Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aberg KC, Herzog MH. 2012. Different types of feedback change decision criterion and sensitivity differently in perceptual learning. J. Vis. 12:33 [Google Scholar]
  2. Adab HZ, Vogels R. 2011. Practicing coarse orientation discrimination improves orientation signals in macaque cortical area V4. Curr. Biol. 21:1661–66 [Google Scholar]
  3. Adini Y, Wilkonsky A, Haspel R, Tsodyks M, Sagi D. 2004. Perceptual learning in contrast discrimination: the effect of contrast uncertainty. J. Vis. 4:122 [Google Scholar]
  4. Ahissar M, Hochstein S. 1993. Attentional control of early perceptual learning. PNAS 90:5718–22 [Google Scholar]
  5. Ahissar M, Hochstein S. 2004. The reverse hierarchy theory of visual perceptual learning. Trends Cogn. Sci. 8:457–64 [Google Scholar]
  6. Atkinson J, Braddick O, Moar K. 1977. Development of contrast sensitivity over the first 3 months of life in the human infant. Vis. Res. 17:1037–44 [Google Scholar]
  7. Ball K, Sekuler R. 1982. A specific and enduring improvement in visual motion discrimination. Science 218:697–98 [Google Scholar]
  8. Barlow HB. 1989. Unsupervised learning. Neural Comput 1:295–311 [Google Scholar]
  9. Bejjanki VR, Beck JM, Lu Z-L, Pouget A. 2011. Perceptual learning as improved probabilistic inference in early sensory areas. Nat. Neurosci. 14:642–48 [Google Scholar]
  10. Bennett RG, Westheimer G. 1991. The effect of training on visual alignment discrimination and grating resolution. Percept. Psychophys. 49:541–46 [Google Scholar]
  11. Burgess A, Colborne B. 1988. Visual signal detection. IV. Observer inconsistency. J. Opt. Soc. Am. A 5:617–27 [Google Scholar]
  12. Carandini M, Heeger DJ, Movshon JA. 1997. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17:8621–44 [Google Scholar]
  13. Casey MC, Sowden PT. 2012. Modeling learned categorical perception in human vision. Neural Netw 33:114–26 [Google Scholar]
  14. Censor N, Karni A, Sagi D. 2006. A link between perceptual learning, adaptation and sleep. Vis. Res. 46:4071–74 [Google Scholar]
  15. Choi H, Watanabe T. 2012. Perceptual learning solely induced by feedback. Vis. Res. 61:77–82 [Google Scholar]
  16. Chowdhury SA, DeAngelis GC. 2008. Fine discrimination training alters the causal contribution of macaque area MT to depth perception. Neuron 60:367–77 [Google Scholar]
  17. Crist RE, Kapadia MK, Westheimer G, Gilbert CD. 1997. Perceptual learning of spatial localization: specificity for orientation, position, and context. J. Neurophysiol. 78:2889–94 [Google Scholar]
  18. DeLoss DJ, Watanabe T, Andersen GJ. 2015. Improving vision among older adults: behavioral training to improve sight. Psychol. Sci. 26:456–66 [Google Scholar]
  19. Deveau J, Ozer DJ, Seitz AR. 2014. Improved vision and on-field performance in baseball through perceptual learning. Curr. Biol. 24:R146–47 [Google Scholar]
  20. Dolan R, Fink G, Rolls E, Booth M, Holmes A. et al. 1997. How the brain learns to see objects and faces in an impoverished context. Nature 389:596–99 [Google Scholar]
  21. Dorais A, Sagi D. 1997. Contrast masking effects change with practice. Vis. Res. 37:1725–33 [Google Scholar]
  22. Dosher BA, Han S, Lu Z-L. 2010. Perceptual learning and attention: reduction of object attention limitations with practice. Vis. Res. 50:402–15 [Google Scholar]
  23. Dosher BA, Jeter P, Liu J, Lu Z-L. 2013. An integrated reweighting theory of perceptual learning. PNAS 110:13678–83 [Google Scholar]
  24. Dosher BA, Lu Z-L. 1998. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. PNAS 95:13988–93 [Google Scholar]
  25. Dosher BA, Lu Z-L. 1999. Mechanisms of perceptual learning. Vis. Res. 39:3197–221 [Google Scholar]
  26. Dosher BA, Lu Z-L. 2006. Level and mechanisms of perceptual learning: learning first-order luminance and second-order texture objects. Vis. Res. 46:1996–2007 [Google Scholar]
  27. Dosher BA, Lu Z-L. 2009. Hebbian reweighting on stable representations in perceptual learning. Learn. Percept. 1:37–58 [Google Scholar]
  28. Durrie D, McMinn PS. 2007. Computer-based primary visual cortex training for treatment of low myopia and early presbyopia. Trans. Am. Ophthalmol. Soc. 105:132–38 [Google Scholar]
  29. Fahle M, Edelman S. 1993. Long-term learning in vernier acuity: effects of stimulus orientation, range and of feedback. Vis. Res. 33:397–412 [Google Scholar]
  30. Fahle M, Morgan M. 1996. No transfer of perceptual learning between similar stimuli in the same retinal position. Curr. Biol. 6:292–97 [Google Scholar]
  31. Fahle M, Poggio T. 2002. Perceptual Learning Cambridge, MA: MIT Press
  32. Fendick M, Westheimer G. 1983. Effects of practice and the separation of test targets on foveal and peripheral stereoacuity. Vis. Res. 23:145–50 [Google Scholar]
  33. Fine I, Jacobs RA. 2002. Comparing perceptual learning across tasks: a review. J. Vis. 2:25 [Google Scholar]
  34. Fiorentini A, Berardi N. 1980. Perceptual learning specific for orientation and spatial frequency. Nature 287:43–44 [Google Scholar]
  35. Fiorentini A, Berardi N. 1981. Learning in grating waveform discrimination: specificity for orientation and spatial frequency. Vis. Res. 21:1149–58 [Google Scholar]
  36. French RM. 1999. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3:128–35 [Google Scholar]
  37. Furmanski CS, Schluppeck D, Engel SA. 2004. Learning strengthens the response of primary visual cortex to simple patterns. Curr. Biol. 14:573–78 [Google Scholar]
  38. Gauthier I, Williams P, Tarr MJ, Tanaka J. 1998. Training ‘greeble’ experts: a framework for studying expert object recognition processes. Vis. Res. 38:2401–28 [Google Scholar]
  39. Geisler WS. 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92 [Google Scholar]
  40. Ghose GM, Yang T, Maunsell JH. 2002. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87:1867–88 [Google Scholar]
  41. Gibson EJ. 1969. Principles of Perceptual Learning and Development Century Psychol. Ser New York: Appleton-Century-Crofts
  42. Gilbert CD, Li W. 2012. Adult visual cortical plasticity. Neuron 75:250–64 [Google Scholar]
  43. Gilbert CD, Sigman M, Crist RE. 2001. The neural basis of perceptual learning. Neuron 31:681–97 [Google Scholar]
  44. Gold J, Bennett P, Sekuler A. 1999. Signal but not noise changes with perceptual learning. Nature 402:176–78 [Google Scholar]
  45. Goris RL, Movshon JA, Simoncelli EP. 2014. Partitioning neuronal variability. Nat. Neurosci. 17:858–65 [Google Scholar]
  46. Green CS, Bavelier D. 2015. Action video game training for cognitive enhancement. Curr. Opin. Behav. Sci. 4:103–8 [Google Scholar]
  47. Green DM, Swets JA. 1966. Signal Detection Theory and Psychophysics New York: John Wiley & Sons
  48. Grossberg S. 1987. Competitive learning: from interactive activation to adaptive resonance. Cogn. Sci. 11:23–63 [Google Scholar]
  49. Grossman ED, Blake R, Kim C-Y. 2004. Learning to see biological motion: Brain activity parallels behavior. J. Cogn. Neurosci. 16:1669–79 [Google Scholar]
  50. Gu Y, Liu S, Fetsch CR, Yang Y, Fok S. et al. 2011. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71:750–61 [Google Scholar]
  51. Gutnisky DA, Hansen BJ, Iliescu BF, Dragoi V. 2009. Attention alters visual plasticity during exposure-based learning. Curr. Biol. 19:555–60 [Google Scholar]
  52. Herzog MH, Aberg KC, Frémaux N, Gerstner W, Sprekeler H. 2012. Perceptual learning, roving and the unsupervised bias. Vis. Res. 61:95–99 [Google Scholar]
  53. Herzog MH, Fahle M. 1997. The role of feedback in learning a vernier discrimination task. Vis. Res. 37:2133–41 [Google Scholar]
  54. Herzog MH, Fahle M. 1998. Modeling perceptual learning: difficulties and how they can be overcome. Biol. Cybern. 78:107–17 [Google Scholar]
  55. Herzog MH, Fahle M. 1999. Effects of biased feedback on learning and deciding in a vernier discrimination task. Vis. Res. 39:4232–43 [Google Scholar]
  56. Hou F, Lu Z-L, Huang C-B. 2014. The external noise normalized gain profile of spatial vision. J. Vis. 14:139 [Google Scholar]
  57. Huang C-B, Lu Z-L, Dosher BA. 2012. Co-learning analysis of two perceptual learning tasks with identical input stimuli supports the reweighting hypothesis. Vis. Res. 61:25–32 [Google Scholar]
  58. Huber E, Webster JM, Brewer AA, MacLeod DI, Wandell BA. et al. 2015. A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychol. Sci. 26:393–401 [Google Scholar]
  59. Hung S-C, Seitz AR. 2014. Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. J. Neurosci. 34:8423–31 [Google Scholar]
  60. Huxlin KR, Martin T, Kelly K, Riley M, Friedman DI. et al. 2009. Perceptual relearning of complex visual motion after V1 damage in humans. J. Neurosci. 29:3981–91 [Google Scholar]
  61. Jacobs RA. 2009. Adaptive precision pooling of model neuron activities predicts the efficiency of human visual learning. J. Vis. 9:422 [Google Scholar]
  62. James W. 1890. The Principles of Psychology 2 New York: Henry Holt and Company
  63. Jastorff J, Kourtzi Z, Giese MA. 2006. Learning to discriminate complex movements: biological versus artificial trajectories. J. Vis. 6:83 [Google Scholar]
  64. Jehee JF, Ling S, Swisher JD, van Bergen RS, Tong F. 2012. Perceptual learning selectively refines orientation representations in early visual cortex. J. Neurosci. 32:16747–53 [Google Scholar]
  65. Jeter PE, Dosher BA, Liu S-H, Lu Z-L. 2010. Specificity of perceptual learning increases with increased training. Vis. Res. 50:1928–40 [Google Scholar]
  66. Jeter PE, Dosher BA, Petrov A, Lu Z-L. 2009. Task precision at transfer determines specificity of perceptual learning. J. Vis. 9:31 [Google Scholar]
  67. Jordan MI, Rumelhart DE. 1992. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16:307–54 [Google Scholar]
  68. Kahnt T, Grueschow M, Speck O, Haynes J-D. 2011. Perceptual learning and decision-making in human medial frontal cortex. Neuron 70:549–59 [Google Scholar]
  69. Kalia A, Lesmes LA, Dorr M, Gandhi T, Chatterjee G. et al. 2014. Development of pattern vision following early and extended blindness. PNAS 111:2035–39 [Google Scholar]
  70. Karni A, Sagi D. 1991. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. PNAS 88:4966–70 [Google Scholar]
  71. Karni A, Sagi D. 1993. The time course of learning a visual skill. Nature 365:250–52 [Google Scholar]
  72. Kasten E, Sabel BA. 1995. Visual field enlargement after computer training in brain-damaged patients with homonymous deficits: an open pilot trial. Restor. Neurol. Neurosci. 8:113–27 [Google Scholar]
  73. Kellman PJ, Massey CM. 2013. Perceptual learning, cognition, and expertise. Psychol. Learn. Motiv. 58:117–65 [Google Scholar]
  74. Kobatake E, Wang G, Tanaka K. 1998. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80:324–30 [Google Scholar]
  75. Kourtzi Z. 2010. Visual learning for perceptual and categorical decisions in the human brain. Vis. Res. 50:433–40 [Google Scholar]
  76. Kourtzi Z, Betts LR, Sarkheil P, Welchman AE. 2005. Distributed neural plasticity for shape learning in the human visual cortex. PLOS Biol 3:e204 [Google Scholar]
  77. Kuai S-G, Levi D, Kourtzi Z. 2013. Learning optimizes decision templates in the human visual cortex. Curr. Biol. 23:1799–804 [Google Scholar]
  78. Law C-T, Gold JI. 2008. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat. Neurosci. 11:505–13 [Google Scholar]
  79. Law C-T, Gold JI. 2009. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat. Neurosci. 12:655–63 [Google Scholar]
  80. Levi DM, Li RW. 2009. Perceptual learning as a potential treatment for amblyopia: a mini-review. Vis. Res. 49:2535–49 [Google Scholar]
  81. Li J, Thompson B, Deng D, Chan LY, Yu M, Hess RF. 2013. Dichoptic training enables the adult amblyopic brain to learn. Curr. Biol. 23:R308–9 [Google Scholar]
  82. Liu J, Dosher B, Lu Z-L. 2014. Modeling trial by trial and block feedback in perceptual learning. Vis. Res. 99:46–56 [Google Scholar]
  83. Liu J, Lu Z-L, Dosher BA. 2010. Augmented Hebbian reweighting: interactions between feedback and training accuracy in perceptual learning. J. Vis. 10:1029 [Google Scholar]
  84. Liu J, Lu Z-L, Dosher BA. 2012. Mixed training at high and low accuracy levels leads to perceptual learning without feedback. Vis. Res. 61:15–24 [Google Scholar]
  85. Liu L, Kuyk T, Fuhr P. 2007. Visual search training in subjects with severe to profound low vision. Vis. Res. 47:2627–36 [Google Scholar]
  86. Liu Z. 1999. Perceptual learning in motion discrimination that generalizes across motion directions. PNAS 96:14085–87 [Google Scholar]
  87. Logothetis NK, Pauls J, Poggio T. 1995. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5:552–63 [Google Scholar]
  88. Lu Z-L, Chu W, Dosher BA. 2006. Perceptual learning of motion direction discrimination in fovea: separable mechanisms. Vis. Res. 46:2315–27 [Google Scholar]
  89. Lu Z-L, Chu W, Dosher BA, Lee S. 2005. Independent perceptual learning in monocular and binocular motion systems. PNAS 102:5624–29 [Google Scholar]
  90. Lu Z-L, Dosher BA. 1998. External noise distinguishes attention mechanisms. Vis. Res. 38:1183–98 [Google Scholar]
  91. Lu Z-L, Dosher BA. 1999. Characterizing human perceptual inefficiencies with equivalent internal noise. J. Opt. Soc. Am. A 16:764–78 [Google Scholar]
  92. Lu Z-L, Dosher BA. 2004. Perceptual learning retunes the perceptual template in foveal orientation identification. J. Vis. 4:15 [Google Scholar]
  93. Lu Z-L, Dosher BA. 2008. Characterizing observers using external noise and observer models: assessing internal representations with external noise. Psychol. Rev. 115:44 [Google Scholar]
  94. Lu Z-L, Hua T, Huang C-B, Zhou Y, Dosher BA. 2011. Visual perceptual learning. Neurobiol. Learn. Mem. 95:145–51 [Google Scholar]
  95. Lu Z-L, Lin Z, Dosher BA. 2016. Translating perceptual learning from the laboratory to applications. Trends Cogn. Sci. 20:561–63 [Google Scholar]
  96. Lu Z-L, Liu J, Dosher BA. 2010. Modeling mechanisms of perceptual learning with augmented Hebbian re-weighting. Vis. Res. 50:375–90 [Google Scholar]
  97. Matthews N, Welch L. 1997. Velocity-dependent improvements in single-dot direction discrimination. Percept. Psychophys. 59:60–72 [Google Scholar]
  98. McKee SP, Westheimer G. 1978. Improvement in vernier acuity with practice. Percept. Psychophys. 24:258–62 [Google Scholar]
  99. Mednick S, Nakayama K, Stickgold R. 2003. Sleep-dependent learning: A nap is as good as a night. Nat. Neurosci. 6:697–98 [Google Scholar]
  100. Merzenich MM, Jenkins WM, Johnston P, Schreiner C. 1996. Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271:77 [Google Scholar]
  101. Mollon JD, Danilova MV. 1996. Three remarks on perceptual learning. Spat. Vis. 10:51–58 [Google Scholar]
  102. Mukai I, Bahadur K, Kesavabhotla K, Ungerleider LG. 2011. Exogenous and endogenous attention during perceptual learning differentially affect post-training target thresholds. J. Vis. 11:125 [Google Scholar]
  103. Nazir TA, O'Regan JK. 1990. Some results on translation invariance in the human visual system. Spat. Vis. 5:81–100 [Google Scholar]
  104. Nelles G, Esser J, Eckstein A, Tiede A, Gerhard H, Diener HC. 2001. Compensatory visual field training for patients with hemianopia after stroke. Neurosci. Lett. 306:189–92 [Google Scholar]
  105. Özgen E, Davies IR. 2002. Acquisition of categorical color perception: a perceptual learning approach to the linguistic relativity hypothesis. J. Exp. Psychol. Gen. 131:477 [Google Scholar]
  106. Pelli DG. 1981. Effects of visual noise PhD Thesis, Univ. Cambridge, UK:
  107. Petrov AA, Dosher BA, Lu Z-L. 2005. The dynamics of perceptual learning: an incremental reweighting model. Psychol. Rev. 112:715 [Google Scholar]
  108. Petrov AA, Dosher BA, Lu Z-L. 2006. Perceptual learning without feedback in non-stationary contexts: data and model. Vis. Res. 46:3177–97 [Google Scholar]
  109. Poggio T, Edelman S, Fahle M. 1992. Learning of visual modules from examples: a framework for understanding adaptive visual performance. CVGIP Image Underst 56:22–30 [Google Scholar]
  110. Polat U, Schor C, Tong J-L, Zomet A, Lev M. et al. 2012. Training the brain to overcome the effect of aging on the human eye. Sci. Rep. 2:278 [Google Scholar]
  111. Raiguel S, Vogels R, Mysore SG, Orban GA. 2006. Learning to see the difference specifically alters the most informative V4 neurons. J. Neurosci. 26:6589–602 [Google Scholar]
  112. Rainer G, Miller EK. 2000. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27:179–89 [Google Scholar]
  113. Ramachandran V, Braddick O. 1973. Orientation-specific learning in stereopsis. Perception 2:371–76 [Google Scholar]
  114. Reed RD, Marks RJ. 1998. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. Cambridge, MA: MIT Press
  115. Rubin N, Nakayama K, Shapley R. 1997. Abrupt learning and retinal size specificity in illusory-contour perception. Curr. Biol. 7:461–67 [Google Scholar]
  116. Saarinen J, Levi DM. 1995. Perceptual learning in vernier acuity: What is learned. ? Vis. Res. 35:519–27 [Google Scholar]
  117. Sagi D. 2011. Perceptual learning in vision research. Vis. Res. 51:1552–66 [Google Scholar]
  118. Schoups AA, Vogels R, Orban GA. 1995. Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J. Physiol. 483:797–810 [Google Scholar]
  119. Schoups AA, Vogels R, Qian N, Orban G. 2001. Practising orientation identification improves orientation coding in V1 neurons. Nature 412:549–53 [Google Scholar]
  120. Schwartz S, Maquet P, Frith C. 2002. Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. PNAS 99:17137–42 [Google Scholar]
  121. Seitz AR, Kim D, Watanabe T. 2009. Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61:700–7 [Google Scholar]
  122. Shibata K, Chang L-H, Kim D, Náñez JE Sr, Kamitani Y. et al. 2012. Decoding reveals plasticity in V3A as a result of motion perceptual learning. PLOS ONE 7:e44003 [Google Scholar]
  123. Shibata K, Yamagishi N, Ishii S, Kawato M. 2009. Boosting perceptual learning by fake feedback. Vis. Res. 49:2574–85 [Google Scholar]
  124. Shiu L-P, Pashler H. 1992. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52:582–88 [Google Scholar]
  125. Sotiropoulos G, Seitz AR, Seriès P. 2011. Perceptual learning in visual hyperacuity: a reweighting model. Vis. Res. 51:585–99 [Google Scholar]
  126. Sowden PT, Rose D, Davies IR. 2002. Perceptual learning of luminance contrast detection: specific for spatial frequency and retinal location but not orientation. Vis. Res. 42:1249–58 [Google Scholar]
  127. Stratton GM. 1897. Vision without inversion of the retinal image. Psychol. Rev. 4:341 [Google Scholar]
  128. Strong GK, Torgerson CJ, Torgerson D, Hulme C. 2011. A systematic meta-analytic review of evidence for the effectiveness of the ‘Fast ForWord’ language intervention program. J. Child Psychol. Psychiatry 52:224–35 [Google Scholar]
  129. Talluri BC, Hung S-C, Seitz AR, Seriès P. 2015. Confidence-based integrated reweighting model of task-difficulty explains location-based specificity in perceptual learning. J. Vis. 15:1017 [Google Scholar]
  130. Teich AF, Qian N. 2003. Learning and adaptation in a recurrent model of V1 orientation selectivity. J. Neurophysiol. 89:2086–100 [Google Scholar]
  131. Thurston C, Dobkins K. 2007. Stimulus-specific perceptual learning for chromatic, but not luminance, contrast detection. J. Vis. 7:9469 [Google Scholar]
  132. Ungerleider LG, Courtney SM, Haxby JV. 1998. A neural system for human visual working memory. PNAS 95:883–90 [Google Scholar]
  133. Vaina LM, Sundareswaran V, Harris JG. 1995. Learning to ignore: psychophysics and computational modeling of fast learning of direction in noisy motion stimuli. Cogn. Brain Res. 2:155–63 [Google Scholar]
  134. Van Essen DC, Anderson CH, Felleman DJ. 1992. Information processing in the primate visual system: an integrated systems perspective. Science 255:419 [Google Scholar]
  135. Vogels R. 2010. Mechanisms of visual perceptual learning in macaque visual cortex. Top. Cogn. Sci. 2:239–50 [Google Scholar]
  136. Vogels R, Orban GA. 1985. The effect of practice on the oblique effect in line orientation judgments. Vis. Res. 25:1679–87 [Google Scholar]
  137. Wandell BA, Smirnakis SM. 2009. Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10:873–84 [Google Scholar]
  138. Watanabe T, Náñez JE Sr., Koyama S, Mukai I, Liederman J, Sasaki Y. 2002. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat. Neurosci. 5:1003–9 [Google Scholar]
  139. Watanabe T, Sasaki Y. 2015. Perceptual learning: toward a comprehensive theory. Annu. Rev. Psychol. 66:197–221 [Google Scholar]
  140. Weiss Y, Edelman S, Fahle M. 1993. Models of perceptual learning in vernier hyperacuity. Neural Comput 5:695–718 [Google Scholar]
  141. Westheimer G. 2001. Is peripheral visual acuity susceptible to perceptual learning in the adult?. Vis. Res. 41:47–52 [Google Scholar]
  142. Xi J, Jia W-L, Feng L-X, Lu Z-L, Huang C-B. 2014. Perceptual learning improves stereoacuity in amblyopiaperceptual learning and restoration of stereoacuity. Invest. Ophthalmol. Vis. Sci. 55:2384–91 [Google Scholar]
  143. Xiao L-Q, Zhang J-Y, Wang R, Klein SA, Levi DM, Yu C. 2008. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18:1922–26 [Google Scholar]
  144. Xu JP, He ZJ, Ooi TL. 2012. Push–pull training reduces foveal sensory eye dominance within the early visual channels. Vis. Res. 61:48–59 [Google Scholar]
  145. Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. Performance-optimized hierarchical models predict neural responses in higher visual cortex. PNAS 111:8619–24 [Google Scholar]
  146. Yan F-F, Zhou J, Zhao W, Li M, Xi J. et al. 2015. Perceptual learning improves neural processing in myopic vision. J. Vis. 15:1012 [Google Scholar]
  147. Yang T, Maunsell JH. 2004. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24:1617–26 [Google Scholar]
  148. Yu C, Klein SA, Levi DM. 2004. Perceptual learning in contrast discrimination and the (minimal) role of context. J. Vis. 4:34 [Google Scholar]
  149. Yu D, Cheung S-H, Legge GE, Chung ST. 2010. Reading speed in the peripheral visual field of older adults: Does it benefit from perceptual learning. ? Vis. Res. 50:860–69 [Google Scholar]
  150. Zhang J, Kourtzi Z. 2010. Learning-dependent plasticity with and without training in the human brain. PNAS 107:13503–8 [Google Scholar]
  151. Zhang P, Hou F, Xi J, Zhang M-Y, He Q. et al. 2016. Reward enhances perceptual learning and transfer. Vis. Sci. Soc. Annu. Meet., May 13–18, St. Pete Beach, FL 53:4113 [Google Scholar]
  152. Zhaoping L, Herzog MH, Dayan P. 2003. Nonlinear ideal observation and recurrent preprocessing in perceptual learning. Netw. Comput. Neural Syst. 14:233–47 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error