1932

Abstract

A long-term goal of visual neuroscience is to develop and test quantitative models that account for the moment-by-moment relationship between neural responses in early visual cortex and human performance in natural visual tasks. This review focuses on efforts to address this goal by measuring and perturbing the activity of primary visual cortex (V1) neurons while nonhuman primates perform demanding, well-controlled visual tasks. We start by describing a conceptual approach—the decoder linking model (DLM) framework—in which candidate decoding models take neural responses as input and generate predicted behavior as output. The ultimate goal in this framework is to find the actual decoder—the model that best predicts behavior from neural responses. We discuss key relevant properties of primate V1 and review current literature from the DLM perspective. We conclude by discussing major technological and theoretical advances that are likely to accelerate our understanding of the link between V1 activity and behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102016-061324
2018-09-15
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-102016-061324.html?itemId=/content/journals/10.1146/annurev-vision-102016-061324&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Dayan P 1999. The effect of correlated variability on the accuracy of a population code. Neural Comput 11:91–101
    [Google Scholar]
  2. Adams DL, Horton JC 2003. A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J. Neurosci. 23:3771–89
    [Google Scholar]
  3. Angelucci A, Bressloff PC 2006. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1. Visual Perception, Part 1. Fundamentals of Vision: Low and Mid-Level Processes in Perception S Martinez-Conde, SL Macknik, LM Martinez, J-M Alonso, PU Tse 93–120 Amsterdam, Neth: Elsevier
    [Google Scholar]
  4. Arandia-Romero I, Tanabe S, Drugowitsch J, Kohn A, Moreno-Bote R 2016. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information. Neuron 89:1305–16
    [Google Scholar]
  5. Averbeck BB, Latham PE, Pouget A 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7:358–66
    [Google Scholar]
  6. Averbeck BB, Lee D 2006. Effects of noise correlations on information encoding and decoding. J. Neurophysiol. 95:3633–44
    [Google Scholar]
  7. Barlow HB 1981. The Ferrier lecture, 1980: critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. B 212:1–34
    [Google Scholar]
  8. Barlow HB 1995. The neuron doctrine in perception. The Cognitive Neurosciences MS Gazzaniga 401–14 Cambridge, MA: MIT Press
    [Google Scholar]
  9. Bennett PJ, Banks MS 1987. Sensitivity loss in odd-symmetrical mechanisms and phase anomalies in peripheral-vision. Nature 326:873–76
    [Google Scholar]
  10. Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS 2012. A fast and simple population code for orientation in primate V1. J. Neurosci. 32:10618–26
    [Google Scholar]
  11. Bondy AG, Haefner RM, Cumming BG 2018. Feedback determines the structure of correlated variability in primary visual cortex. Nat. Neurosci. 21:598–606
    [Google Scholar]
  12. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA 1996. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13:87–100
    [Google Scholar]
  13. Britten KH, Shadlen MN, Newsome WT, Movshon JA 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12:4745–65
    [Google Scholar]
  14. Callaway EM 1998. Local circuits in primary visual cortex of the macaque monkey. J. Neurosci. 21:47–74
    [Google Scholar]
  15. Celebrini S, Newsome WT 1994. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14:4109–24
    [Google Scholar]
  16. Chen Y, Geisler WS, Seidemann E 2006. Optimal decoding of correlated neural population responses in the primate visual cortex. Nat. Neurosci. 9:1412–20
    [Google Scholar]
  17. Chen Y, Geisler WS, Seidemann E 2008. Optimal temporal decoding of V1 population responses in a reaction-time detection task. J. Neurophysiol. 99:1366–79
    [Google Scholar]
  18. Chen Y, Palmer CR, Seidemann E 2012. The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1. J. Neurophysiol. 12:3281–95
    [Google Scholar]
  19. Chen Y, Seidemann E 2012. Attentional modulations related to spatial gating but not to allocation of limited resources in primate V1. Neuron 74:557–66
    [Google Scholar]
  20. Cohen MR, Kohn A 2011. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14:811–19
    [Google Scholar]
  21. Cohen MR, Maunsell JHR 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:1594–600
    [Google Scholar]
  22. Cohen MR, Newsome WT 2008. Context-dependent changes in functional circuitry in visual area MT. Neuron 60:162–73
    [Google Scholar]
  23. Cohen MR, Newsome WT 2009. Estimates of the contribution of single neurons to perception depend on timescale and noise correlation. J. Neurosci. 29:6635–48
    [Google Scholar]
  24. Cook EP, Maunsell JHR 2002.a Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J. Neurosci. 22:1994–2004
    [Google Scholar]
  25. Cook EP, Maunsell JHR 2002.b Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5:985–94
    [Google Scholar]
  26. Cumming BG, Nienborg H 2016. Feedforward and feedback sources of choice probability in neural population responses. Curr. Opin. Neurobiol. 37:126–32
    [Google Scholar]
  27. Dayan P, Abbott LF 2001. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems87–122 Cambridge, MA: MIT Press
  28. DeAngelis GC, Cumming BG, Newsome WT 1998. Cortical area MT and the perception of stereoscopic depth. Nature 394:677–80
    [Google Scholar]
  29. de Lafuente V, Romo R 2005. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8:1698–703
    [Google Scholar]
  30. De Valois RL, De Valois KK 1980. Spatial vision. Annu. Rev. Psychol. 31:309–41
    [Google Scholar]
  31. Desimone R, Duncan J 1995. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18:193–222
    [Google Scholar]
  32. Dodd JV, Krug K, Cumming BG, Parker AJ 2001. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21:4809–21
    [Google Scholar]
  33. Ecker AS, Berens P, Cotton RJ, Subramaniyan M, Denfield GH et al. 2014. State dependence of noise correlations in macaque primary visual cortex. Neuron 82:235–48
    [Google Scholar]
  34. Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS 2010. Decorrelated neuronal firing in cortical microcircuits. Science 327:584–87
    [Google Scholar]
  35. Ganguli D, Simoncelli EP 2014. Efficient sensory encoding and Bayesian inference with heterogeneous neural populations. Neural Comput 26:2103–34
    [Google Scholar]
  36. Geisler WS 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92
    [Google Scholar]
  37. Geisler WS 2011. Contributions of ideal observer theory to vision research. Vis. Res. 51:771–81
    [Google Scholar]
  38. Geisler WS, Albrecht DG 1997. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis. Neurosci. 14:897–919
    [Google Scholar]
  39. Gilbert CD, Li W 2013. Top-down influences on visual processing. Nat. Rev. Neurosci. 14:350–63
    [Google Scholar]
  40. Goris RLT, Movshon JA, Simoncelli EP 2014. Partitioning neuronal variability. Nat. Neurosci. 17:858–65
    [Google Scholar]
  41. Graf ABA, Kohn A, Jazayeri M, Movshon JA 2011. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14:239–45
    [Google Scholar]
  42. Green DM, Swets JA 1966. Signal Detection Theory and Psychophysics263–305 New York: Wiley
  43. Grinvald A, Hildesheim R 2004. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5:874–85
    [Google Scholar]
  44. Hawken MJ, Parker AJ 1990. Detection and discrimination mechanisms in the striate cortex of the Old-World monkey. Vision: Coding and Efficiency C Blakemore 103–16 Cambridge, MA: Cambridge Univ. Press
    [Google Scholar]
  45. Histed MH, Bonin V, Reid RC 2009. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–22
    [Google Scholar]
  46. Hochstein S, Ahissar M 2002. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804
    [Google Scholar]
  47. Hubel DH, Wiesel TN 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  48. Hubel DH, Wiesel TN 1974. Uniformity of monkey striate cortex: a parallel relationship between field size, scatter and magnification factor. J. Comp. Neurol. 158:295–306
    [Google Scholar]
  49. Hubel DH, Wiesel TN 1977. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. B 198:1–59
    [Google Scholar]
  50. Hubel DH, Wiesel TN, Stryker MP 1978. Anatomical demonstration of orientation columns in macaque monkey. J. Comp. Neurol. 177:361–79
    [Google Scholar]
  51. Jonas JB, Schmidt AM, Mullerbergh JA, Schlotzerschrehardt UM, Naumann GOH 1992. Human optic-nerve fiber count and optic disk size. Investig. Ophthalmol. Vis. Sci. 33:2012–18
    [Google Scholar]
  52. Kersten D, Mamassian P, Yuille A 2004. Object perception as Bayesian inference. Annu. Rev. Psychol. 55:271–304
    [Google Scholar]
  53. Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A 2016. Correlations and neuronal population information. Annu. Rev. Neurosci. 39:237–56
    [Google Scholar]
  54. Kohn A, Smith MA 2005. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25:3661–73
    [Google Scholar]
  55. Kriegeskorte N 2015. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1:417–46
    [Google Scholar]
  56. Landy MS, Graham N 2004. Visual perception of texture. The Visual Neurosciences, Vol. 1 LM Chalupa, JS Werner 1106–18 Cambridge, MA: MIT Press
    [Google Scholar]
  57. Levitt JB, Kiper DC, Movshon JA 1994. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71:2517–42
    [Google Scholar]
  58. Ma WJ, Beck JM, Latham PE, Pouget A 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9:1432–38
    [Google Scholar]
  59. Maunsell JHR 2015. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci 1:373–91
    [Google Scholar]
  60. Maunsell JHR, Newsome WT 1987. Visual processing in monkey extrastriate cortex. J. Neurosci. 10:363–401
    [Google Scholar]
  61. Michel MM, Chen Y, Geisler WS, Seidemann E 2013. Orientation-dependent distortion of response spread in V1 predicts a novel shape illusion. Nat. Neurosci. 16:1477–83
    [Google Scholar]
  62. Michel MM, Geisler WS 2011. Intrinsic position uncertainty explains detection and localization performance in peripheral vision. J. Vis. 11:1):18
    [Google Scholar]
  63. Michelson C, Pillow J, Seidemann E 2017. Majority of choice-related variability in perceptual decisions is present in early sensory cortex. bioRxiv 207357 https://doi.org/10.1101/207357
    [Crossref] [Google Scholar]
  64. Michelson CA, Chen Y, Geisler WS, Seidemann E 2010. Neural correlates of perceptual decisions by population activity in primate V1 Presented at Society for Neuroscience 40th Annual Meeting, San Diego, CA, Nov 13–17
  65. Michelson CA, Seidemann E 2012. Picture of a decision: intrinsic position uncertainty leads to sub-optimal decoding of sensory signals Presented at Society for Neuroscience 42nd Annual Meeting, New Orleans, LA, Oct 13–17
  66. Mitchell JF, Sundberg KA, Reynolds JH 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–88
    [Google Scholar]
  67. Motter BC 1993. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70:909–19
    [Google Scholar]
  68. Nauhaus I, Nielsen KJ, Disney AA, Callaway EM 2012. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat. Neurosci. 15:1683–90
    [Google Scholar]
  69. Newsome WT, Britten KH, Movshon JA 1989. Neuronal correlates of a perceptual decision. Nature 341:52–54
    [Google Scholar]
  70. Nienborg H, Cohen MR, Cumming BG 2012. Decision-related activity in sensory neurons: correlations among neurons and with behavior. Annu. Rev. Neurosci 35:463–83
    [Google Scholar]
  71. Nienborg H, Cumming BG 2006. Macaque V2 neurons, but not V1 neurons, show choice-related activity. J. Neurosci. 26:9567–78
    [Google Scholar]
  72. Nienborg H, Cumming BG 2009. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature 459:89–92
    [Google Scholar]
  73. Nienborg H, Cumming BG 2014. Decision-related activity in sensory neurons may depend on the columnar architecture of cerebral cortex. J. Neurosci. 34:3579–85
    [Google Scholar]
  74. Palmer CR, Chen Y, Seidemann E 2012. Uniform spatial spread of population activity in primate parafoveal V1. J. Neurophysiol. 107:1857–67
    [Google Scholar]
  75. Palmer CR, Cheng S-Y, Seidemann E 2007. Linking neuronal and behavioral performance in a reaction-time visual detection task. J. Neurosci. 27:8122–37
    [Google Scholar]
  76. Parker A, Hawken M 1985. Capabilities of monkey cortical cells in spatial-resolution tasks. J. Opt. Soc. Am. A 2:1101–14
    [Google Scholar]
  77. Parker AJ, Newsome WT 1998. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21:227–77
    [Google Scholar]
  78. Pelli DG 2008. Crowding: a cortical constraint on object recognition. Curr. Opin. Neurobiol. 18:445–51
    [Google Scholar]
  79. Pitkow X, Liu S, Angelaki DE, DeAngelis GC, Pouget A 2015. How can single sensory neurons predict behavior. ? Neuron 87:411–23
    [Google Scholar]
  80. Priebe NJ, Ferster D 2008. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–97
    [Google Scholar]
  81. Prince SJ, Pointon AD, Cumming BG, Parker AJ 2000. The precision of single neuron responses in cortical area V1 during stereoscopic depth judgments. J. Neurosci. 20:3387–400
    [Google Scholar]
  82. Purushothaman G, Bradley DC 2005. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8:99–106
    [Google Scholar]
  83. Roelfsema PR 2006. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29:203–27
    [Google Scholar]
  84. Roelfsema PR, de Lange FP 2016. Early visual cortex as a multiscale cognitive blackboard. Annu. Rev. Vis. Sci. 2:131–51
    [Google Scholar]
  85. Salzman CD, Murasugi CM, Britten KH, Newsome WT 1992. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12:2331–55
    [Google Scholar]
  86. Sebastian S, Geisler WS 2018. Decision-variable correlation. J. Vis. 18:43
    [Google Scholar]
  87. Seidemann E, Arieli A, Grinvald A, Slovin H 2002. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295:862–65
    [Google Scholar]
  88. Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P et al. 2016. Calcium imaging with genetically encoded indicators in behaving primates. eLife 5:e16178
    [Google Scholar]
  89. Seidemann E, Chen Y, Geisler WS 2009. Encoding and decoding with neural populations in the primate cortex. The Cognitive Neurosciences MS Gazzaniga 419–34 Cambridge, MA: MIT Press, 4th ed..
    [Google Scholar]
  90. Seung HS, Sompolinsky H 1993. Simple-models for reading neuronal population codes. PNAS 90:10749–53
    [Google Scholar]
  91. Shadlen MN, Britten KH, Newsome WT, Movshon JA 1996. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16:1486–510
    [Google Scholar]
  92. Shooner C, Hallum LE, Kumbhani RD, Ziemba CM, Garcia-Manin V et al. 2015. Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vis. Res. 114:56–67
    [Google Scholar]
  93. Simoncelli EP, Olshausen BA 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216
    [Google Scholar]
  94. Sincich LC, Horton JC 2005. The circuitry of V1 and V2: integration of color, form, and motion. J. Neurosci. 28:303–26
    [Google Scholar]
  95. Tolhurst DJ, Movshon JA, Dean AF 1983. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23:775–85
    [Google Scholar]
  96. Tootell RBH, Switkes E, Silverman MS, Hamilton SL 1988. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8:1531–68
    [Google Scholar]
  97. Uka T, DeAngelis GC 2003. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23:3515–30
    [Google Scholar]
  98. Uka T, DeAngelis GC 2004. Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42:297–310
    [Google Scholar]
  99. Uka T, DeAngelis GC 2006. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26:6791–802
    [Google Scholar]
  100. Van Essen DC, Newsome WT, Maunsell JHR 1984. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vis. Res. 24:429–48
    [Google Scholar]
  101. Vogels R, Orban GA 1990. How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey. J. Neurosci. 10:3543–58
    [Google Scholar]
  102. Watson AB 1986. Temporal sensitivity. Handbook of Perception and Human Performance, Vol. 1 KR Boff, L Kaufman, JP Thomas 1–43 New York: Wiley-Interscience
    [Google Scholar]
  103. Wei X-X, Stocker AA 2017. Lawful relation between perceptual bias and discriminability. PNAS 114:10244–49
    [Google Scholar]
  104. Wilson HR, Levi D, Maffei L, Rovamo J, Devalois RL 1990. The perception of form: retina to striate cortex. Visual Perception: The Neurophysiological Foundations L Spillman, JS Werner 231–72 San Diego, CA: Academic
    [Google Scholar]
  105. Yang Z, Heeger DJ, Seidemann E 2007. Rapid and precise retinotopic mapping of the visual cortex obtained by voltage sensitive dye imaging in the behaving monkey. J. Neurophysiol. 98:1002–14
    [Google Scholar]
  106. Zohary E, Celebrini S, Britten KH, Newsome WT 1994. Neuronal plasticity that underlies improvement in perceptual performance. Science 263:1289–92
    [Google Scholar]
/content/journals/10.1146/annurev-vision-102016-061324
Loading
/content/journals/10.1146/annurev-vision-102016-061324
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error