesler SJ, Hu Z, Mu X. 2014. Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development. PNAS 111:39E4086–95
    [Google Scholar]
  119. Satow T, Bae S-K, Inoue T, Inoue C, Miyoshi G et al. 2001. The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina. J. Neurosci. 21:41265–73
    [Google Scholar]
  120. Sauer FC. 1935. Mitosis in the neural tube. J. Comp. Neurol. 62:2377–405
    [Google Scholar]
  121. Scheer N, Groth A, Hans S, Campos-Ortega JA. 2001. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Dev. Camb. Engl. 128:71099–107
    [Google Scholar]
  122. Shi Z, Trenholm S, Zhu M, Buddingh S, Star EN et al. 2011. Vsx1 regulates terminal differentiation of type 7 ON bipolar cells. J. Neurosci. 31:3713118–27
    [Google Scholar]
  123. Sidman RL 1961. Histogenesis of mouse retina studied with thymidine-H3. The Structure of the Eye GK Smelser 487–505 New York: Academic
    [Google Scholar]
  124. Song PI, Matsui JI, Dowling JE. 2008. Morphological types and connectivity of horizontal cells found in the adult zebrafish (Danio rerio) retina. J. Comp. Neurol. 506:2328–38
    [Google Scholar]
  125. Suzuki SC, Bleckert A, Williams PR, Takechi M, Kawamura S, Wong ROL. 2013. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. PNAS 110:3715109–14
    [Google Scholar]
  126. Suzuki-Kerr H, Iwagawa T, Sagara H, Mizota A, Suzuki Y, Watanabe S. 2018. Pivotal roles of Fezf2 in differentiation of cone OFF bipolar cells and functional maturation of cone ON bipolar cells in retina. Exp. Eye Res. 171:142–54
    [Google Scholar]
  127. Todd L, Hooper MJ, Haugan AK, Finkbeiner C, Jorstad N et al. 2021. Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep 37:3109857
    [Google Scholar]
  128. Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R. 2000. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19:205460–72
    [Google Scholar]
  129. Tomita K, Nakanishi S, Guillemot F, Kageyama R, Nishikawa S. 1996. Mash1 promotes neuronal differentiation in the retina. Genes Cells 1:8765–74
    [Google Scholar]
  130. Trimarchi JM, Stadler MB, Cepko CL. 2008. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLOS ONE 3:2e1588
    [Google Scholar]
  131. Turner DL, Cepko CL. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:6126131–36
    [Google Scholar]
  132. Turner DL, Snyder EY, Cepko CL. 1990. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:6833–45
    [Google Scholar]
  133. Vitorino M, Jusuf PR, Maurus D, Kimura Y, Higashijima S-i, Harris WA. 2009. Vsx2 in the zebrafish retina: restricted lineages through derepression. Neural Dev 4:114
    [Google Scholar]
  134. Waid DK, McLoon SC. 1998. Ganglion cells influence the fate of dividing retinal cells in culture. Development 125:61059–66
    [Google Scholar]
  135. Wang M, Du L, Lee AC, Li Y, Qin H, He J. 2020. Different lineage contexts direct common pro-neural factors to specify distinct retinal cell subtypes. J. Cell Biol. 219:9e202003026
    [Google Scholar]
  136. Wang S, Sengel C, Emerson MM, Cepko CL. 2014. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev. Cell 30:5513–27
    [Google Scholar]
  137. Wang SW, Kim BS, Ding K, Wang H, Sun D et al. 2001. Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15:124–29
    [Google Scholar]
  138. Weber IP, Ramos AP, Strzyz PJ, Leung LC, Young S, Norden C 2014. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation. Cell Rep 7:2386–97
    [Google Scholar]
  139. Wetts R, Fraser SE. 1988. Multipotent precursors can give rise to all major cell types of the frog retina. Science 239:48441142–45
    [Google Scholar]
  140. Wu F, Kaczynski TJ, Sethuramanujam S, Li R, Jain V et al. 2015. Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate. PNAS 112:13E1559–68
    [Google Scholar]
  141. Wu F, Li R, Umino Y, Kaczynski TJ, Sapkota D et al. 2013. Onecut1 is essential for horizontal cell genesis and retinal integrity. J. Neurosci. 33:3213053–65
    [Google Scholar]
  142. Xu B, Tang X, Jin M, Zhang H, Du L et al. 2020. Unifying developmental programs for embryonic and post-embryonic neurogenesis in the zebrafish retina. Dev. Camb. Engl. 147:12dev185660
    [Google Scholar]
  143. Yang Z, Ding K, Pan L, Deng M, Gan L. 2003. Math5 determines the competence state of retinal ganglion cell progenitors. Dev. Biol. 264:1240–54
    [Google Scholar]
  144. Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ et al. 2018. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 560:7719484–88
    [Google Scholar]
  145. Yaron O, Farhy C, Marquardt T, Applebury M, Ashery-Padan R. 2006. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina. Development 133:71367–78
    [Google Scholar]
  146. Young RW. 1985. Cell differentiation in the retina of the mouse. Anat. Rec. 212:2199–205
    [Google Scholar]
  147. Zibetti C, Liu S, Wan J, Qian J, Blackshaw S. 2019. Epigenomic profiling of retinal progenitors reveals LHX2 is required for developmental regulation of open chromatin. Commun. Biol. 2:1142
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100820-103154
Loading
/content/journals/10.1146/annurev-vision-100820-103154
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error