1932

Abstract

The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-101322-111204
2024-09-18
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-101322-111204.html?itemId=/content/journals/10.1146/annurev-vision-101322-111204&mimeType=html&fmt=ahah

Literature Cited

  1. Aartsen WM, Arsanto JP, Chauvin JP, Vos RM, Versteeg I, et al. 2009.. PSD95β regulates plasma membrane Ca2+ pump localization at the photoreceptor synapse. . Mol. Cell Neurosci. 41::15665
    [Crossref] [Google Scholar]
  2. Aartsen WM, Kantardzhieva A, Klooster J, Van Rossum AG, Van de Pavert SA, et al. 2006.. Mpp4 recruits Psd95 and Veli3 towards the photoreceptor synapse. . Hum. Mol. Genet. 15::1291302
    [Crossref] [Google Scholar]
  3. Alpadi K, Magupalli VG, Kappel S, Koblitz L, Schwarz K, et al. 2008.. RIBEYE recruits Munc119, a mammalian ortholog of the Caenorhabditis elegans protein unc119, to synaptic ribbons of photoreceptor synapses. . J. Biol. Chem. 283::2646167
    [Crossref] [Google Scholar]
  4. Alvarez de Toledo G, Fernandez-Chacon R, Fernandez JM. 1993.. Release of secretory products during transient vesicle fusion. . Nature 363::55458
    [Crossref] [Google Scholar]
  5. Babai N, Bartoletti TM, Thoreson WB. 2010.. Calcium regulates vesicle replenishment at the cone ribbon synapse. . J. Neurosci. 30::1586677
    [Crossref] [Google Scholar]
  6. Babai N, Sendelbeck A, Regus-Leidig H, Fuchs M, Mertins J, et al. 2016.. Functional roles of Complexin 3 and Complexin 4 at mouse photoreceptor ribbon synapses. . J. Neurosci. 36::665167
    [Crossref] [Google Scholar]
  7. Bai J, Tucker WC, Chapman ER. 2004.. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. . Nat. Struct. Mol. Biol. 11::3644
    [Crossref] [Google Scholar]
  8. Balakrishnan V, Puthussery T, Kim MH, Taylor WR, von Gersdorff H. 2015.. Synaptic vesicle exocytosis at the dendritic lobules of an inhibitory interneuron in the mammalian retina. . Neuron 87::56375
    [Crossref] [Google Scholar]
  9. Ball SL, Powers PA, Shin HS, Morgans CW, Peachey NS, Gregg RG. 2002.. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. . Investig. Ophthalmol. Vis. Sci. 43::1595603
    [Google Scholar]
  10. Bartoletti TM, Babai N, Thoreson WB. 2010.. Vesicle pool size at the salamander cone ribbon synapse. . J. Neurophysiol. 103::41923
    [Crossref] [Google Scholar]
  11. Becker L, Schnee ME, Niwa M, Sun W, Maxeiner S, et al. 2018.. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. . eLife 7::e30241
    [Crossref] [Google Scholar]
  12. Berntson AK, Morgans CW. 2003.. Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas. . J. Vis. 3::27480
    [Crossref] [Google Scholar]
  13. Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ Jr., et al. 2020.. Phosphorylation of the retinal ribbon synapse specific t-SNARE protein syntaxin3B is regulated by light via a Ca2+-dependent pathway. . Front. Cell Neurosci. 14::587072
    [Crossref] [Google Scholar]
  14. Chanaday NL, Cousin MA, Milosevic I, Watanabe S, Morgan JR. 2019.. The synaptic vesicle cycle revisited: new insights into the modes and mechanisms. . J. Neurosci. 39::820916
    [Crossref] [Google Scholar]
  15. Chavez AE, Diamond JS. 2008.. Diverse mechanisms underlie glycinergic feedback transmission onto rod bipolar cells in rat retina. . J. Neurosci. 28::791928
    [Crossref] [Google Scholar]
  16. Chavez AE, Singer JH, Diamond JS. 2006.. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. . Nature 443::7058
    [Crossref] [Google Scholar]
  17. Chen M, Van Hook MJ, Zenisek D, Thoreson WB. 2013.. Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles. . J. Neurosci. 33::207186
    [Crossref] [Google Scholar]
  18. Chen Z, Chou SW, McDermott BM Jr. 2018.. Ribeye protein is intrinsically dynamic but is stabilized in the context of the ribbon synapse. . J. Physiol. 596::40921
    [Crossref] [Google Scholar]
  19. Cooper B, Hemmerlein M, Ammermuller J, Imig C, Reim K, et al. 2012.. Munc13-independent vesicle priming at mouse photoreceptor ribbon synapses. . J. Neurosci. 32::804052
    [Crossref] [Google Scholar]
  20. Courtney NA, Briguglio JS, Bradberry MM, Greer C, Chapman ER. 2018.. Excitatory and inhibitory neurons utilize different Ca2+ sensors and sources to regulate spontaneous release. . Neuron 98::97791.e5
    [Crossref] [Google Scholar]
  21. Curtis LB, Doneske B, Liu X, Thaller C, McNew JA, Janz R. 2008.. Syntaxin 3b is a t-SNARE specific for ribbon synapses of the retina. . J. Comp. Neurol. 510::55059
    [Crossref] [Google Scholar]
  22. Datta P, Gilliam J, Thoreson WB, Janz R, Heidelberger R. 2017.. Two pools of vesicles associated with synaptic ribbons are molecularly prepared for release. . Biophys. J. 113::228198
    [Crossref] [Google Scholar]
  23. Davison A, Lux UT, Brandstatter JH, Babai N. 2022.. T-type Ca2+ channels boost neurotransmission in mammalian cone photoreceptors. . J. Neurosci. 42::632543
    [Crossref] [Google Scholar]
  24. Demb JB, Singer JH. 2012.. Intrinsic properties and functional circuitry of the AII amacrine cell. . Vis. Neurosci. 29::5160
    [Crossref] [Google Scholar]
  25. DeVries SH. 2000.. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. . Neuron 28::84756
    [Crossref] [Google Scholar]
  26. Diamond JS. 2017.. Inhibitory interneurons in the retina: types, circuitry, and function. . Annu. Rev. Vis. Sci. 3::124
    [Crossref] [Google Scholar]
  27. Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, et al. 2003.. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. . Neuron 37::77586
    [Crossref] [Google Scholar]
  28. Diez-Arazola R, Meijer M, Bourgeois-Jaarsma Q, Cornelisse LN, Verhage M, Groffen AJ. 2020.. Doc2 proteins are not required for the increased spontaneous release rate in synaptotagmin-1-deficient neurons. . J. Neurosci. 40::260617
    [Crossref] [Google Scholar]
  29. Dittrich A, Ramesh G, Jung M, Schmitz F. 2023.. Rabconnectin-3α/DMXL2 is locally enriched at the synaptic ribbon of rod photoreceptor synapses. . Cells 12::1665
    [Crossref] [Google Scholar]
  30. Dodge FA Jr., Rahamimoff R. 1967.. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. . J. Physiol. 193::41932
    [Crossref] [Google Scholar]
  31. Duncan G, Rabl K, Gemp I, Heidelberger R, Thoreson WB. 2010.. Quantitative analysis of synaptic release at the photoreceptor synapse. . Biophys. J. 98::210210
    [Crossref] [Google Scholar]
  32. Einhorn Z, Trapani JG, Liu Q, Nicolson T. 2012.. Rabconnectin3α promotes stable activity of the H+ pump on synaptic vesicles in hair cells. . J. Neurosci. 32::1114456
    [Crossref] [Google Scholar]
  33. Fehlhaber KE, Majumder A, Boyd KK, Griffis KG, Artemyev NO, et al. 2023.. A novel role for UNC119 as an enhancer of synaptic transmission. . Int. J. Mol. Sci. 24::8106
    [Crossref] [Google Scholar]
  34. Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. 1996.. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. . Science 272::118287
    [Crossref] [Google Scholar]
  35. Fox MA, Sanes JR. 2007.. Synaptotagmin I and II are present in distinct subsets of central synapses. . J. Comp. Neurol. 503::28096
    [Crossref] [Google Scholar]
  36. Frederick CE, Zenisek D. 2023.. Ribbon synapses and retinal disease: review. . Int. J. Mol. Sci. 24::5090
    [Crossref] [Google Scholar]
  37. Frederick JM, Hanke-Gogokhia C, Ying G, Baehr W. 2020.. Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. . Biol. Chem. 401::57384
    [Crossref] [Google Scholar]
  38. Fuchs M, Brandstatter JH, Regus-Leidig H. 2014.. Evidence for a clathrin-independent mode of endocytosis at a continuously active sensory synapse. . Front. Cell Neurosci. 8::60
    [Crossref] [Google Scholar]
  39. Gad H, Ringstad N, Low P, Kjaerulff O, Gustafsson J, et al. 2000.. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. . Neuron 27::30112
    [Crossref] [Google Scholar]
  40. Gan Q, Watanabe S. 2018.. Synaptic vesicle endocytosis in different model systems. . Front. Cell Neurosci. 12::171
    [Crossref] [Google Scholar]
  41. George AA, Hayden S, Holzhausen LC, Ma EY, Suzuki SC, Brockerhoff SE. 2014.. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments. . PLOS ONE 9::e84394
    [Crossref] [Google Scholar]
  42. Geppert M, Ullrich B, Green DG, Takei K, Daniels L, et al. 1994.. Synaptic targeting domains of Synapsin I revealed by transgenic expression in photoreceptor cells. . EMBO J. 13::372027
    [Crossref] [Google Scholar]
  43. Gething C, Ferrar J, Misra B, Howells G, Andrzejewski AL, et al. 2022.. Conformational change of syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses. . Sci. Rep. 12::9261
    [Crossref] [Google Scholar]
  44. Gierke K, von Wittgenstein J, Hemmerlein M, Atorf J, Joachimsthaler A, et al. 2020.. Heterogeneous presynaptic distribution of Munc13 isoforms at retinal synapses and identification of an unconventional bipolar cell type with dual expression of Munc13 isoforms: a study using Munc13-EXFP knock-in mice. . Int. J. Mol. Sci. 21::7848
    [Crossref] [Google Scholar]
  45. Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, et al. 2004.. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. . J. Neurosci. 24::1136880
    [Crossref] [Google Scholar]
  46. Gomis A, Burrone J, Lagnado L. 1999.. Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. . J. Neurosci. 19::630917
    [Crossref] [Google Scholar]
  47. Grabner CP, Futagi D, Shi J, Bindokas V, Kitano K, et al. 2023.. Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse. . Nat. Commun. 14::3486
    [Crossref] [Google Scholar]
  48. Grabner CP, Gandini MA, Rehak R, Le Y, Zamponi GW, Schmitz F. 2015.. RIM1/2-mediated facilitation of Cav1.4 channel opening is required for Ca2+-stimulated release in mouse rod photoreceptors. . J. Neurosci. 35::1313347
    [Crossref] [Google Scholar]
  49. Grabner CP, Jansen I, Neef J, Weihs T, Schmidt R, et al. 2022.. Resolving the molecular architecture of the photoreceptor active zone with 3D-MINFLUX. . Sci. Adv. 8::eabl7560
    [Crossref] [Google Scholar]
  50. Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, et al. 2019.. Ca2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. . eLife 8::45946
    [Crossref] [Google Scholar]
  51. Gray EG, Pease HL. 1971.. On understanding the organisation of the retinal receptor synapses. . Brain Res. 35::115
    [Crossref] [Google Scholar]
  52. Graydon CW, Manor U, Kindt KS. 2017.. In vivo ribbon mobility and turnover of Ribeye at zebrafish hair cell synapses. . Sci. Rep. 7::7467
    [Crossref] [Google Scholar]
  53. Graydon CW, Zhang J, Oesch NW, Sousa AA, Leapman RD, Diamond JS. 2014.. Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply. . J. Neurosci. 34::894862
    [Crossref] [Google Scholar]
  54. Grimes WN, Seal RP, Oesch N, Edwards RH, Diamond JS. 2011.. Genetic targeting and physiological features of VGLUT3+ amacrine cells. . Vis. Neurosci. 28::38192
    [Crossref] [Google Scholar]
  55. Groffen AJ, Martens S, Diez Arazola R, Cornelisse LN, Lozovaya N, et al. 2010.. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. . Science 327::161418
    [Crossref] [Google Scholar]
  56. Grove JCR, Hirano AA, de Los Santos J, McHugh CF, Purohit S, et al. 2019.. Novel hybrid action of GABA mediates inhibitory feedback in the mammalian retina. . PLOS Biol. 17::e3000200
    [Crossref] [Google Scholar]
  57. Guo C, Hirano AA, Stella SL Jr., Bitzer M, Brecha NC. 2010.. Guinea pig horizontal cells express GABA, the GABA-synthesizing enzyme GAD 65, and the GABA vesicular transporter. . J. Comp. Neurol. 518::164769
    [Crossref] [Google Scholar]
  58. Guo C, Stella SL Jr., Hirano AA, Brecha NC. 2009.. Plasmalemmal and vesicular γ-aminobutyric acid transporter expression in the developing mouse retina. . J. Comp. Neurol. 512::626
    [Crossref] [Google Scholar]
  59. Habermann CJ, O'Brien BJ, Wassle H, Protti DA. 2003.. AII amacrine cells express L-type calcium channels at their output synapses. . J. Neurosci. 23::690413
    [Crossref] [Google Scholar]
  60. Haeseleer F. 2008.. Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. . Investig. Ophthalmol. Vis. Sci. 49::236675
    [Crossref] [Google Scholar]
  61. Haeseleer F, Imanishi Y, Maeda T, Possin DE, Maeda A, et al. 2004.. Essential role of Ca2+-binding protein 4, a CaV1.4 channel regulator, in photoreceptor synaptic function. . Nat. Neurosci. 7::107987
    [Crossref] [Google Scholar]
  62. Haeseleer F, Williams B, Lee A. 2016.. Characterization of C-terminal splice variants of CaV1.4 Ca2+ channels in human retina. . J. Biol. Chem. 291::1566373
    [Crossref] [Google Scholar]
  63. Hagiwara A, Kitahara Y, Grabner CP, Vogl C, Abe M, et al. 2018.. Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance. . J. Cell Biol. 217::39934006
    [Crossref] [Google Scholar]
  64. Han Y, Babai N, Kaeser P, Sudhof TC, Schneggenburger R. 2015.. RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse. . J. Neurophysiol. 113::25563
    [Crossref] [Google Scholar]
  65. Hartl D, Krebs AR, Juttner J, Roska B, Schubeler D. 2017.. Cis-regulatory landscapes of four cell types of the retina. . Nucleic Acids Res. 45::1160721
    [Crossref] [Google Scholar]
  66. Hays CL, Grassmeyer JJ, Wen X, Janz R, Heidelberger R, Thoreson WB. 2020.. Simultaneous release of multiple vesicles from rods involves synaptic ribbons and syntaxin 3B. . Biophys. J. 118::96779
    [Crossref] [Google Scholar]
  67. He L, Wu XS, Mohan R, Wu LG. 2006.. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. . Nature 444::1025
    [Crossref] [Google Scholar]
  68. Heidelberger R. 1998.. Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse. . J. Gen. Physiol. 111::22541
    [Crossref] [Google Scholar]
  69. Heidelberger R, Heinemann C, Neher E, Matthews G. 1994.. Calcium dependence of the rate of exocytosis in a synaptic terminal. . Nature 371::51315
    [Crossref] [Google Scholar]
  70. Heidelberger R, Sterling P, Matthews G. 2002.. Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. . J. Neurophysiol. 88::98106
    [Crossref] [Google Scholar]
  71. Heidelberger R, Wang MM, Sherry DM. 2003.. Differential distribution of synaptotagmin immunoreactivity among synapses in the goldfish, salamander, and mouse retina. . Vis. Neurosci. 20::3749
    [Crossref] [Google Scholar]
  72. Henry D, Joselevitch C, Matthews GG, Wollmuth LP. 2022.. Expression and distribution of synaptotagmin family members in the zebrafish retina. . J. Comp. Neurol. 530::70528
    [Crossref] [Google Scholar]
  73. Higashide T, McLaren MJ, Inana G. 1998.. Localization of HRG4, a photoreceptor protein homologous to Unc-119, in ribbon synapse. . Investig. Ophthalmol. Vis. Sci. 39::69098
    [Google Scholar]
  74. Hirano AA, Brandstatter JH, Brecha NC. 2005.. Cellular distribution and subcellular localization of molecular components of vesicular transmitter release in horizontal cells of rabbit retina. . J. Comp. Neurol. 488::7081
    [Crossref] [Google Scholar]
  75. Hirano AA, Brandstatter JH, Morgans CW, Brecha NC. 2011.. SNAP25 expression in mammalian retinal horizontal cells. . J. Comp. Neurol. 519::97288
    [Crossref] [Google Scholar]
  76. Hirano AA, Brandstatter JH, Vila A, Brecha NC. 2007.. Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes. . Vis. Neurosci. 24::489502
    [Crossref] [Google Scholar]
  77. Hirano AA, Vuong HE, Kornmann HL, Schietroma C, Stella SL Jr., et al. 2020.. Vesicular release of GABA by mammalian horizontal cells mediates inhibitory output to photoreceptors. . Front. Cell Neurosci. 14::600777
    [Crossref] [Google Scholar]
  78. Hirasawa H, Kaneko A. 2003.. pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. . J. Gen. Physiol. 122::65771
    [Crossref] [Google Scholar]
  79. Hofer NT, Pinggera A, Nikonishyna YV, Tuluc P, Fritz EM, et al. 2021.. Stabilization of negative activation voltages of Cav1.3 L-Type Ca2+-channels by alternative splicing. . Channels 15::3852
    [Crossref] [Google Scholar]
  80. Holmberg K, Ohman P. 1976.. Fine structure of retinal synaptic organelles in lamprey and hagfish photoreceptors. . Vis. Res. 16::23739
    [Crossref] [Google Scholar]
  81. Holt M, Cooke A, Neef A, Lagnado L. 2004.. High mobility of vesicles supports continuous exocytosis at a ribbon synapse. . Curr. Biol. 14::17383
    [Crossref] [Google Scholar]
  82. Holt M, Cooke A, Wu MM, Lagnado L. 2003.. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. . J. Neurosci. 23::132939
    [Crossref] [Google Scholar]
  83. Holzhausen LC, Lewis AA, Cheong KK, Brockerhoff SE. 2009.. Differential role for synaptojanin 1 in rod and cone photoreceptors. . J. Comp. Neurol. 517::63344
    [Crossref] [Google Scholar]
  84. Hosoya O, Tsutsui K, Tsutsui K. 2004.. Localized expression of amphiphysin Ir, a retina-specific variant of amphiphysin I, in the ribbon synapse and its functional implication. . Eur. J. Neurosci. 19::217987
    [Crossref] [Google Scholar]
  85. Innocenti B, Heidelberger R. 2008.. Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse. . J. Neurophysiol. 99::2536
    [Crossref] [Google Scholar]
  86. Ishiba Y, Higashide T, Mori N, Kobayashi A, Kubota S, et al. 2007.. Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function. . Exp. Eye Res. 84::47385
    [Crossref] [Google Scholar]
  87. Jackman SL, Choi SY, Thoreson WB, Rabl K, Bartoletti TM, Kramer RH. 2009.. Role of the synaptic ribbon in transmitting the cone light response. . Nat. Neurosci. 12::30310
    [Crossref] [Google Scholar]
  88. Janecke AR, Liu X, Adam R, Punuru S, Viestenz A, et al. 2021.. Pathogenic STX3 variants affecting the retinal and intestinal transcripts cause an early-onset severe retinal dystrophy in microvillus inclusion disease subjects. . Hum. Genet. 140::114356
    [Crossref] [Google Scholar]
  89. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón LM, Chakrabarti R, et al. 2018.. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. . eLife 7::e29275
    [Crossref] [Google Scholar]
  90. Jockusch WJ, Praefcke GJ, McMahon HT, Lagnado L. 2005.. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. . Neuron 46::86978
    [Crossref] [Google Scholar]
  91. Johnson JE Jr., Perkins GA, Giddabasappa A, Chaney S, Xiao W, et al. 2007.. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses. . Mol. Vis. 13::887919
    [Google Scholar]
  92. Joselevitch C, Zenisek D. 2020.. Direct observation of vesicle transport on the synaptic ribbon provides evidence that vesicles are mobilized and prepared rapidly for release. . J. Neurosci. 40::7390404
    [Crossref] [Google Scholar]
  93. Kaeser PS, Regehr WG. 2014.. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. . Annu. Rev. Physiol. 76::33363
    [Crossref] [Google Scholar]
  94. Kakakhel M, Tebbe L, Makia MS, Conley SM, Sherry DM, et al. 2020.. Syntaxin 3 is essential for photoreceptor outer segment protein trafficking and survival. . PNAS 117::2061524
    [Crossref] [Google Scholar]
  95. Karim Z, Vepachedu R, Gorska M, Alam R. 2010.. UNC119 inhibits dynamin and dynamin-dependent endocytic processes. . Cell Signal. 22::12837
    [Crossref] [Google Scholar]
  96. Katiyar R, Weissgerber P, Roth E, Dorr J, Sothilingam V, et al. 2015.. Influence of the β2-subunit of L-type voltage-gated Cav channels on the structural and functional development of photoreceptor ribbon synapses. . Investig. Ophthalmol. Vis. Sci. 56::231224
    [Crossref] [Google Scholar]
  97. Kerov V, Laird JG, Joiner ML, Knecht S, Soh D, et al. 2018.. α2δ-4 is required for the molecular and structural organization of rod and cone photoreceptor synapses. . J. Neurosci. 38::614560
    [Crossref] [Google Scholar]
  98. Kim JK, Hong S, Park J, Kim S. 2023.. Metabolic and transcriptomic changes in the mouse brain in response to short-term high-fat metabolic stress. . Metabolites 13::407
    [Crossref] [Google Scholar]
  99. Kim T, Soto F, Kerschensteiner D. 2015.. An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. . eLife 4::08025
    [Google Scholar]
  100. Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, et al. 2011.. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. . EMBO J. 30::495569
    [Crossref] [Google Scholar]
  101. Kondratiuk I, Jakhanwal S, Jin J, Sathyanarayanan U, Kroppen B, et al. 2020.. PI(4,5)P2-dependent regulation of exocytosis by amisyn, the vertebrate-specific competitor of synaptobrevin 2. . PNAS 117::1346879
    [Crossref] [Google Scholar]
  102. Lagnado L, Gomis A, Job C. 1996.. Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. . Neuron 17::95767
    [Crossref] [Google Scholar]
  103. Landgraf I, Muhlhans J, Dedek K, Reim K, Brandstatter JH, Ammermuller J. 2012.. The absence of Complexin 3 and Complexin 4 differentially impacts the ON and OFF pathways in mouse retina. . Eur. J. Neurosci. 36::247081
    [Crossref] [Google Scholar]
  104. Lazzell DR, Belizaire R, Thakur P, Sherry DM, Janz R. 2004.. SV2B regulates synaptotagmin 1 by direct interaction. . J. Biol. Chem. 279::5212431
    [Crossref] [Google Scholar]
  105. Lee H, Brecha NC. 2010.. Immunocytochemical evidence for SNARE protein-dependent transmitter release from guinea pig horizontal cells. . Eur. J. Neurosci. 31::1388401
    [Crossref] [Google Scholar]
  106. Lee S, Chen L, Chen M, Ye M, Seal RP, Zhou ZJ. 2014.. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. . Neuron 84::70815
    [Crossref] [Google Scholar]
  107. Lee S, Chen M, Shi Y, Zhou ZJ. 2021.. Selective glycinergic input from vGluT3 amacrine cells confers a suppressed-by-contrast trigger feature in a subtype of M1 ipRGCs in the mouse retina. . J. Physiol. 599::504760
    [Crossref] [Google Scholar]
  108. Lee S, Kim K, Zhou ZJ. 2010.. Role of ACh-GABA cotransmission in detecting image motion and motion direction. . Neuron 68::115972
    [Crossref] [Google Scholar]
  109. Lieb A, Scharinger A, Sartori S, Sinnegger-Brauns MJ, Striessnig J. 2012.. Structural determinants of CaV1.3 L-type calcium channel gating. . Channels 6::197205
    [Crossref] [Google Scholar]
  110. Liu X, Heidelberger R, Janz R. 2014.. Phosphorylation of syntaxin 3B by CaMKII regulates the formation of t-SNARE complexes. . Mol. Cell Neurosci. 60::5362
    [Crossref] [Google Scholar]
  111. Liu X, Hirano AA, Sun X, Brecha NC, Barnes S. 2013.. Calcium channels in rat horizontal cells regulate feedback inhibition of photoreceptors through an unconventional GABA- and pH-sensitive mechanism. . J. Physiol. 591::330924
    [Crossref] [Google Scholar]
  112. Llobet A, Beaumont V, Lagnado L. 2003.. Real-time measurement of exocytosis and endocytosis using interference of light. . Neuron 40::107586
    [Crossref] [Google Scholar]
  113. Llobet A, Gallop JL, Burden JJE, Camdere G, Chandra P, et al. 2011.. Endophilin drives the fast mode of vesicle retrieval in a ribbon synapse. . J. Neurosci. 31::851219
    [Crossref] [Google Scholar]
  114. Logiudice L, Matthews G. 2007.. Endocytosis at ribbon synapses. . Traffic 8::112328
    [Crossref] [Google Scholar]
  115. Logiudice L, Sterling P, Matthews G. 2009.. Vesicle recycling at ribbon synapses in the finely branched axon terminals of mouse retinal bipolar neurons. . Neuroscience 164::154656
    [Crossref] [Google Scholar]
  116. Lohner M, Babai N, Muller T, Gierke K, Atorf J, et al. 2017.. Analysis of RIM expression and function at mouse photoreceptor ribbon synapses. . J. Neurosci. 37::784863
    [Crossref] [Google Scholar]
  117. Luo F, Bacaj T, Sudhof TC. 2015.. Synaptotagmin-7 is essential for Ca2+-triggered delayed asynchronous release but not for Ca2+-dependent vesicle priming in retinal ribbon synapses. . J. Neurosci. 35::1102433
    [Crossref] [Google Scholar]
  118. Lux UT, Ehrenberg J, Joachimsthaler A, Atorf J, Pircher B, et al. 2021.. Cell types and synapses expressing the SNARE complex regulating proteins Complexin 1 and Complexin 2 in mammalian retina. . Int. J. Mol. Sci. 22::8131
    [Crossref] [Google Scholar]
  119. Lv C, Stewart WJ, Akanyeti O, Frederick C, Zhu J, et al. 2016.. Synaptic ribbons require Ribeye for electron density, proper synaptic localization, and recruitment of calcium channels. . Cell Rep. 15::278495
    [Crossref] [Google Scholar]
  120. MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, et al. 2018.. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. . J. Gen. Physiol. 150::783807
    [Crossref] [Google Scholar]
  121. Madera-Salcedo IK, Danelli L, Tiwari N, Dema B, Pacreau E, et al. 2018.. Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. . Sci. Signal. 11::eaan4350
    [Crossref] [Google Scholar]
  122. Magupalli VG, Schwarz K, Alpadi K, Natarajan S, Seigel GM, Schmitz F. 2008.. Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. . J. Neurosci. 28::795467
    [Crossref] [Google Scholar]
  123. Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, de Camilli P. 1990.. Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. . Neuron 5::1933
    [Crossref] [Google Scholar]
  124. Mani A, Yang X, Zhao TA, Leyrer ML, Schreck D, Berson DM. 2023.. A circuit suppressing retinal drive to the optokinetic system during fast image motion. . Nat. Commun. 14::5142
    [Crossref] [Google Scholar]
  125. Matthews G, Sterling P. 2008.. Evidence that vesicles undergo compound fusion on the synaptic ribbon. . J. Neurosci. 28::540311
    [Crossref] [Google Scholar]
  126. Maxeiner S, Luo F, Tan A, Schmitz F, Sudhof TC. 2016.. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. . EMBO J. 35::1098114
    [Crossref] [Google Scholar]
  127. Mehta B, Snellman J, Chen S, Li W, Zenisek D. 2013.. Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents. . Neuron 77::51627
    [Crossref] [Google Scholar]
  128. Mennerick S, Matthews G. 1996.. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. . Neuron 17::124149
    [Crossref] [Google Scholar]
  129. Mesnard CS, Barta CL, Sladek AL, Zenisek D, Thoreson WB. 2022a.. Eliminating synaptic ribbons from rods and cones halves the releasable vesicle pool and slows down replenishment. . Int. J. Mol. Sci. 23::6429
    [Crossref] [Google Scholar]
  130. Mesnard CS, Hays CL, Barta CL, Sladek AL, Grassmeyer JJ, et al. 2022b.. Synaptotagmins 1 and 7 in vesicle release from rods of mouse retina. . Exp. Eye Res. 225::109279
    [Crossref] [Google Scholar]
  131. Michanski S, Kapoor R, Steyer AM, Mobius W, Fruholz I, et al. 2023.. Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing. . EMBO Rep. 24::e56702
    [Crossref] [Google Scholar]
  132. Miki T, Midorikawa M, Sakaba T. 2020.. Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. . PNAS 117::14493502
    [Crossref] [Google Scholar]
  133. Milovanovic D, Wu Y, Bian X, de Camilli P. 2018.. A liquid phase of synapsin and lipid vesicles. . Science 361::6047
    [Crossref] [Google Scholar]
  134. Morgans CW, Brandstatter JH, Kellerman J, Betz H, Wassle H. 1996.. A SNARE complex containing syntaxin 3 is present in ribbon synapses of the retina. . J. Neurosci. 16::671321
    [Crossref] [Google Scholar]
  135. Mortensen LS, Park SJH, Ke JB, Cooper BH, Zhang L, et al. 2016.. Complexin 3 increases the fidelity of signaling in a retinal circuit by regulating exocytosis at ribbon synapses. . Cell Rep. 15::223950
    [Crossref] [Google Scholar]
  136. Moser T, Grabner CP, Schmitz F. 2020.. Sensory processing at ribbon synapses in the retina and the cochlea. . Physiol. Rev. 100::10344
    [Crossref] [Google Scholar]
  137. Muller TM, Gierke K, Joachimsthaler A, Sticht H, Izsvak Z, et al. 2019.. A multiple Piccolino-RIBEYE interaction supports plate-shaped synaptic ribbons in retinal neurons. . J. Neurosci. 39::260619
    [Crossref] [Google Scholar]
  138. Neves G, Lagnado L. 1999.. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. . J. Physiol. 515:(Pt. 1):181202
    [Crossref] [Google Scholar]
  139. Nishad R, Betancourt-Solis M, Dey H, Heidelberger R, McNew JA. 2023.. Regulation of syntaxin3B-mediated membrane fusion by T14, Munc18, and complexin. . Biomolecules 13::1463
    [Crossref] [Google Scholar]
  140. Okawa H, Yu WQ, Matti U, Schwarz K, Odermatt B, et al. 2019.. Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system. . Nat. Commun. 10::2167
    [Crossref] [Google Scholar]
  141. Pan ZH, Hu HJ, Perring P, Andrade R. 2001.. T-type Ca2+ channels mediate neurotransmitter release in retinal bipolar cells. . Neuron 32::8998
    [Crossref] [Google Scholar]
  142. Pangrsic T, Singer JH, Koschak A. 2018.. Voltage-gated calcium channels: key players in sensory coding in the retina and the inner ear. . Physiol. Rev. 98::206396
    [Crossref] [Google Scholar]
  143. Pelassa I, Zhao C, Pasche M, Odermatt B, Lagnado L. 2014.. Synaptic vesicles are “primed” for fast clathrin-mediated endocytosis at the ribbon synapse. . Front. Mol. Neurosci. 7::91
    [Crossref] [Google Scholar]
  144. Rea R, Li J, Dharia A, Levitan ES, Sterling P, Kramer RH. 2004.. Streamlined synaptic vesicle cycle in cone photoreceptor terminals. . Neuron 41::75566
    [Crossref] [Google Scholar]
  145. Reim K, Regus-Leidig H, Ammermuller J, El-Kordi A, Radyushkin K, et al. 2009.. Aberrant function and structure of retinal ribbon synapses in the absence of Complexin 3 and Complexin 4. . J. Cell Sci. 122::135261
    [Crossref] [Google Scholar]
  146. Reim K, Wegmeyer H, Brandstatter JH, Xue M, Rosenmund C, et al. 2005.. Structurally and functionally unique complexins at retinal ribbon synapses. . J. Cell Biol. 169::66980
    [Crossref] [Google Scholar]
  147. Rizo J. 2022.. Molecular mechanisms underlying neurotransmitter release. . Annu. Rev. Biophys. 51::377408
    [Crossref] [Google Scholar]
  148. Ryl M, Urbasik A, Gierke K, Babai N, Joachimsthaler A, et al. 2021.. Genetic disruption of bassoon in two mutant mouse lines causes divergent retinal phenotypes. . FASEB J. 35::e21520
    [Crossref] [Google Scholar]
  149. Sarin S, Zuniga-Sanchez E, Kurmangaliyev YZ, Cousins H, Patel M, et al. 2018.. Role for Wnt signaling in retinal neuropil development: analysis via RNA-seq and in vivo somatic CRISPR mutagenesis. . Neuron 98::10926.e8
    [Crossref] [Google Scholar]
  150. Sauvola CW, Littleton JT. 2021.. SNARE regulatory proteins in synaptic vesicle fusion and recycling. . Front. Mol. Neurosci. 14::733138
    [Crossref] [Google Scholar]
  151. Schmitz F, Augustin I, Brose N. 2001.. The synaptic vesicle priming protein Munc13–1 is absent from tonically active ribbon synapses of the rat retina. . Brain Res. 895::25863
    [Crossref] [Google Scholar]
  152. Schmitz F, Konigstorfer A, Sudhof TC. 2000.. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. . Neuron 28::85772
    [Crossref] [Google Scholar]
  153. Schneggenburger R, Neher E. 2000.. Intracellular calcium dependence of transmitter release rates at a fast central synapse. . Nature 406::88993
    [Crossref] [Google Scholar]
  154. Schwartz EA. 2002.. Transport-mediated synapses in the retina. . Physiol. Rev. 82::87591
    [Crossref] [Google Scholar]
  155. Schwarz K, Schmitz F. 2017.. RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner. . Biochem. J. 474::120520
    [Crossref] [Google Scholar]
  156. Shaltiel L, Paparizos C, Fenske S, Hassan S, Gruner C, et al. 2012.. Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4). . J. Biol. Chem. 287::3631221
    [Crossref] [Google Scholar]
  157. Sherry DM, Mitchell R, Standifer KM, du Plessis B. 2006.. Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. . BMC Neurosci. 7::54
    [Crossref] [Google Scholar]
  158. Singer JH, Diamond JS. 2003.. Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. . J. Neurosci. 23::1092333
    [Crossref] [Google Scholar]
  159. Singer JH, Diamond JS. 2006.. Vesicle depletion and synaptic depression at a mammalian ribbon synapse. . J. Neurophysiol. 95::319198
    [Crossref] [Google Scholar]
  160. Singer JH, Lassova L, Vardi N, Diamond JS. 2004.. Coordinated multivesicular release at a mammalian ribbon synapse. . Nat. Neurosci. 7::82633
    [Crossref] [Google Scholar]
  161. Singh A, Gebhart M, Fritsch R, Sinnegger-Brauns MJ, Poggiani C, et al. 2008.. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. . J. Biol. Chem. 283::2073344
    [Crossref] [Google Scholar]
  162. Snellman J, Mehta B, Babai N, Bartoletti TM, Akmentin W, et al. 2011.. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. . Nat. Neurosci. 14::113541
    [Crossref] [Google Scholar]
  163. Sorensen JB, Matti U, Wei SH, Nehring RB, Voets T, et al. 2002.. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. . PNAS 99::162732
    [Crossref] [Google Scholar]
  164. Spiwoks-Becker I, Vollrath L, Seeliger MW, Jaissle G, Eshkind LG, Leube RE. 2001.. Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice. . Neuroscience 107::12742
    [Crossref] [Google Scholar]
  165. Stella SL Jr., Vila A, Hung AY, Rome ME, Huynh U, et al. 2012.. Association of Shank 1A scaffolding protein with cone photoreceptor terminals in the mammalian retina. . PLOS ONE 7::e43463
    [Crossref] [Google Scholar]
  166. Sterling P, Matthews G. 2005.. Structure and function of ribbon synapses. . Trends Neurosci. 28::2029
    [Crossref] [Google Scholar]
  167. Stout KA, Dunn AR, Hoffman C, Miller GW. 2019.. The synaptic vesicle glycoprotein 2: structure, function, and disease relevance. . ACS Chem. Neurosci. 10::392738
    [Crossref] [Google Scholar]
  168. Sugita S, Shin OH, Han W, Lao Y, Sudhof TC. 2002.. Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. . EMBO J. 21::27080
    [Crossref] [Google Scholar]
  169. Swanson DA, Chang JT, Campochiaro PA, Zack DJ, Valle D. 1998.. Mammalian orthologs of C. elegans unc-119 highly expressed in photoreceptors. . Investig. Ophthalmol. Vis. Sci. 39::208594
    [Google Scholar]
  170. Tan BZ, Jiang F, Tan MY, Yu D, Huang H, et al. 2011.. Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels. . J. Biol. Chem. 286::4272535
    [Crossref] [Google Scholar]
  171. Thio SS, Bonventre JV, Hsu SI. 2004.. The CtBP2 co-repressor is regulated by NADH-dependent dimerization and possesses a novel N-terminal repression domain. . Nucleic Acids Res. 32::183647
    [Crossref] [Google Scholar]
  172. Thoreson WB. 2021.. Transmission at rod and cone ribbon synapses in the retina. . Pflugers Arch. 473::146991
    [Crossref] [Google Scholar]
  173. Thoreson WB, Mangel SC. 2012.. Lateral interactions in the outer retina. . Prog. Retin. Eye Res. 31::40741
    [Crossref] [Google Scholar]
  174. Thoreson WB, Rabl K, Townes-Anderson E, Heidelberger R. 2004.. A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. . Neuron 42::595605
    [Crossref] [Google Scholar]
  175. Tian M, Xu CS, Montpetit R, Kramer RH. 2012.. Rab3A mediates vesicle delivery at photoreceptor ribbon synapses. . J. Neurosci. 32::693136
    [Crossref] [Google Scholar]
  176. Tien NW, Kim T, Kerschensteiner D. 2016.. Target-specific glycinergic transmission from VGluT3-expressing amacrine cells shapes suppressive contrast responses in the retina. . Cell Rep. 15::136975
    [Crossref] [Google Scholar]
  177. Tien NW, Soto F, Kerschensteiner D. 2017.. Homeostatic plasticity shapes cell-type-specific wiring in the retina. . Neuron 94::65665.e4
    [Crossref] [Google Scholar]
  178. tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, et al. 2005.. Molecular dissection of the photoreceptor ribbon synapse: physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. . J. Cell Biol. 168::82536
    [Crossref] [Google Scholar]
  179. tom Dieck S, Specht D, Strenzke N, Hida Y, Krishnamoorthy V, et al. 2012.. Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. . J. Neurosci. 32::12192203
    [Crossref] [Google Scholar]
  180. Trimbuch T, Rosenmund C. 2016.. Should I stop or should I go? The role of complexin in neurotransmitter release. . Nat. Rev. Neurosci. 17::11825
    [Crossref] [Google Scholar]
  181. Turner J, Crossley M. 2001.. The CtBP family: enigmatic and enzymatic transcriptional co-repressors. . Bioessays 23::68390
    [Crossref] [Google Scholar]
  182. Usukura J, Yamada E. 1980.. Freeze-etching technique with simple rapid freezing of fresh biological specimen. . J. Electron. Microsc. 29::37682
    [Google Scholar]
  183. Vaithianathan T, Henry D, Akmentin W, Matthews G. 2015.. Functional roles of complexin in neurotransmitter release at ribbon synapses of mouse retinal bipolar neurons. . J. Neurosci. 35::406570
    [Crossref] [Google Scholar]
  184. Vaithianathan T, Henry D, Akmentin W, Matthews G. 2016.. Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone. . eLife 5::e13245
    [Crossref] [Google Scholar]
  185. Vaithianathan T, Zanazzi G, Henry D, Akmentin W, Matthews G. 2013.. Stabilization of spontaneous neurotransmitter release at ribbon synapses by ribbon-specific subtypes of complexin. . J. Neurosci. 33::821626
    [Crossref] [Google Scholar]
  186. Van Epps HA, Hayashi M, Lucast L, Stearns GW, Hurley JB, et al. 2004.. The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring. . J. Neurosci. 24::864150
    [Crossref] [Google Scholar]
  187. Van Hook MJ, Parmelee CM, Chen M, Cork KM, Curto C, Thoreson WB. 2014.. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors. . J. Gen. Physiol. 144::35778
    [Crossref] [Google Scholar]
  188. Van Hook MJ, Thoreson WB. 2012.. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina. . J. Neurosci. 32::1811223
    [Crossref] [Google Scholar]
  189. Van Hook MJ, Thoreson WB. 2015.. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina. . Physiol. Rep. 3::e12567
    [Crossref] [Google Scholar]
  190. von Gersdorff H, Matthews G. 1994.. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. . Nature 367::73539
    [Crossref] [Google Scholar]
  191. von Gersdorff H, Matthews G. 1997.. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. . J. Neurosci. 17::191927
    [Crossref] [Google Scholar]
  192. Wahl S, Katiyar R, Schmitz F. 2013.. A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to synaptic ribbons. . J. Neurosci. 33::10278300
    [Crossref] [Google Scholar]
  193. Wan L, Almers W, Chen W. 2005.. Two ribeye genes in teleosts: the role of Ribeye in ribbon formation and bipolar cell development. . J. Neurosci. 25::94149
    [Crossref] [Google Scholar]
  194. Wan QF, Zhou ZY, Thakur P, Vila A, Sherry DM, et al. 2010.. SV2 acts via presynaptic calcium to regulate neurotransmitter release. . Neuron 66::88495
    [Crossref] [Google Scholar]
  195. Wang TM, Holzhausen LC, Kramer RH. 2014.. Imaging an optogenetic pH sensor reveals that protons mediate lateral inhibition in the retina. . Nat. Neurosci. 17::26268
    [Crossref] [Google Scholar]
  196. Wang Y, Fehlhaber KE, Sarria I, Cao Y, Ingram NT, et al. 2017.. The auxiliary calcium channel subunit α2δ4 is required for axonal elaboration, synaptic transmission, and wiring of rod photoreceptors. . Neuron 93::135974.e6
    [Crossref] [Google Scholar]
  197. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC. 1997.. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. . Nature 388::59398
    [Crossref] [Google Scholar]
  198. Warren TJ, Van Hook MJ, Supuran CT, Thoreson WB. 2016a.. Sources of protons and a role for bicarbonate in inhibitory feedback from horizontal cells to cones in Ambystoma tigrinum retina. . J. Physiol. 594::666177
    [Crossref] [Google Scholar]
  199. Warren TJ, Van Hook MJ, Tranchina D, Thoreson WB. 2016b.. Kinetics of inhibitory feedback from horizontal cells to photoreceptors: implications for an ephaptic mechanism. . J. Neurosci. 36::1007588
    [Crossref] [Google Scholar]
  200. Watanabe S, Mamer LE, Raychaudhuri S, Luvsanjav D, Eisen J, et al. 2018.. Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. . Neuron 98::118497.e6
    [Crossref] [Google Scholar]
  201. Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kielczynski B, et al. 2013.. Ultrafast endocytosis at mouse hippocampal synapses. . Nature 504::24247
    [Crossref] [Google Scholar]
  202. Watanabe S, Trimbuch T, Camacho-Perez M, Rost BR, Brokowski B, et al. 2014.. Clathrin regenerates synaptic vesicles from endosomes. . Nature 515::22833
    [Crossref] [Google Scholar]
  203. Wei W. 2018.. Neural mechanisms of motion processing in the mammalian retina. . Annu. Rev. Vis. Sci. 4::16592
    [Crossref] [Google Scholar]
  204. Wen X, Saltzgaber GW, Thoreson WB. 2017.. Kiss-and-run is a significant contributor to synaptic exocytosis and endocytosis in photoreceptors. . Front. Cell Neurosci. 11::286
    [Crossref] [Google Scholar]
  205. Wen X, Van Hook MJ, Grassmeyer JJ, Wiesman AI, Rich GM, et al. 2018.. Endocytosis sustains release at photoreceptor ribbon synapses by restoring fusion competence. . J. Gen. Physiol. 150::591611
    [Crossref] [Google Scholar]
  206. Wichmann C, Kuner T. 2022.. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. . Physiol. Rev. 102::269318
    [Crossref] [Google Scholar]
  207. Williams B, Haeseleer F, Lee A. 2018.. Splicing of an automodulatory domain in Cav1.4 Ca2+ channels confers distinct regulation by calmodulin. . J. Gen. Physiol. 150::167687
    [Crossref] [Google Scholar]
  208. Williams B, Maddox JW, Lee A. 2022.. Calcium channels in retinal function and disease. . Annu. Rev. Vis. Sci. 8::5377
    [Crossref] [Google Scholar]
  209. Wycisk KA, Budde B, Feil S, Skosyrski S, Buzzi F, et al. 2006.. Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. . Investig. Ophthalmol. Vis. Sci. 47::352330
    [Crossref] [Google Scholar]
  210. Xu J, Mashimo T, Sudhof TC. 2007.. Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. . Neuron 54::56781
    [Crossref] [Google Scholar]
  211. Xue R, Ruhl DA, Briguglio JS, Figueroa AG, Pearce RA, Chapman ER. 2018.. Doc2-mediated superpriming supports synaptic augmentation. . PNAS 115::E560513
    [Google Scholar]
  212. Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. 2020.. Mouse Retinal Cell Atlas: molecular identification of over sixty amacrine cell types. . J. Neurosci. 40::517795
    [Crossref] [Google Scholar]
  213. Yang J, Pawlyk B, Wen XH, Adamian M, Soloviev M, et al. 2007.. Mpp4 is required for proper localization of plasma membrane calcium ATPases and maintenance of calcium homeostasis at the rod photoreceptor synaptic terminals. . Hum. Mol. Genet. 16::101729
    [Crossref] [Google Scholar]
  214. Yao J, Gaffaney JD, Kwon SE, Chapman ER. 2011.. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. . Cell 147::66677
    [Crossref] [Google Scholar]
  215. Zenisek D. 2008.. Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals. . PNAS 105::492227
    [Crossref] [Google Scholar]
  216. Zenisek D, Steyer JA, Almers W. 2000.. Transport, capture and exocytosis of single synaptic vesicles at active zones. . Nature 406::84954
    [Crossref] [Google Scholar]
  217. Zhang G, Liu JB, Yuan HL, Chen SY, Singer JH, Ke JB. 2022.. Multiple calcium channel types with unique expression patterns mediate retinal signaling at bipolar cell ribbon synapses. . J. Neurosci. 42::6487505
    [Crossref] [Google Scholar]
  218. Zhou ZJ. 1998.. Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. . J. Neurosci. 18::415565
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-101322-111204
Loading
/content/journals/10.1146/annurev-vision-101322-111204
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error