1932

Abstract

The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-100022
2024-09-18
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-100022.html?itemId=/content/journals/10.1146/annurev-vision-102122-100022&mimeType=html&fmt=ahah

Literature Cited

  1. Akula JD, Arellano IA, Swanson EA, Favazza TL, Bowe TS, et al. 2020.. The fovea in retinopathy of prematurity. . Investig. Ophthalmol. Vis. Sci. 61::28
    [Crossref] [Google Scholar]
  2. Anderson AG, Ratnam K, Roorda A, Olshausen BA. 2020.. High-acuity vision from retinal image motion. . J. Vis. 20::34
    [Crossref] [Google Scholar]
  3. Ayala GD, Linderman RE, Valenzuela RK, Woertz EN, Brilliant M, et al. 2021.. Assessing foveal structure in individuals with TYR R402Q and S192Y hypomorphic alleles. . Ophthalmol. Sci. 1::100077
    [Crossref] [Google Scholar]
  4. Banin E, Gootwine E, Obolensky A, Ezra-Elia R, Ejzenberg A, et al. 2015.. Gene augmentation therapy restores retinal function and visual behavior in a sheep model of CNGA3 achromatopsia. . Mol. Ther. 23::142333
    [Crossref] [Google Scholar]
  5. Bedggood P, Ding Y, Metha A. 2023.. Measuring red blood cell shape in the human retina. . Opt. Lett. 48::155457
    [Crossref] [Google Scholar]
  6. Bedggood P, Metha A. 2012.. Direct visualization and characterization of erythrocyte flow in human retinal capillaries. . Biomed. Opt. Express 3::326477
    [Crossref] [Google Scholar]
  7. Bensinger E, Rinella N, Saud A, Loumou P, Ratnam K, et al. 2019.. Loss of foveal cone structure precedes loss of visual acuity in patients with rod-cone degeneration. . Investig. Ophthalmol. Vis. Sci. 60::318796
    [Crossref] [Google Scholar]
  8. Bensinger E, Wang Y, Roorda A. 2022.. Patches of dysflective cones in eyes with no known disease. . Investig. Ophthalmol. Vis. Sci. 63::29
    [Crossref] [Google Scholar]
  9. Bertram U, Kim YJ, Packer OS, Schalek R, Sloan KR, et al. 2020.. Connectomic reconstruction of the human midget pathway: unexpected connectivity linked to preterm birth. . Investig. Ophthalmol. Vis. Sci. 61::5040
    [Google Scholar]
  10. Bruce KS, Harmening WM, Langston BR, Tuten WS, Roorda A, Sincich LC. 2015.. Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. . Investig. Ophthalmol. Vis. Sci. 56::443138
    [Crossref] [Google Scholar]
  11. Budoff G, Bhagat N, Zarbin MA. 2019.. Traumatic macular hole: diagnosis, natural history, and management. . J. Ophthalmol. 2019::5837832
    [Crossref] [Google Scholar]
  12. Carroll J, Choi SS, Williams DR. 2008.. In vivo imaging of the photoreceptor mosaic of a rod monochromat. . Vis. Res. 48::256468
    [Crossref] [Google Scholar]
  13. Carroll J, Dubra A, Gardner JC, Mizrahi-Meissonnier L, Cooper RF, et al. 2012.. The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. . Investig. Ophthalmol. Vis. Sci. 53::800615
    [Crossref] [Google Scholar]
  14. Cava JA, Allphin MT, Mastey RR, Gaffney M, Linderman RE, et al. 2020.. Assessing interocular symmetry of the foveal cone mosaic. . Investig. Ophthalmol. Vis. Sci. 61::23
    [Crossref] [Google Scholar]
  15. Chui TYP, Gast TJ, Burns SA. 2013.. Imaging of vascular wall fine structure in human retina using adaptive optics scanning laser ophthalmoscopy. . Investig. Ophthalmol. Vis. Sci. 54::711524
    [Crossref] [Google Scholar]
  16. Cideciyan AV, Hufnagel RB, Carroll J, Sumaroka A, Luo X, et al. 2013.. Human cone visual pigment deletions spare sufficient photoreceptors to warrant gene therapy. . Hum. Gene Ther. 24::9931006
    [Crossref] [Google Scholar]
  17. Cooper RF, Brainard DH, Morgan JIW. 2020.. Optoretinography of individual human cone photoreceptors. . Opt. Express 28::3932639
    [Crossref] [Google Scholar]
  18. Cooper RF, Dubis AM, Pavaskar A, Rha J, Dubra A, Carroll J. 2011.. Spatial and temporal variation of rod photoreceptor reflectance in the human retina. . Biomed. Opt. Express 2::257789
    [Crossref] [Google Scholar]
  19. Cooper RF, Tuten WS, Dubra A, Brainard DH, Morgan JIW. 2017.. Non-invasive assessment of human cone photoreceptor function. . Biomed. Opt. Express 8::5098112
    [Crossref] [Google Scholar]
  20. Curcio CA, Allen KA. 1990.. Topography of ganglion cells in human retina. . J. Comp. Neurol. 300::525
    [Crossref] [Google Scholar]
  21. Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, et al. 1991.. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. . J. Comp. Neurol. 312::61024
    [Crossref] [Google Scholar]
  22. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990.. Human photoreceptor topography. . J. Comp. Neurol. 292::497523
    [Crossref] [Google Scholar]
  23. Currant H, Hysi P, Fitzgerald TW, Gharahkhani P, Bonnemaijer PWM, et al. 2021.. Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. . PLOS Genet. 17::e1009497
    [Crossref] [Google Scholar]
  24. Deng WT, Li J, Zhu P, Chiodo VA, Smith WC, et al. 2018.. Human L- and M-opsins restore M-cone function in a mouse model for human blue cone monochromacy. . Mol. Vis. 24::1728
    [Google Scholar]
  25. Domalpally A, Agrón E, Pak JW, Keenan TD, Ferris FL III, et al. 2019.. Prevalence, risk, and genetic association of reticular pseudodrusen in age-related macular degeneration: Age-Related Eye Disease Study 2 Report 21. . Ophthalmology 126::165966
    [Crossref] [Google Scholar]
  26. Domdei N, Reiniger JL, Holz FG, Harmening W. 2021.. The relationship between visual sensitivity and eccentricity, cone density and outer segment length in the human foveola. . Investig. Ophthalmol. Vis. Sci. 62::31
    [Crossref] [Google Scholar]
  27. Du W, Tao Y, Deng W, Zhu P, Li J, et al. 2015.. Vitreal delivery of AAV vectored Cnga3 restores cone function in CNGA3−/−/Nrl−/− mice, an all-cone model of CNGA3 achromatopsia. . Hum. Mol. Genet. 24::3699707
    [Crossref] [Google Scholar]
  28. Dubis AM, Cooper RF, Aboshiha J, Langlo CS, Sundaram V, et al. 2014.. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. . Investig. Ophthalmol. Vis. Sci. 55::730311
    [Crossref] [Google Scholar]
  29. Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J. 2012.. Relationship between the foveal avascular zone and foveal pit morphology. . Investig. Ophthalmol. Vis. Sci. 53::162836
    [Crossref] [Google Scholar]
  30. Dubra A, Sulai Y. 2011.. Reflective afocal broadband adaptive optics scanning ophthalmoscope. . Biomed. Opt. Express 2::175768
    [Crossref] [Google Scholar]
  31. Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, et al. 2011.. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. . Biomed. Opt. Express 2::186476
    [Crossref] [Google Scholar]
  32. Dumitrescu AV, Tran J, Pfeifer W, Bhattarai SV, Kemerley A, et al. 2021.. Clinical albinism score, presence of nystagmus and optic nerves defects are correlated with visual outcome in patients with oculocutaneous albinism. . Ophthalmic Genet. 42::53952
    [Crossref] [Google Scholar]
  33. Duncan JL, Liang W, Maguire MG, Audo I, Ayala AR, et al. 2020.. Baseline visual field findings in the RUSH2A study: associated factors and correlation with other measures of disease severity. . Am. J. Ophthalmol. 219::87100
    [Crossref] [Google Scholar]
  34. Duncan JL, Roorda A. 2019.. Dysflective cones. . Adv. Exp. Med. Biol. 1185::13337
    [Crossref] [Google Scholar]
  35. Duncan JL, Talcott KE, Ratnam K, Sundquist SM, Lucero AS, et al. 2011.. Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene. . Investig. Ophthalmol. Vis. Sci. 52::155766
    [Crossref] [Google Scholar]
  36. Foote KG, De la Huerta I, Gustafson K, Baldwin A, Zayit-Soudry S, et al. 2019.. Cone spacing correlates with retinal thickness and microperimetry in patients with inherited retinal degenerations. . Investig. Ophthalmol. Vis. Sci. 60::123443
    [Crossref] [Google Scholar]
  37. Foote KG, Wong JJ, Boehm AE, Bensinger E, Porco TC, et al. 2020.. Comparing cone structure and function in RHO- and RPGR-associated retinitis pigmentosa. . Investig. Ophthalmol. Vis. Sci. 61::42
    [Crossref] [Google Scholar]
  38. Fujimoto J, Swanson E. 2016.. The development, commercialization, and impact of optical coherence tomography. . Investig. Ophthalmol. Vis. Sci. 57::OCT113
    [Crossref] [Google Scholar]
  39. Gale MJ, Feng S, Titus HE, Smith TB, Pennesi ME. 2016.. Interpretation of flood-illuminated adaptive optics images in subjects with retinitis pigmentosa. . Adv. Exp. Med. Biol. 854::29197
    [Crossref] [Google Scholar]
  40. Garrioch R, Langlo C, Dubis AM, Cooper RF, Dubra A, Carroll J. 2012.. Repeatability of in vivo parafoveal cone density and spacing measurements. . Optom. Vis. Sci. 89::63243
    [Crossref] [Google Scholar]
  41. Georgiou M, Litts KM, Kalitzeos A, Langlo CS, Kane T, et al. 2019a.. Adaptive optics retinal imaging in CNGA3-associated achromatopsia: retinal characterization, interocular symmetry, and intrafamilial variability. . Investig. Ophthalmol. Vis. Sci. 60::38396
    [Crossref] [Google Scholar]
  42. Georgiou M, Robson AG, Singh N, Pontikos N, Kane T, et al. 2019b.. Deep phenotyping of PDE6C-associated achromatopsia. . Investig. Ophthalmol. Vis. Sci. 60::511223
    [Crossref] [Google Scholar]
  43. Georgiou M, Singh N, Kane T, Robson AG, Kalitzeos A, et al. 2020.. Photoreceptor structure in GNAT2-associated achromatopsia. . Investig. Ophthalmol. Vis. Sci. 61::40
    [Crossref] [Google Scholar]
  44. Hammer DX, Agrawal A, Villanueva R, Saeedi O, Liu Z. 2020.. Label-free adaptive optics imaging of human retinal macrophage distribution and dynamics. . PNAS 117::3066169
    [Crossref] [Google Scholar]
  45. Hansen S, Batson S, Weinlander KM, Cooper RF, Scoles DH, et al. 2015.. Assessing photoreceptor structure after macular hole closure. . Retin. Cases Brief Rep. 9::1520
    [Crossref] [Google Scholar]
  46. Harmening WM, Sincich LC. 2019.. Adaptive optics for photoreceptor-targeted psychophysics. . In High Resolution Imaging in Microscopy and Ophthalmology, ed. JF Bille , pp. 35975. Berlin:: Springer
    [Google Scholar]
  47. Hendrickson A. 2005.. Organization of the adult primate fovea. . In Macular Degeneration, ed. PL Penfold, JM Provis , pp. 120. Berlin:: Springer
    [Google Scholar]
  48. Hirji N, Aboshiha J, Georgiou M, Bainbridge J, Michaelides M. 2018.. Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. . Ophthalmic Genet. 39::14957
    [Crossref] [Google Scholar]
  49. Hofer H, Singer B, Williams DR. 2005.. Different sensations from cones with the same photopigment. . J. Vis. 5::44454
    [Crossref] [Google Scholar]
  50. Jonnal RS. 2021.. Toward a clinical optoretinogram: a review of noninvasive, optical tests of retinal neural function. . Ann. Transl. Med. 9::1270
    [Crossref] [Google Scholar]
  51. Jonnal RS, Kocaoglu OP, Wang Q, Lee S, Miller DT. 2012.. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics. . Biomed. Opt. Express 3::10424
    [Crossref] [Google Scholar]
  52. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Liu Z, Miller DT, Werner JS. 2016.. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. . Investig. Ophthalmol. Vis. Sci. 57::5168
    [Crossref] [Google Scholar]
  53. Jonnal RS, Rha J, Zhang Y, Cense B, Gao W, Miller DT. 2007.. In vivo functional imaging of human cone photoreceptors. . Opt. Express 15::1614160
    [Crossref] [Google Scholar]
  54. Kohl S, Zobor D, Chiang W, Weisschuh N, Staller J, et al. 2015.. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. . Nat. Genet. 47::75765
    [Crossref] [Google Scholar]
  55. Komáromy A, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, et al. 2010.. Gene therapy rescues cone function in congenital achromatopsia. . Hum. Mol. Genet. 19::258193
    [Crossref] [Google Scholar]
  56. Kroeger H, Grandjean JMD, Chiang W-CJ, Bindels DD, Mastey R, et al. 2021.. ATF6 is essential for human cone photoreceptor development. . PNAS 118::e32103196118
    [Crossref] [Google Scholar]
  57. Kuht HJ, Maconachie GDE, Han J, Kessel L, van Genderen MM, et al. 2022.. Genotypic and phenotypic spectrum of foveal hypoplasia: a multi-centre study. . Ophthalmology 129::70818
    [Crossref] [Google Scholar]
  58. Langlo CS, Erker LR, Parker M, Patterson EJ, Higgins BP, et al. 2017.. Repeatability and longitudinal assessment of foveal cone structure in CNGB3-associated achromatopsia. . Retina 37::195666
    [Crossref] [Google Scholar]
  59. Langlo CS, Patterson EJ, Higgins BP, Summerfelt P, Razeen MM, et al. 2016.. Residual foveal cone structure in CNGB3-associated achromatopsia. . Investig. Ophthalmol. Vis. Sci. 57::398495
    [Crossref] [Google Scholar]
  60. Lassoued A, Zhang F, Kurokawa K, Liu Y, Bernucci MT, et al. 2021.. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. . PNAS 118::e2107444118
    [Crossref] [Google Scholar]
  61. Lee DJ, Woertz EN, Visotcky A, Wilk MA, Heitkotter H, et al. 2018.. The Henle fiber layer in albinism: comparison to normal and relationship to outer nuclear layer thickness and foveal cone density. . Investig. Ophthalmol. Vis. Sci. 59::533648
    [Crossref] [Google Scholar]
  62. Liang J, Williams DR, Miller DT. 1997.. Supernormal vision and high-resolution retinal imaging through adaptive optics. . J. Opt. Soc. Am. A 14::288492
    [Crossref] [Google Scholar]
  63. Linderman RE, Cava JA, Salmon AE, Chui TY, Marmorstein AD, et al. 2020a.. Visual acuity and foveal structure in eyes with fragmented foveal avascular zones. . Ophthalmol. Retina 4::53544
    [Crossref] [Google Scholar]
  64. Linderman RE, Georgiou M, Woertz EN, Cava JA, Litts KM, et al. 2020b.. Preservation of the foveal avascular zone in achromatopsia despite the absence of a fully formed pit. . Investig. Ophthalmol. Vis. Sci. 61::52
    [Crossref] [Google Scholar]
  65. Litts KM, Georgiou M, Langlo CS, Patterson EJ, Mastey RR, et al. 2020a.. Interocular symmetry of foveal cone topography in congenital achromatopsia. . Curr. Eye Res. 45::125764
    [Crossref] [Google Scholar]
  66. Litts KM, Okada M, Heeren TFC, Kalitzeos A, Rocco V, et al. 2020b.. Longitudinal assessment of remnant foveal cone structure in a case series of early macular telangiectasia type 2. . Transl. Vis. Sci. Technol. 9::27
    [Crossref] [Google Scholar]
  67. Litts KM, Wang X, Clark ME, Owsley C, Freund KB, et al. 2017.. Exploring photoreceptor reflectivity through multimodal imaging of outer retinal tubulation in advanced age-related macular degeneration. . Retina 37::97888
    [Crossref] [Google Scholar]
  68. Litts KM, Woertz EN, Georgiou M, Patterson EJ, Lam BL, et al. 2021.. Optical coherence tomography artifacts are associated with adaptive optics scanning light ophthalmoscopy success in achromatopsia. . Transl. Vis. Sci. Technol. 10::11
    [Crossref] [Google Scholar]
  69. Liu S, Kuht HJ, Moon EH, Maconachie GDE, Thomas MG. 2021.. Current and emerging treatments for albinism. . Surv. Ophthalmol. 66::36277
    [Crossref] [Google Scholar]
  70. Liu T, Jung H, Liu J, Droettboom M, Tam J. 2017.. Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics. . Biomed. Opt. Express 8::434860
    [Crossref] [Google Scholar]
  71. Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. 2017.. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. . PNAS 114::128038
    [Crossref] [Google Scholar]
  72. Lujan BJ, Roorda A, Croskrey JA, Dubis AM, Cooper RF, et al. 2015.. Directional optical coherence tomography provides accurate outer nuclear layer and Henle fiber layer measurements. . Retina 35::151120
    [Crossref] [Google Scholar]
  73. Ma G, Son T, Kim T, Yao X. 2021.. Functional optoretinography: concurrent OCT monitoring of intrinsic signal amplitude and phase dynamics in human photoreceptors. . Biomed. Opt. Express 12::266169
    [Crossref] [Google Scholar]
  74. Makous W, Carroll J, Wolfing JI, Lin J, Christie N, Williams DR. 2006.. Retinal microscotomas revealed with adaptive-optics microflashes. . Investig. Ophthalmol. Vis. Sci. 47::416067
    [Crossref] [Google Scholar]
  75. Markan A, Chawla R, Gupta V, Tripathi M, Sharma A, Kumar A. 2019.. Photoreceptor evaluation after successful macular hole closure: an adaptive optics study. . Ther. Adv. Ophthalmol. 11::2515841419868132
    [Google Scholar]
  76. Marmor MF, Choi SS, Zawadzki RJ, Werner JS. 2008.. Visual insignificance of the foveal pit: reassessment of foveal hypoplasia as fovea plana. . Arch. Ophthalmol. 126::90713
    [Crossref] [Google Scholar]
  77. Mastey RR, Georgiou M, Langlo CS, Kalitzeos A, Patterson EJ, et al. 2019.. Characterization of retinal structure in ATF6-associated achromatopsia. . Investig. Ophthalmol. Vis. Sci. 60::263140
    [Crossref] [Google Scholar]
  78. McAllister JT, Dubis AM, Tait DM, Ostler S, Rha J, et al. 2010.. Arrested development: high-resolution imaging of foveal morphology in albinism. . Vis. Res. 50::81017
    [Crossref] [Google Scholar]
  79. McGuire DE, Weinreb RN, Goldbaum MH. 2003.. Foveal hypoplasia demonstrated in vivo with optical coherence tomography. . Am. J. Ophthalmol. 135::11214
    [Crossref] [Google Scholar]
  80. Menghini M, Lujan BJ, Zayit-Soudry S, Syed R, Porco TC, et al. 2014.. Correlation of outer nuclear layer thickness with cone density values in patients with retinitis pigmentosa and healthy subjects. . Investig. Ophthalmol. Vis. Sci. 56::37281
    [Crossref] [Google Scholar]
  81. Merino D, Duncan JL, Tiruveedhula P, Roorda A. 2011.. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. . Biomed. Opt. Express 2::2189201
    [Crossref] [Google Scholar]
  82. Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. 2022.. Achromatopsia: genetics and gene therapy. . Mol. Diagnosis Ther. 26::5159
    [Crossref] [Google Scholar]
  83. Miller DT, Williams DR, Morris GM, Liang J. 1996.. Images of cone photoreceptors in the living human eye. . Vis. Res. 36::106779
    [Crossref] [Google Scholar]
  84. Morgan JIW, Chui TYP, Grieve K. 2023.. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy. . Biomed. Opt. Express 14::387428
    [Crossref] [Google Scholar]
  85. Morgan JIW, Dubra A, Wolfe R, Merigan WH, Williams DR. 2009.. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. . Investig. Ophthalmol. Vis. Sci. 50::135059
    [Crossref] [Google Scholar]
  86. O'Connor AR, Wilson CM, Fielder AR. 2007.. Ophthalmological problems associated with preterm birth. . Eye 21::125460
    [Crossref] [Google Scholar]
  87. Ooto S, Hangai M, Takayama K, Ueda-Arakawa N, Hanebuchi M, Yoshimura N. 2012.. Photoreceptor damage and foveal sensitivity in surgically closed macular holes: an adaptive optics scanning laser ophthalmoscopy study. . Am. J. Ophthalmol. 154::17486.e2
    [Crossref] [Google Scholar]
  88. Osterberg G. 1935.. Topography of the Layer of Rods and Cones in the Human Retina. Acta Ophthalmol. Suppl. 6. Copenhagen:: A. Busck
    [Google Scholar]
  89. Pakzad-Vaezi K, Keane PA, Cardoso JN, Egan C, Tufail A. 2017.. Optical coherence tomography angiography of foveal hypoplasia. . Br. J. Ophthalmol. 101::98588
    [Crossref] [Google Scholar]
  90. Pallikaris A, Williams DR, Hofer H. 2003.. The reflectance of single cones in the living human eye. . Investig. Ophthalmol. Vis. Sci. 44::458092
    [Crossref] [Google Scholar]
  91. Pandiyan VP, Maloney-Bertelli A, Kuchenbecker JA, Boyle KC, Ling T, et al. 2020.. The optoretinogram reveals the primary steps of phototransduction in the living human eye. . Sci. Adv. 6::eabc1124
    [Crossref] [Google Scholar]
  92. Pandiyan VP, Schleufer S, Slezak E, Fong J, Upadhyay R, et al. 2022.. Characterizing cone spectral classification by optoretinography. . Biomed. Opt. Express 13::657494
    [Crossref] [Google Scholar]
  93. Patterson EJ, Kalitzeos A, Kane TM, Singh N, Kreis J, et al. 2022.. Foveal cone structure in patients with blue cone monochromacy. . Investig. Ophthalmol. Vis. Sci. 63::23
    [Crossref] [Google Scholar]
  94. Pedersen HR, Neitz M, Gilson SJ, Landsend ECS, Utheim ØA, et al. 2019.. The cone photoreceptor mosaic in aniridia: within-family phenotype-genotype discordance. . Ophthalmol. Retina 3::52334
    [Crossref] [Google Scholar]
  95. Pfäffle C, Spahr H, Gercke K, Puyo L, Höhl S, et al. 2022.. Phase-sensitive measurements of depth-dependent signal transduction in the inner plexiform layer. . Front. Med. 9::885187
    [Crossref] [Google Scholar]
  96. Pircher M, Zawadzki RJ. 2017.. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging. . Biomed. Opt. Express 8::253662
    [Crossref] [Google Scholar]
  97. Pollreisz A, Reiter GS, Bogunovic H, Baumann L, Jakob A, et al. 2021.. Topographic distribution and progression of soft drusen volume in age-related macular degeneration implicate neurobiology of fovea. . Investig. Ophthalmol. Vis. Sci. 62::26
    [Crossref] [Google Scholar]
  98. Porter J, Queener H, Lin J, Thorn K, Awwal AAS, eds. 2006.. Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications. Hoboken, NJ:: Wiley
    [Google Scholar]
  99. Provis JM, Dubis AM, Maddess T, Carroll J. 2013.. Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. . Prog. Retin. Eye Res. 35::6381
    [Crossref] [Google Scholar]
  100. Provis JM, Sandercoe T, Hendrickson AE. 2000.. Astrocytes and blood vessels define the foveal rim during primate retinal development. . Investig. Ophthalmol. Vis. Sci. 41::282736
    [Google Scholar]
  101. Putnam NM, Hammer DX, Zhang Y, Merino D, Roorda A. 2010.. Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy. . Opt. Express 18::2490216
    [Crossref] [Google Scholar]
  102. Randerson EL, Davis D, Higgins B, Kim JE, Han DP, et al. 2015.. Assessing photoreceptor structure in macular hole using split-detector adaptive optics scanning light ophthalmoscopy. . Eur. Ophthalmic Rev. 9::5963
    [Crossref] [Google Scholar]
  103. Ratnam K, Domdei N, Harmening WM, Roorda A. 2017.. Benefits of retinal image motion at the limits of spatial vision. . J. Vis. 17::30
    [Crossref] [Google Scholar]
  104. Recchia FM, Carvalho-Recchia CA, Trese MT. 2002.. Optical coherence tomography in the diagnosis of foveal hypoplasia. . Arch. Ophthalmol. 120::158788
    [Google Scholar]
  105. Reiniger JL, Domdei N, Holz FG, Harmening W. 2021.. Human gaze is systematically offset from the center of cone topography. . Curr. Biol. 31::418893.e3
    [Crossref] [Google Scholar]
  106. Rohrschneider K. 2004.. Determination of the location of the fovea on the fundus. . Investig. Ophthalmol. Vis. Sci. 45::325758
    [Crossref] [Google Scholar]
  107. Romero-Bascones D, Barrenechea M, Murueta-Goyena A, Galdós M, Gómez-Esteban JC, et al. 2021.. Foveal pit morphology characterization: a quantitative analysis of the key methodological steps. . Entropy 23::699
    [Crossref] [Google Scholar]
  108. Roorda A, Romero-Borja F, Donnelly WJ III, Queener H, Hebert T, Campbell M. 2002.. Adaptive optics scanning laser ophthalmoscopy. . Opt. Express 10::40512
    [Crossref] [Google Scholar]
  109. Roorda A, Williams DR. 1999.. The arrangement of the three cone classes in the living human eye. . Nature 397::52022
    [Crossref] [Google Scholar]
  110. Rossi EA, Rangel-Fonseca P, Parkins K, Fischer W, Latchney LR, et al. 2013.. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. . Biomed. Opt. Express 4::252739
    [Crossref] [Google Scholar]
  111. Rossi EA, Roorda A. 2010.. The relationship between visual resolution and cone spacing in the human fovea. . Nat. Neurosci. 13::15657
    [Crossref] [Google Scholar]
  112. Rossi EA, Weiser P, Tarrant J, Roorda A. 2007.. Visual performance in emmetropia and low myopia after correction of high-order aberrations. . J. Vis. 7::14
    [Crossref] [Google Scholar]
  113. Sabesan R, Hofer H, Roorda A. 2015.. Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry. . PLOS ONE 10::e0144891
    [Crossref] [Google Scholar]
  114. Sabesan R, Schmidt BP, Tuten WS, Roorda A. 2016.. The elementary representation of spatial and color vision in the human retina. . Sci. Adv. 2::e1600797
    [Crossref] [Google Scholar]
  115. Schmidt BP, Sabesan R, Tuten WS, Neitz J, Roorda A. 2018.. Sensations from a single M-cone depend on the activity of surrounding S-cones. . Sci. Rep. 8::8561
    [Crossref] [Google Scholar]
  116. Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, et al. 2014.. In vivo imaging of human cone photoreceptor inner segments. . Investig. Ophthalmol. Vis. Sci. 55::424451
    [Crossref] [Google Scholar]
  117. Sechrest ER, Chmelik K, Tan WD, Deng W. 2023.. Blue cone monochromacy and gene therapy. . Vis. Res. 208::108221
    [Crossref] [Google Scholar]
  118. Sundaram V, Wilde C, Aboshiha J, Cowing J, Han C, et al. 2014.. Retinal structure and function in achromatopsia: implications for gene therapy. . Ophthalmology 121::23445
    [Crossref] [Google Scholar]
  119. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, et al. 2011.. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. . Investig. Ophthalmol. Vis. Sci. 52::221926
    [Crossref] [Google Scholar]
  120. Tam J, Liu J, Dubra A, Fariss R. 2016.. In vivo imaging of the human retinal pigment epithelial mosaic using adaptive optics enhanced indocyanine green ophthalmoscopy. . Investig. Ophthalmol. Vis. Sci. 57::437684
    [Crossref] [Google Scholar]
  121. Tao LW, Wu Z, Guymer RH, Luu CD. 2016.. Ellipsoid zone on optical coherence tomography: a review. . Clin. Exp. Ophthalmol. 44::42230
    [Crossref] [Google Scholar]
  122. Thomas CJ, Miraza RG, Gill MK. 2021.. Age-related macular degeneration. . Med. Clin. N. Am. 105::47391
    [Crossref] [Google Scholar]
  123. Thomas MG, Kumar A, Mohammad S, Proudlock FA, Engle EC, et al. 2011.. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography: a predictor of visual acuity?. Ophthalmology 118::165360
    [Crossref] [Google Scholar]
  124. Thomas MG, Zippin J, Brooks BP. 2023.. Oculocutaneous albinism and ocular albinism overview. . In GeneReviews®, ed. MP Adam, J Feldman, GM Mirzaa, RA Pagon, SE Wallace , et al. Seattle:: Univ. Wash.
    [Google Scholar]
  125. Tick S, Rossant F, Ghorbel I, Gaudric A, Sahel J, et al. 2011.. Foveal shape and structure in a normal population. . Investig. Ophthalmol. Vis. Sci. 52::510510
    [Crossref] [Google Scholar]
  126. Tuten WS, Tiruveedhula P, Roorda A. 2012.. Adaptive optics scanning laser ophthalmoscope-based microperimetry. . Optom. Vis. Sci. 89::56374
    [Crossref] [Google Scholar]
  127. Tuten WS, Vergilio GK, Young GJ, Bennett J, Maguire AM, et al. 2019.. Visual function at the atrophic border in choroideremia assessed with adaptive optics microperimetry. . Ophthalmol. Retina 3::88899
    [Crossref] [Google Scholar]
  128. Vienola KV, Zhang M, Snyder VC, Sahel J, Dansingani KK, Rossi EA. 2020.. Microstructure of the retinal pigment epithelium near-infrared autofluorescence in healthy young eyes and in patients with AMD. . Sci. Rep. 10::9561
    [Crossref] [Google Scholar]
  129. Wade A, Fitzke F. 1998.. A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging. . Opt. Express 3::19097
    [Crossref] [Google Scholar]
  130. Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, et al. 2011.. Race- and sex-related differences in retinal thickness and foveal pit morphology. . Investig. Ophthalmol. Vis. Sci. 52::62534
    [Crossref] [Google Scholar]
  131. Wang Q, Tuten WS, Lujan BJ, Holland J, Bernstein PS, et al. 2015.. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. . Investig. Ophthalmol. Vis. Sci. 56::77886
    [Crossref] [Google Scholar]
  132. Wells-Gray EM, Choi SS, Bries A, Doble N. 2016.. Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy. . Eye 30::113543
    [Crossref] [Google Scholar]
  133. Wilk MA, Dubis AM, Cooper RF, Summerfelt P, Dubra A, Carroll J. 2017a.. Assessing the spatial relationship between fixation and foveal specializations. . Vis. Res. 132::5361
    [Crossref] [Google Scholar]
  134. Wilk MA, Higgins B, Cooper RF, Scoles DH, Stepien KE, et al. 2014a.. Contrasting foveal specialization in disorders associated with foveal hypoplasia. . Investig. Ophthalmol. Vis. Sci. 55::694
    [Google Scholar]
  135. Wilk MA, McAllister JT, Cooper RF, Dubis AM, Patitucci TN, et al. 2014b.. Relationship between foveal cone specialization and pit morphology in albinism. . Investig. Ophthalmol. Vis. Sci. 55::418698
    [Crossref] [Google Scholar]
  136. Wilk MA, Wilk BM, Langlo CS, Cooper RF, Carroll J. 2017b.. Evaluating outer segment length as a surrogate measure of peak foveal cone density. . Vis. Res. 130::5766
    [Crossref] [Google Scholar]
  137. Williams DR, MacLeod DI, Hayhoe MM. 1981.. Foveal tritanopia. . Vis. Res. 21::134156
    [Crossref] [Google Scholar]
  138. Williams KM, Georgiou M, Kalitzeos A, Chow I, Hysi PG, et al. 2022.. Axial length distributions in patients with genetically confirmed inherited retinal diseases. . Investig. Ophthalmol. Vis. Sci. 63::15
    [Crossref] [Google Scholar]
  139. Woertz EN, Ayala GD, Wynne N, Tarima S, Zacharias S, et al. 2024.. Quantitative foveal structural metrics as predictors of visual acuity in human albinism. . Investig. Ophthalmol. Vis. Sci. 65::3
    [Crossref] [Google Scholar]
  140. Wu EG, Brackbill N, Rhoades C, Kling A, Gogliettino AR, et al. 2023.. Fixational eye movements enhance the precision of visual information transmitted by the primate retina. . bioRxiv 2023.08.12.552902. https://doi.org/10.1101/2023.08.12.552902
  141. Wynne N, Carroll J, Duncan JL. 2021.. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). . Prog. Retin. Eye Res. 83::100920
    [Crossref] [Google Scholar]
  142. Wynne N, Heitkotter H, Woertz EN, Cooper RF, Carroll J. 2022.. Comparison of cone mosaic metrics from images acquired with the SPECTRALIS High Magnification Module and adaptive optics scanning light ophthalmoscopy. . Transl. Vis. Sci. Technol. 11::19
    [Crossref] [Google Scholar]
  143. Xu X, Liu X, Wang X, Clark ME, McGwin G Jr., et al. 2017.. Retinal pigment epithelium degeneration associated with subretinal drusenoid deposits in age-related macular degeneration. . Am. J. Ophthalmol. 175::8798
    [Crossref] [Google Scholar]
  144. Xu X, Wang X, Sadda SR, Zhang Y. 2020.. Subtype-differentiated impacts of subretinal drusenoid deposits on photoreceptors revealed by adaptive optics scanning laser ophthalmoscopy. . Graefe's Arch. Clin. Exp. Ophthalmol. 258::193140
    [Crossref] [Google Scholar]
  145. Yanni SE, Wang J, Chan M, Carroll J, Farsiu S, et al. 2012.. Foveal avascular zone and foveal pit formation after preterm birth. . Br. J. Ophthalmol. 96::96166
    [Crossref] [Google Scholar]
  146. Zayit-Soudry S, Duncan JL, Syed R, Menghini M, Roorda AJ. 2013.. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 54::7498509
    [Crossref] [Google Scholar]
  147. Zhang F, Kurokawa K, Lassoued A, Crowell JA, Miller DT. 2019.. Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics. . PNAS 116::795156
    [Crossref] [Google Scholar]
  148. Zhang T, Godara P, Blanco ER, Griffin RL, Wang X, et al. 2015.. Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy. . Am. J. Ophthalmol. 160::290300
    [Crossref] [Google Scholar]
  149. Zhang Y, Wang X, Godara P, Zhang T, Clark ME, et al. 2018.. Dynamism of dot subretinal drusenoid deposits in age-related macular degeneration demonstrated with adaptive optics imaging. . Retina 38::2938
    [Crossref] [Google Scholar]
  150. Zhang Y, Wang X, Sadda SR, Clark ME, Witherspoon CD, et al. 2020.. Lifecycles of individual subretinal drusenoid deposits and evolution of outer retinal atrophy in age-related macular degeneration. . Ophthalmol. Retina 4::27483
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-100022
Loading
/content/journals/10.1146/annurev-vision-102122-100022
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error