The brain has evolved to transform sensory information in the environment into neural representations that can be used for perception and action. Higher-order sensory cortical areas, with their increasingly complex receptive fields and integrative properties, are thought to be critical nodes for this function. This is especially true in the primate visual cortex, in which functionally specialized areas are engaged in parallel streams to support diverse computations. Recent anatomical and physiological studies of the mouse visual cortex have revealed a similarly complex network of specialized higher-order areas. This structure provides a useful model for determining the synaptic and circuit mechanisms through which information is transformed across distinct processing stages. In this review, we summarize the current knowledge on the layout, connectivity, and functional properties of the higher visual areas in the mouse. In addition, we speculate on the contribution of these areas to perception and action, and how knowledge of the mouse visual system can inform us about the principles that govern information processing in integrated networks.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Higher-Order Areas of the Mouse Visual Cortex

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012. A neural circuit for spatial summation in visual cortex. Nature 490:7419226–31 [Google Scholar]
  2. Andermann ML, Kerlin AM, Reid RC. 2010. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front. Cell. Neurosci. 4:3 [Google Scholar]
  3. Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC. 2011. Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–39 [Google Scholar]
  4. Antonini A, Fagiolini M, Stryker MP. 1999. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19:114388–4406 [Google Scholar]
  5. Atallah BV, Bruns W, Carandini M, Scanziani M. 2012. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:1159–70 [Google Scholar]
  6. Ayzenshtat I, Jackson J, Yuste R. 2016. Orientation tuning depends on spatial frequency in mouse visual cortex. eNeuro 3:5ENEURO.0217–16.2016 [Google Scholar]
  7. Berezovskii VK, Nassi JJ, Born RT. 2011. Segregation of feedforward and feedback projections in mouse visual cortex. J. Comp. Neurol. 519:3672–83 [Google Scholar]
  8. Braida D, Donzelli A, Martucci R, Ponzoni L, Pauletti A. et al. 2013. Mice discriminate between stationary and moving 2D shapes: application to the object recognition task to increase attention. Behav. Brain Res. 242:95–101 [Google Scholar]
  9. Brigman J, Bussey T, Saksida L, Rothblat L. 2005. Discrimination of multidimensional visual stimuli by mice: intra- and extradimensional shifts. Behav. Neurosci. 119:3839–42 [Google Scholar]
  10. Burgess CR, Ramesh RN, Sugden AU, Levandowski KM, Minnig MA. et al. 2016. Hunger-dependent enhancement of food cue responses in mouse postrhinal cortex and lateral amygdala. Neuron 91:51154–69 [Google Scholar]
  11. Carandini M, Shimaoka D, Rossi LF, Sato TK, Benucci A, Knöpfel T. 2015. Imaging the awake visual cortex with a genetically encoded voltage indicator. J. Neurosci. 35:153–63 [Google Scholar]
  12. Caviness VS. 1975. Architectonic map of neocortex of the normal mouse. J. Comp. Neurol. 164:2247–63 [Google Scholar]
  13. Coogan TA, Burkhalter A. 1993. Hierarchical organization of areas in rat visual cortex. J. Neurosci. 13:93749–72 [Google Scholar]
  14. Cox DD. 2014. Do we understand high-level vision. ? Curr. Opin. Neurobiol. 25:187–93 [Google Scholar]
  15. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS. et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–61 [Google Scholar]
  16. Cusick CG, Lund RD. 1981. The distribution of the callosal projection to the occipital visual cortex in rats and mice. Brain Res 214:239–59 [Google Scholar]
  17. D'Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A. 2016. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife 5:e19332 [Google Scholar]
  18. Dickson PE, Cairns J, Goldowitz D, Mittleman G. 2016. Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience 16:S0306 [Google Scholar]
  19. Dong H, Shao Z, Nerbonne JM, Burkhalter A. 2004a. Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex. J. Comp. Neurol. 475:361–73 [Google Scholar]
  20. Dong H, Wang Q, Valkova K, Gonchar Y, Burkhalter A. 2004b. Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vis. Res. 44:3389–3400 [Google Scholar]
  21. Dräger UC. 1974. Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res 82:2284–92 [Google Scholar]
  22. Dräger UC. 1975. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160:3269–90 [Google Scholar]
  23. Ellis EM, Gauvain G, Sivyer B, Murphy GJ, Ahmadlou M. et al. 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:2602–10 [Google Scholar]
  24. Fehérvári TD, Yagi T. 2016. Population response propagation to extrastriate areas evoked by intracortical electrical stimulation in V1. Front. Neural Circuits. 10:6 [Google Scholar]
  25. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:11–47 [Google Scholar]
  26. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP. et al. 2014. A cortical circuit for gain control by behavioral state. Cell 156:61139–52 [Google Scholar]
  27. Funamizu A, Kuhn B, Doya K. 2016. Neural substrate of dynamic Bayesian inference in the cerebral cortex. Nat. Neurosci. 19:121682–89 [Google Scholar]
  28. Furtak SC, Ahmed OJ, Burwell RD. 2012. Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 76:5976–88 [Google Scholar]
  29. Fusi S, Miller EK, Rigotti M. 2016. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37:66–74 [Google Scholar]
  30. Galletti C, Fattori P. 2017. The dorsal visual stream revisited: stable circuits or dynamic pathways?. Cortex In press. https://doi.org/10.1016/j.cortex.2017.01.009 [Crossref]
  31. Gao E, DeAngelis GC, Burkhalter A. 2010. Parallel input channels to mouse primary visual cortex. J. Neurosci. 30:175912–26 [Google Scholar]
  32. Garrett ME, Nauhaus I, Marshel JH, Callaway EM. 2014. Topography and areal organization of mouse visual cortex. J. Neurosci. 34:3712587–600 [Google Scholar]
  33. Gavornik JP, Bear MF. 2014. Higher brain functions served by the lowly rodent primary visual cortex. Learn. Mem. 21:10527–33 [Google Scholar]
  34. Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16:2219–26 [Google Scholar]
  35. Goard MJ, Pho GN, Woodson J, Sur M. 2016. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5:e13764 [Google Scholar]
  36. Goltstein PM, Montijn JS, Pennartz CMA. 2015. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse V1: reduced direction selectivity independent of increased correlations in cellular activity. PLOS ONE 10:2e0118277 [Google Scholar]
  37. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel T. 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:6095361–64 [Google Scholar]
  38. Harvey CD, Coen P, Tank DW. 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:739262–68 [Google Scholar]
  39. Harvey CD, Collman F, Dombeck DA, Tank DW. 2009. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:7266941–46 [Google Scholar]
  40. Hishida R, Kudoh M, Shibuki K. 2014. Multimodal cortical sensory pathways revealed by sequential transcranial electrical stimulation in mice. Neurosci. Res. 87:49–55 [Google Scholar]
  41. Hoy JL, Yavorska I, Wehr M, Niell CM. 2016. Vision drives accurate approach behavior during prey capture in laboratory mice. Curr. Biol. 26:3046–52 [Google Scholar]
  42. Huk AC, Dougherty RF, Heeger DJ. 2002. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 22:167195–7205 [Google Scholar]
  43. Husson TR, Mallik AK, Zhang JX, Issa NP. 2007. Functional imaging of primary visual cortex using flavoprotein autofluorescence. J. Neurosci. 27:328665–75 [Google Scholar]
  44. Johnson R, Burkhalter A. 1997. A polysynaptic feedback circuit in rat visual cortex. J. Neurosci. 17:187129–40 [Google Scholar]
  45. Juavinett AL, Callaway EM. 2015. Pattern and component motion responses in mouse visual cortical areas. Curr. Biol. 25:1759–64 [Google Scholar]
  46. Juavinett AL, Nauhaus I, Garrett ME, Zhuang J, Callaway EM. 2017. Automated identification of mouse visual areas with intrinsic signal imaging. Nat. Protoc. 12:132–43 [Google Scholar]
  47. Kalatsky V, Stryker M. 2003. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38:4529–45 [Google Scholar]
  48. Khastkhodaei Z, Jurjut O, Katzner S, Busse L. 2016. Mice can use second-order, contrast-modulated stimuli to guide visual perception. J. Neurosci. 36:164457–69 [Google Scholar]
  49. Ko H, Hofer S, Pichler B, Buchanan K, Sjöström P, Mrsic-Flogel T. 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:734587–91 [Google Scholar]
  50. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. 2011. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12:4217–30 [Google Scholar]
  51. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:126–49 [Google Scholar]
  52. Lecoq J, Savall J, Vučinić D, Grewe BF, Kim H. et al. 2014. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17:121825–29 [Google Scholar]
  53. Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG. et al. 2012. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:7411379–83 [Google Scholar]
  54. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:91315–23 [Google Scholar]
  55. Lim DH, Mohajerani MH, LeDue J, Boyd J, Chen S, Murphy TH. 2012. In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas. Front. Neural Circuits. 6:1–19 [Google Scholar]
  56. Liu B-h, Y-t Li, W-p Ma, C-j Pan, Zhang LI, Tao HW. 2011. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71:3542–54 [Google Scholar]
  57. López-Aranda MF, López-Tellez JF, Narro-Lobato I, Masmudi-Martín M, Gutiérrez A, Khan ZU. 2009. Role of layer 6 of V2 visual cortex in object-recognition memory. Science 325:87–89 [Google Scholar]
  58. Makino H, Komiyama T. 2015. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18:81116–22 [Google Scholar]
  59. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R. et al. 2014. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522:225–59 [Google Scholar]
  60. Marshel JH, Garrett ME, Nauhaus I, Callaway EM. 2011. Functional specialization of seven mouse visual cortical areas. Neuron 72:1040–54 [Google Scholar]
  61. Matsui T, Ohki K. 2013. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1. Front. Neural Circuits. 7:143 [Google Scholar]
  62. Maunsell JHR, van Essen DC. 1987. Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. J. Comp. Neurol. 266:4535–55 [Google Scholar]
  63. McDonald AJ, Mascagni F. 1996. Cortico-cortical and cortico-amygdaloid projections of the rat occipital cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience 71:137–54 [Google Scholar]
  64. Milner AD, Goodale MA. 2008. Two visual systems re-viewed. Neuropsychologia 46:3774–85 [Google Scholar]
  65. Morcos AS, Harvey CD. 2016. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19:121672–81 [Google Scholar]
  66. Movshon JA, Newsome WT. 1996. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16:237733–41 [Google Scholar]
  67. Muir DR, Roth MM, Helmchen F, Kampa BM. 2015. Model-based analysis of pattern motion processing in mouse primary visual cortex. Front. Neural Circuits. 9:38 [Google Scholar]
  68. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:5360–72 [Google Scholar]
  69. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:4472–79 [Google Scholar]
  70. Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM. 2013. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J. Neurosci. 33:2711145–54 [Google Scholar]
  71. Oh SW, Harris JA, Ng L, Winslow B, Cain N. et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:7495207–14 [Google Scholar]
  72. Olavarria J, Mignano LR, Van Sluyters RC. 1982. Pattern of extrastriate visual areas connecting reciprocally with striate cortex in the mouse. Exp. Neurol. 78:3775–79 [Google Scholar]
  73. Olavarria J, Montero VM. 1984. Relation of callosal and striate-extrastriate cortical connections in the rat: morphological definition of extrastriate visual areas. Exp. Brain Res. 54:2240–52 [Google Scholar]
  74. Olavarria J, Montero VM. 1989. Organization of visual cortex in the mouse revealed by correlating callosal and striate-extrastriate connections. Vis. Neurosci. 3:59–69 [Google Scholar]
  75. Olavarria J, Van Sluyters RC. 1984. Callosal connections of the posterior neocortex in normal-eyed, congenitally anophthalmic, and neonatally enucleated mice. J Comp Neurol 230:2249–68 [Google Scholar]
  76. Olcese U, Iurilli G, Medini P. 2013. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79:3579–93 [Google Scholar]
  77. Olsen SR, Bortone DS, Adesnik H, Scanziani M. 2012. Gain control by layer six in cortical circuits of vision. Nature 483:738747–52 [Google Scholar]
  78. Orban GA, Van Essen D, Vanduffel W. 2004. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8:7315–24 [Google Scholar]
  79. Pafundo DE, Nicholas MA, Zhang R, Kuhlman SJ. 2016. Top-down-mediated facilitation in the visual cortex is gated by subcortical neuromodulation. J. Neurosci. 36:102904–14 [Google Scholar]
  80. Palagina G, Meyer JF, Smirnakis SM. 2017. Complex visual motion representation in mouse area V1. J. Neurosci. 37:1164–83 [Google Scholar]
  81. Paxinos G, Franklin K. 2001. The Mouse Brain in Stereotaxic Coordinates San Diego, CA: Academic
  82. Pinto-Hamuy T, Montero VM, Torrealba F. 2004. Neurotoxic lesion of anteromedial/posterior parietal cortex disrupts spatial maze memory in blind rats. Behav. Brain Res. 153:2465–70 [Google Scholar]
  83. Polack P-O, Contreras D. 2012. Long-range parallel processing and local recurrent activity in the visual cortex of the mouse. J. Neurosci. 32:3211120–31 [Google Scholar]
  84. Poort J, Khan AG, Pachitariu M, Nemri A, Orsolic I. et al. 2015. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86:61478–90 [Google Scholar]
  85. Prusky GT, West PWR, Douglas RM. 2000. Behavioral assessment of visual acuity in mice and rats. Vis. Res. 40:162201–9 [Google Scholar]
  86. Reinhold K, Lien AD, Scanziani M. 2015. Distinct recurrent versus afferent dynamics in cortical visual processing. Nat. Neurosci. 18:121789–97 [Google Scholar]
  87. Rhim I, Coello-Reyes G, Ko H, Nauhaus I. 2017. Maps of cone opsin input to mouse V1 and higher visual areas. J. Neurophysiol. 117:41674–82 [Google Scholar]
  88. Riesenhuber M, Poggio T. 2002. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12:162–68 [Google Scholar]
  89. Rompani SB, Mullner FE, Wanner A, Zhang C, Roth CN. et al. 2017. Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93:6767–76 [Google Scholar]
  90. Rosa MGP, Krubitzer LA. 1999. The evolution of visual cortex: Where is V2. ? Trends Neurosci 22:6242–48 [Google Scholar]
  91. Rosa MGP, Tweedale R. 2005. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos. Trans. R. Soc. Lond. 360:1456665–91 [Google Scholar]
  92. Rose M. 1929. Cytoarchitektonischer Atlas der Grosshirnrinde der Maus. J. Psychol. Neurol. 43:353–440 [Google Scholar]
  93. Roth MM, Helmchen F, Kampa BM. 2012. Distinct functional properties of primary and posteromedial visual area of mouse neocortex. J. Neurosci. 32:289716–26 [Google Scholar]
  94. Sánchez RF, Montero VM, Espinoza SG, Díaz E, Canitrot M, Pinto-Hamuy T. 1997. Visuospatial discrimination deficit in rats after ibotenate lesions in anteromedial visual cortex. Physiol. Behav. 62:5989–94 [Google Scholar]
  95. Saul AB, Humphrey AL. 1992. Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis. Neurosci. 8:4365–72 [Google Scholar]
  96. Schiffino FL, Holland PC. 2016. Secondary visual cortex is critical to the expression of surprise-induced enhancements in cue associability in rats. Eur. J. Neurosci. 44:1870–77 [Google Scholar]
  97. Schuett S, Bonhoeffer T, Hübener M. 2002. Mapping retinotopic structure in mouse visual cortex with optical imaging. J. Neurosci. 22:156549–59 [Google Scholar]
  98. Simmons PA, Lemmon V, Pearlman AL. 1982. Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse. J. Comp. Neurol. 211:3295–308 [Google Scholar]
  99. Smith IT, Townsend LB, Huh R, Zhu H, Smith SL. 2017. Stream-dependent development of higher visual cortical areas. Nat. Neurosci. 20:2200–8 [Google Scholar]
  100. Stirman JN, Townsend LB, Smith SL. 2016. A touchscreen based global motion perception task for mice. Vis. Res. 127:74–83 [Google Scholar]
  101. Tees RC. 1999. The effects of posterior parietal and posterior temporal cortical lesions on multimodal spatial and nonspatial competencies in rats. Behav. Brain Res. 106:55–73 [Google Scholar]
  102. Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K. 2014. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr. Biol. 24:6587–97 [Google Scholar]
  103. Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K. 2009. Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J. Neurochem. 109:3–9 [Google Scholar]
  104. Ungerleider LG, Mishkin M. 1982. Two cortical visual systems. Analysis of Visual Behavior D Ingle, M Goodale, R Mansfield 549–86 Cambridge, MA: MIT Press [Google Scholar]
  105. Van Brussel L, Gerits A, Arckens L. 2009. Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J. Comp. Neurol. 514:107–16 [Google Scholar]
  106. Van den Bergh G, Zhang B, Arckens L, Chino YM. 2010. Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys. J. Comp. Neurol. 518:2051–70 [Google Scholar]
  107. Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L. 2007. Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb. Cortex 17:122805–19 [Google Scholar]
  108. Van Essen DC, Newsome WT, Bixby JL. 1982. The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J. Neurosci. 2:3265–83 [Google Scholar]
  109. Vermaercke B, Gerich FJ, Ytebrouck E, Arckens L, Op de Beeck HP, Van den Bergh G. 2014. Functional specialization in rat occipital and temporal visual cortex. J. Neurophysiol. 112:1963–83 [Google Scholar]
  110. Vermaercke B, Van den Bergh G, Gerich F, Op de Beeck H. 2015. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability. Front. Neural Circuits 9:24 [Google Scholar]
  111. Vinken K, Van den Bergh G, Vermaercke B, Op de Beeck HP. 2016. Neural representations of natural and scrambled movies progressively change from rat striate to temporal cortex. Cereb. Cortex 26:3310–22 [Google Scholar]
  112. Wagor E, Mangini NJ, Pearlman AL. 1980. Retinotopic organization of striate and extrastriate visual cortex in the mouse. J. Comp. Neurol. 193:187–202 [Google Scholar]
  113. Wandell BA, Dumoulin SO, Brewer AA. 2007. Visual field maps in human cortex. Neuron 56:2366–83 [Google Scholar]
  114. Wang Q, Burkhalter A. 2007. Area map of mouse visual cortex. J. Comp. Neurol. 502:339–57 [Google Scholar]
  115. Wang Q, Burkhalter A. 2013. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J. Neurosci. 33:41696–705 [Google Scholar]
  116. Wang Q, Gao E, Burkhalter A. 2011. Gateways of ventral and dorsal streams in mouse visual cortex. J. Neurosci. 31:51905–18 [Google Scholar]
  117. Wang Q, Sporns O, Burkhalter A. 2012. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32:134386–99 [Google Scholar]
  118. Wekselblatt JB, Flister ED, Piscopo DM, Niell CM. 2016. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115:2852–66 [Google Scholar]
  119. Wilber AA, Clark BJ, Forster TC, Tatsuno M, McNaughton BL. 2014. Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. J. Neurosci. 34:165431–46 [ Erratum] [Google Scholar]
  120. Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ. 2004. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J. Neurosci. 24:265901–8 [Google Scholar]
  121. Winters BD, Reid JM. 2010. A distributed cortical representation underlies crossmodal object recognition in rats. J. Neurosci. 30:186253–61 [Google Scholar]
  122. Yamashita A, Valkova K, Gonchar Y, Burkhalter A. 2003. Rearrangement of synaptic connections with inhibitory neurons in developing mouse visual cortex. J Comp Neurol 464:4426–37 [Google Scholar]
  123. Yang W, Carrasquillo Y, Hooks BM, Nerbonne JM, Burkhalter A. 2013. Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex. J. Neurosci. 33:3417373–84 [Google Scholar]
  124. Yoshitake K, Tsukano H, Tohmi M, Komagata S, Hishida R. et al. 2013. Visual map shifts based on whisker-guided cues in the young mouse visual cortex. Cell Rep 5:1365–74 [Google Scholar]
  125. Zhuang J, Ng L, Williams D, Valley M, Li Y. et al. 2017. An extended retinotopic map of mouse cortex. eLife 6:e18372 [Google Scholar]
  126. Zingg B, Hintiryan H, Gou L, Song MY, Bay M. et al. 2014. Neural networks of the mouse neocortex. Cell 156:51096–111 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error