1932

Abstract

Animal models are critical for understanding the initiation and progression of myopia, a refractive condition that causes blurred distance vision. The prevalence of myopia is rapidly increasing worldwide, and myopia increases the risk of developing potentially blinding diseases. Current pharmacological, optical, and environmental interventions attenuate myopia progression in children, but it is still unclear how this occurs or how these interventions can be improved to increase their protective effects. To optimize myopia interventions, directed mechanistic studies are needed. The mouse model is well-suited to these studies because of its well-characterized visual system and the genetic experimental tools available, which can be combined with pharmacological and environmental manipulations for powerful investigations of causation. This review describes aspects of the mouse visual system that support its use as a myopia model and presents genetic, pharmacological, and environmental studies that significantly contribute to our understanding of the mechanisms that underlie myopigenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-102059
2024-09-18
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-102059.html?itemId=/content/journals/10.1146/annurev-vision-102122-102059&mimeType=html&fmt=ahah

Literature Cited

  1. Aikio M, Hurskainen M, Brideau G, Hagg P, Sormunen R, et al. 2013.. Collagen XVIII short isoform is critical for retinal vascularization, and overexpression of the Tsp-1 domain affects eye growth and cataract formation. . Investig. Ophthalmol. Vis. Sci. 54::745062
    [Crossref] [Google Scholar]
  2. Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, et al. 2000.. The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. . Neuron 27::51323
    [Crossref] [Google Scholar]
  3. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. 2016.. The functional diversity of retinal ganglion cells in the mouse. . Nature 529::34550
    [Crossref] [Google Scholar]
  4. Barathi VA, Beuerman RW. 2011.. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: prior to and after induction of experimental myopia with atropine treatment. . Mol. Vis. 17::68092
    [Google Scholar]
  5. Barathi VA, Chaurasia SS, Poidinger M, Koh SK, Tian D, et al. 2014.. Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. . J. Proteome Res. 13::464758
    [Crossref] [Google Scholar]
  6. Barathi VA, Kwan JL, Tan QS, Weon SR, Seet LF, et al. 2013.. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice. . Dis. Model. Mech. 6::114658
    [Google Scholar]
  7. Bergen MA, Park HN, Chakraborty R, Landis EG, Sidhu C, et al. 2016.. Altered refractive development in mice with reduced levels of retinal dopamine. . Investig. Ophthalmol. Vis. Sci. 57::441219
    [Crossref] [Google Scholar]
  8. Brown DM, Kowalski MA, Paulus QM, Yu J, Kumar P, et al. 2022a.. Altered structure and function of murine sclera in form-deprivation myopia. . Investig. Ophthalmol. Vis. Sci. 63::13
    [Crossref] [Google Scholar]
  9. Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. 2022b.. Candidate pathways for retina to scleral signaling in refractive eye growth. . Exp. Eye Res. 219::109071
    [Crossref] [Google Scholar]
  10. Brown DM, Yu J, Kumar P, Paulus QM, Kowalski MA, et al. 2023.. Exogenous all-trans retinoic acid induces myopia and alters scleral biomechanics in mice. . Investig. Ophthalmol. Vis. Sci. 64::22
    [Crossref] [Google Scholar]
  11. Buhot MC, Dubayle D, Malleret G, Javerzat S, Segu L. 2001.. Exploration, anxiety, and spatial memory in transgenic anophthalmic mice. . Behav. Neurosci. 115::45567
    [Crossref] [Google Scholar]
  12. Chakraborty R, Landis EG, Mazade R, Yang V, Strickland R, et al. 2022.. Melanopsin modulates refractive development and myopia. . Exp. Eye Res. 214::108866
    [Crossref] [Google Scholar]
  13. Chakraborty R, Park H, Aung MH, Tan CC, Sidhu CS, et al. 2014.. Comparison of refractive development and retinal dopamine in OFF pathway mutant and C57BL/6J wild-type mice. . Mol. Vis. 20::131827
    [Google Scholar]
  14. Chakraborty R, Park HN, Hanif AM, Sidhu CS, Iuvone PM, Pardue MT. 2015.. ON pathway mutations increase susceptibility to form-deprivation myopia. . Exp. Eye Res. 137::7983
    [Crossref] [Google Scholar]
  15. Chakraborty R, Park HN, Tan CC, Weiss P, Prunty MC, Pardue MT. 2017.. Association of body length with ocular parameters in mice. . Optom. Vis. Sci. 94::38794
    [Crossref] [Google Scholar]
  16. Chakraborty R, Yang V, Park HN, Landis EG, Dhakal S, et al. 2019.. Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice. . Exp. Eye Res. 180::22630
    [Crossref] [Google Scholar]
  17. Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE. 2003.. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. . Investig. Ophthalmol. Vis. Sci. 44::242232
    [Crossref] [Google Scholar]
  18. Chen J, Lian P, Zhao X, Li J, Yu X, et al. 2023.. PSMD3 gene mutations cause pathological myopia. . J. Med. Genet. 60::91824
    [Crossref] [Google Scholar]
  19. Chen S, Zhi Z, Ruan Q, Liu Q, Li F, et al. 2017.. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. . Investig. Ophthalmol. Vis. Sci. 58::230616
    [Crossref] [Google Scholar]
  20. Chen Z, Xiao K, Long Q. 2023.. Up-regulation of NLRP3 in the sclera correlates with myopia progression in a form-deprivation myopia mouse model. . Front. Biosci. 28::27
    [Crossref] [Google Scholar]
  21. Cheng SC, Lam CS, Yap MK. 2010.. Retinal thickness in myopic and non-myopic eyes. . Ophthalmic Physiol. Opt. 30::77684
    [Crossref] [Google Scholar]
  22. Chow RL, Snow B, Novak J, Looser J, Freund C, et al. 2001.. Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells. . Mech. Dev. 109::31522
    [Crossref] [Google Scholar]
  23. Chow RL, Volgyi B, Szilard RK, Ng D, McKerlie C, et al. 2004.. Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. . PNAS 101::175459
    [Crossref] [Google Scholar]
  24. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, et al. 2006.. Atropine for the treatment of childhood myopia. . Ophthalmology 113::228591
    [Crossref] [Google Scholar]
  25. Contreras E, Nobleman AP, Robinson PR, Schmidt TM. 2021.. Melanopsin phototransduction: beyond canonical cascades. . J. Exp. Biol. 224::jeb226522
    [Crossref] [Google Scholar]
  26. Curcio CA, Allen KA. 1990.. Topography of ganglion cells in human retina. . J. Comp. Neurol. 300::525
    [Crossref] [Google Scholar]
  27. Curtin BJ, Iwamoto T, Renaldo DP. 1979.. Normal and staphylomatous sclera of high myopia. An electron microscopic study. . Arch. Ophthalmol. 97::91215
    [Crossref] [Google Scholar]
  28. Dartnall HJ, Bowmaker JK, Mollon JD. 1983.. Human visual pigments: microspectrophotometric results from the eyes of seven persons. . Proc. R. Soc. Lond. B 220::11530
    [Crossref] [Google Scholar]
  29. de la Cera EG, Rodriguez G, Llorente L, Schaeffel F, Marcos S. 2006.. Optical aberrations in the mouse eye. . Vis. Res. 46::254653
    [Crossref] [Google Scholar]
  30. Farbrother JE, Kirov G, Owen MJ, Pong-Wong R, Haley CS, Guggenheim JA. 2004.. Linkage analysis of the genetic loci for high myopia on 18p, 12q, and 17q in 51 U.K. families. . Investig. Ophthalmol. Vis. Sci. 45::287985
    [Crossref] [Google Scholar]
  31. Ferguson LR, Dominguez JM II, Balaiya S, Grover S, Chalam KV. 2013.. Retinal thickness normative data in wild-type mice using customized miniature SD-OCT. . PLOS ONE 8::e67265
    [Crossref] [Google Scholar]
  32. Frisén L, Glansholm A. 1975.. Optical and neural resolution in peripheral vision. . Investig. Ophthalmol. 14::52836
    [Google Scholar]
  33. Geng Y, Schery LA, Sharma R, Dubra A, Ahmad K, et al. 2011.. Optical properties of the mouse eye. . Biomed. Opt. Express 2::71738
    [Crossref] [Google Scholar]
  34. Guido ME, Marchese NA, Rios MN, Morera LP, Diaz NM, et al. 2022.. Non-visual opsins and novel photo-detectors in the vertebrate inner retina mediate light responses within the blue spectrum region. . Cell. Mol. Neurobiol. 42::5983
    [Crossref] [Google Scholar]
  35. Haarman AEG, Enthoven CA, Tideman JWL, Tedja MS, Verhoeven VJM, Klaver CCW. 2020.. The complications of myopia: a review and meta-analysis. . Investig. Ophthalmol. Vis. Sci. 61::49
    [Crossref] [Google Scholar]
  36. Heesy CP. 2004.. On the relationship between orbit orientation and binocular visual field overlap in mammals. . Anat. Rec. 281A::110410
    [Crossref] [Google Scholar]
  37. Hendriks M, Verhoeven VJM, Buitendijk GHS, Polling JR, Meester-Smoor MA, et al. 2017.. Development of refractive errors—what can we learn from inherited retinal dystrophies?. Am. J. Ophthalmol. 182::8189
    [Crossref] [Google Scholar]
  38. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, et al. 2016.. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. . Ophthalmology 123::103642
    [Crossref] [Google Scholar]
  39. Hou J, Mori K, Ikeda SI, Jeong H, Torii H, et al. 2023.. Ginkgo biloba extracts improve choroidal circulation leading to suppression of myopia in mice. . Sci. Rep. 13::3772
    [Crossref] [Google Scholar]
  40. Howland HC, Merola S, Basarab JR. 2004.. The allometry and scaling of the size of vertebrate eyes. . Vis. Res. 44::204365
    [Crossref] [Google Scholar]
  41. Hoy JL, Yavorska I, Wehr M, Niell CM. 2016.. Vision drives accurate approach behavior during prey capture in laboratory mice. . Curr. Biol. 26::304652
    [Crossref] [Google Scholar]
  42. Huang F, Shu Z, Huang Q, Chen K, Yan W, et al. 2022.. Retinal dopamine D2 receptors participate in the development of myopia in mice. . Investig. Ophthalmol. Vis. Sci. 63::24
    [Crossref] [Google Scholar]
  43. Huang F, Wang Q, Yan T, Tang J, Hou X, et al. 2020.. The role of the dopamine D2 receptor in form-deprivation myopia in mice: studies with full and partial D2 receptor agonists and knockouts. . Investig. Ophthalmol. Vis. Sci. 61::47
    [Crossref] [Google Scholar]
  44. Huang F, Yan T, Shi F, An J, Xie R, et al. 2014.. Activation of dopamine D2 receptor is critical for the development of form-deprivation myopia in the C57BL/6 mouse. . Investig. Ophthalmol. Vis. Sci. 55::553744
    [Crossref] [Google Scholar]
  45. Huang F, Zhang L, Wang Q, Yang Y, Li Q, et al. 2018.. Dopamine D1 receptors contribute critically to the apomorphine-induced inhibition of form-deprivation myopia in mice. . Investig. Ophthalmol. Vis. Sci. 59::262334
    [Crossref] [Google Scholar]
  46. Huberman AD, Niell CM. 2011.. What can mice tell us about how vision works?. Trends Neurosci. 34::46473
    [Crossref] [Google Scholar]
  47. Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, et al. 2010.. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. . Nat. Genet. 42::9025
    [Crossref] [Google Scholar]
  48. Ikeda SI, Kurihara T, Jiang X, Miwa Y, Lee D, et al. 2022.. Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes. . Nat. Commun. 13::5859
    [Crossref] [Google Scholar]
  49. Ikeda SI, Kurihara T, Toda M, Jiang X, Torii H, Tsubota K. 2020.. Oral bovine milk lactoferrin administration suppressed myopia development through matrix metalloproteinase 2 in a mouse model. . Nutrients 12::3744
    [Crossref] [Google Scholar]
  50. Iyer KK, Bradley AP, Wilson SJ. 2013.. Conducting shorter VEP tests to estimate visual acuity via assessment of SNR. . Doc. Ophthalmol. 126::2128
    [Crossref] [Google Scholar]
  51. Jeong H, Kurihara T, Jiang X, Kondo S, Ueno Y, et al. 2023.. Suppressive effects of violet light transmission on myopia progression in a mouse model of lens-induced myopia. . Exp. Eye Res. 228::109414
    [Crossref] [Google Scholar]
  52. Ji S, Mao X, Zhang Y, Ye L, Dai J. 2021.. Contribution of M-opsin-based color vision to refractive development in mice. . Exp. Eye Res. 209::108669
    [Crossref] [Google Scholar]
  53. Ji S, Ye L, Zhang L, Xu D, Dai J. 2022.. Retinal neurodegeneration in a mouse model of green-light-induced myopia. . Exp. Eye Res. 223::109208
    [Crossref] [Google Scholar]
  54. Jiang X, Kurihara T, Kunimi H, Miyauchi M, Ikeda SI, et al. 2018.. A highly efficient murine model of experimental myopia. . Sci. Rep. 8::2026
    [Crossref] [Google Scholar]
  55. Jiang X, Pardue MT, Mori K, Ikeda SI, Torii H, et al. 2021.. Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. . PNAS 118::e2018840118
    [Crossref] [Google Scholar]
  56. Jiao S, Reinach PS, Huang C, Yu L, Zhuang H, et al. 2023.. Calcipotriol attenuates form deprivation myopia through a signaling pathway parallel to TGF-β2–induced increases in collagen expression. . Investig. Ophthalmol. Vis. Sci. 64::2
    [Crossref] [Google Scholar]
  57. Jonas JB, Ang M, Cho P, Guggenheim JA, He MG, et al. 2021.. IMI prevention of myopia and its progression. . Investig. Ophthalmol. Vis. Sci. 62::6
    [Crossref] [Google Scholar]
  58. King SM, Dykeman C, Redgrave P, Dean P. 1992.. Use of a distracting task to obtain defensive head movements to looming visual stimuli by human adults in a laboratory setting. . Perception 21::24559
    [Crossref] [Google Scholar]
  59. Klaver C, Polling JR, Erasmus Myopia Res. Group. 2020.. Myopia management in the Netherlands. . Ophthalmic Physiol. Opt. 40::23040
    [Crossref] [Google Scholar]
  60. Koehler CL, Akimov NP, Renteria RC. 2011.. Receptive field center size decreases and firing properties mature in ON and OFF retinal ganglion cells after eye opening in the mouse. . J. Neurophysiol. 106::895904
    [Crossref] [Google Scholar]
  61. Koli S, Labelle-Dumais C, Zhao Y, Paylakhi S, Nair KS. 2021.. Identification of MFRP and the secreted serine proteases PRSS56 and ADAMTS19 as part of a molecular network involved in ocular growth regulation. . PLOS Genet. 17::e1009458
    [Crossref] [Google Scholar]
  62. Landis EG, Chrenek MA, Chakraborty R, Strickland R, Bergen M, et al. 2020.. Increased endogenous dopamine prevents myopia in mice. . Exp. Eye Res. 193::107956
    [Crossref] [Google Scholar]
  63. Landis EG, Park HN, Chrenek M, He L, Sidhu C, et al. 2021.. Ambient light regulates retinal dopamine signaling and myopia susceptibility. . Investig. Ophthalmol. Vis. Sci. 62::28
    [Crossref] [Google Scholar]
  64. Liang CL, Chen KC, Hsi E, Lin JY, Chen CY, et al. 2022.. miR-328–3p affects axial length via multiple routes and anti-miR-328–3p possesses a potential to control myopia progression. . Investig. Ophthalmol. Vis. Sci. 63::11
    [Crossref] [Google Scholar]
  65. Liang Y, Ikeda SI, Chen J, Zhang Y, Negishi K, et al. 2023.. Myopia is suppressed by digested lactoferrin or holo-lactoferrin administration. . Int. J. Mol. Sci. 24::5815
    [Crossref] [Google Scholar]
  66. Lin MY, Lin IT, Wu YC, Wang IJ. 2021.. Stepwise candidate drug screening for myopia control by using zebrafish, mouse, and golden Syrian hamster myopia models. . EBioMedicine 65::103263
    [Crossref] [Google Scholar]
  67. Lingham G, Mackey DA, Lucas R, Yazar S. 2020.. How does spending time outdoors protect against myopia? A review. . Br. J. Ophthalmol. 104::59399
    [Crossref] [Google Scholar]
  68. Linne C, Mon KY, D'Souza S, Jeong H, Jiang X, et al. 2023.. Encephalopsin (OPN3) is required for normal refractive development and the GO/GROW response to induced myopia. . Mol. Vis. 29::3957
    [Google Scholar]
  69. Liu AL, Liu YF, Wang G, Shao YQ, Yu CX, et al. 2022.. The role of ipRGCs in ocular growth and myopia development. . Sci. Adv. 8::eabm9027
    [Crossref] [Google Scholar]
  70. Liu Z, Qiu F, Li J, Zhu Z, Yang W, et al. 2015.. Adenomatous polyposis coli mutation leads to myopia development in mice. . PLOS ONE 10::e0141144
    [Crossref] [Google Scholar]
  71. Liu Z, Xiu Y, Qiu F, Zhu Z, Zong R, et al. 2021.. Canonical Wnt signaling drives myopia development and can be pharmacologically modulated. . Investig. Ophthalmol. Vis. Sci. 62::21
    [Google Scholar]
  72. Ma M, Zhang Z, Du E, Zheng W, Gu Q, et al. 2014.. Wnt signaling in form deprivation myopia of the mice retina. . PLOS ONE 9::e91086
    [Crossref] [Google Scholar]
  73. Mai S, Zhu X, Wan EYC, Wu S, Yonathan JN, et al. 2022.. Postnatal eye size in mice is controlled by SREBP2-mediated transcriptional repression of Lrp2 and Bmp2. . Development 149::dev200633
    [Crossref] [Google Scholar]
  74. Marcos S, Moreno E, Navarro R. 1999.. The depth-of-field of the human eye from objective and subjective measurements. . Vis. Res. 39::203949
    [Crossref] [Google Scholar]
  75. Markand S, Baskin NL, Chakraborty R, Landis E, Wetzstein SA, et al. 2016.. IRBP deficiency permits precocious ocular development and myopia. . Mol. Vis. 22::1291308
    [Google Scholar]
  76. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB. 2001.. Cycloplegic refractions in healthy children aged 1 through 48 months. . Arch. Ophthalmol. 119::162528
    [Crossref] [Google Scholar]
  77. Michaiel AM, Abe ET, Niell CM. 2020.. Dynamics of gaze control during prey capture in freely moving mice. . eLife 9::e57458
    [Crossref] [Google Scholar]
  78. Mori K, Kurihara T, Miyauchi M, Ishida A, Jiang X, et al. 2019.. Oral crocetin administration suppressed refractive shift and axial elongation in a murine model of lens-induced myopia. . Sci. Rep. 9::295
    [Crossref] [Google Scholar]
  79. Mori K, Kuroha S, Hou J, Jeong H, Ogawa M, et al. 2022.. Lipidomic analysis revealed n-3 polyunsaturated fatty acids suppressed choroidal thinning and myopia progression in mice. . FASEB J. 36::e22312
    [Crossref] [Google Scholar]
  80. Muralidharan AR, Lanca C, Biswas S, Barathi VA, Wan Yu Shermaine L, et al. 2021.. Light and myopia: from epidemiological studies to neurobiological mechanisms. . Ther. Adv. Ophthalmol. 13::25158414211059246
    [Google Scholar]
  81. Naidoo KS, Fricke TR, Frick KD, Jong M, Naduvilath TJ, et al. 2019.. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. . Ophthalmology 126::33846
    [Crossref] [Google Scholar]
  82. Nair KS, Hmani-Aifa M, Ali Z, Kearney AL, Ben Salem S, et al. 2011.. Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. . Nat. Genet. 43::57984
    [Crossref] [Google Scholar]
  83. Norton TT, Rada JA. 1995.. Reduced extracellular matrix in mammalian sclera with induced myopia. . Vis. Res. 35::127181
    [Crossref] [Google Scholar]
  84. Ott M. 2006.. Visual accommodation in vertebrates: mechanisms, physiological response and stimuli. . J. Comp. Physiol. A 192::97111
    [Crossref] [Google Scholar]
  85. Pan M, Zhao F, Xie B, Wu H, Zhang S, et al. 2021.. Dietary ω-3 polyunsaturated fatty acids are protective for myopia. . PNAS 118::e2104689118
    [Crossref] [Google Scholar]
  86. Pardue MT, Faulkner AE, Fernandes A, Yin H, Schaeffel F, et al. 2008.. High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect. . Investig. Ophthalmol. Vis. Sci. 49::70612
    [Crossref] [Google Scholar]
  87. Pardue MT, Peachey NS. 2014.. Mouse b-wave mutants. . Doc. Ophthalmol. 128::7789
    [Crossref] [Google Scholar]
  88. Pardue MT, Stone RA, Iuvone PM. 2013.. Investigating mechanisms of myopia in mice. . Exp. Eye Res. 114::96105
    [Crossref] [Google Scholar]
  89. Park H, Jabbar SB, Tan CC, Sidhu CS, Abey J, et al. 2014.. Visually-driven ocular growth in mice requires functional rod photoreceptors. . Investig. Ophthalmol. Vis. Sci. 55::627279
    [Crossref] [Google Scholar]
  90. Park H, Tan CC, Faulkner A, Jabbar SB, Schmid G, et al. 2013.. Retinal degeneration increases susceptibility to myopia in mice. . Mol. Vis. 19::206879
    [Google Scholar]
  91. Paylakhi S, Labelle-Dumais C, Tolman NG, Sellarole MA, Seymens Y, et al. 2018.. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error. . PLOS Genet. 14::e1007244
    [Crossref] [Google Scholar]
  92. Peirson SN, Brown LA, Pothecary CA, Benson LA, Fisk AS. 2018.. Light and the laboratory mouse. . J. Neurosci. Methods 300::2636
    [Crossref] [Google Scholar]
  93. Perez-Fernandez V, Milosavljevic N, Allen AE, Vessey KA, Jobling AI, et al. 2019.. Rod photoreceptor activation alone defines the release of dopamine in the retina. . Curr. Biol. 29::76374.e5
    [Crossref] [Google Scholar]
  94. Piekutowska-Abramczuk D, Kocyła-Karczmarewicz B, Małkowska M, Łuczak S, Iwanicka-Pronicka K, et al. 2016.. No evidence for association of SCO2 heterozygosity with high-grade myopia or other diseases with possible mitochondrial dysfunction. . JIMD Rep. 27::6368
    [Crossref] [Google Scholar]
  95. Prusky GT, West PW, Douglas RM. 2000.. Behavioral assessment of visual acuity in mice and rats. . Vis. Res. 40::22019
    [Crossref] [Google Scholar]
  96. Qian KW, Li YY, Wu XH, Gong X, Liu AL, et al. 2022.. Altered retinal dopamine levels in a melatonin-proficient mouse model of form-deprivation myopia. . Neurosci. Bull. 38::9921006
    [Crossref] [Google Scholar]
  97. Qian YS, Chu RY, Hu M, Hoffman MR. 2009.. Sonic hedgehog expression and its role in form-deprivation myopia in mice. . Curr. Eye Res. 34::62335
    [Crossref] [Google Scholar]
  98. Rada JA, Shelton S, Norton TT. 2006.. The sclera and myopia. . Exp. Eye Res. 82::185200
    [Crossref] [Google Scholar]
  99. Ransom-Hogg A, Spillmann L. 1980.. Perceptive field size in fovea and periphery of the light- and dark-adapted retina. . Vis. Res. 20::22128
    [Crossref] [Google Scholar]
  100. Remtulla S, Hallett PE. 1985.. A schematic eye for the mouse, and comparisons with the rat. . Vis. Res. 25::2131
    [Crossref] [Google Scholar]
  101. Rodriguez AR, de Sevilla Muller LP, Brecha NC. 2014.. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. . J. Comp. Neurol. 522::141143
    [Crossref] [Google Scholar]
  102. Salinas-Navarro M, Jimenez-Lopez M, Valiente-Soriano FJ, Alarcon-Martinez L, Aviles-Trigueros M, et al. 2009.. Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. . Vis. Res. 49::63747
    [Crossref] [Google Scholar]
  103. Schaeffel F, Burkhardt E, Howland HC, Williams RW. 2004.. Measurement of refractive state and deprivation myopia in two strains of mice. . Optom. Vis. Sci. 81::99110
    [Crossref] [Google Scholar]
  104. Schaeffel F, Feldkaemper M. 2015.. Animal models in myopia research. . Clin. Exp. Optom. 98::50717
    [Crossref] [Google Scholar]
  105. Schaeffel F, Glasser A, Howland HC. 1988.. Accommodation, refractive error and eye growth in chickens. . Vis. Res. 28::63957
    [Crossref] [Google Scholar]
  106. Schippert R, Burkhardt E, Feldkaemper M, Schaeffel F. 2007.. Relative axial myopia in Egr-1 (ZENK) knockout mice. . Investig. Ophthalmol. Vis. Sci. 48::1117
    [Crossref] [Google Scholar]
  107. Schmucker C, Schaeffel F. 2004.. A paraxial schematic eye model for the growing C57BL/6 mouse. . Vis. Res. 44::185767
    [Crossref] [Google Scholar]
  108. Schmucker C, Schaeffel F. 2006.. Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine. . Vis. Res. 46::67887
    [Crossref] [Google Scholar]
  109. Scholl B, Burge J, Priebe NJ. 2013.. Binocular integration and disparity selectivity in mouse primary visual cortex. . J. Neurophysiol. 109::301324
    [Crossref] [Google Scholar]
  110. Schonbeck Y, Talma H, van Dommelen P, Bakker B, Buitendijk SE, et al. 2013.. The world's tallest nation has stopped growing taller: the height of Dutch children from 1955 to 2009. . Pediatr. Res. 73::37177
    [Crossref] [Google Scholar]
  111. Shi Z, Trenholm S, Zhu M, Buddingh S, Star EN, et al. 2011.. Vsx1 regulates terminal differentiation of type 7 ON bipolar cells. . J. Neurosci. 31::1311827
    [Crossref] [Google Scholar]
  112. Smith EL III, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. 2005.. Peripheral vision can influence eye growth and refractive development in infant monkeys. . Investig. Ophthalmol. Vis. Sci. 46::396572
    [Crossref] [Google Scholar]
  113. Song Y, Zhang F, Zhao Y, Sun M, Tao J, et al. 2016.. Enlargement of the axial length and altered ultrastructural features of the sclera in a mutant lumican transgenic mouse model. . PLOS ONE 11::e0163165
    [Crossref] [Google Scholar]
  114. Stone RA, McGlinn AM, Chakraborty R, Lee DC, Yang V, et al. 2019.. Altered ocular parameters from circadian clock gene disruptions. . PLOS ONE 14::e0217111
    [Crossref] [Google Scholar]
  115. Stone RA, Pendrak K, Sugimoto R, Lin T, Gill AS, et al. 2006.. Local patterns of image degradation differentially affect refraction and eye shape in chick. . Curr. Eye Res. 31::91105
    [Crossref] [Google Scholar]
  116. Storm T, Heegaard S, Christensen EI, Nielsen R. 2014.. Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice. . Cell Tissue Res. 358::99107
    [Crossref] [Google Scholar]
  117. Strickland R, Landis EG, Pardue MT. 2020.. Short-wavelength (violet) light protects mice from myopia through cone signaling. . Investig. Ophthalmol. Vis. Sci. 61::13
    [Crossref] [Google Scholar]
  118. Szczerkowska KI, Petrezselyova S, Lindovsky J, Palkova M, Dvorak J, et al. 2019.. Myopia disease mouse models: A missense point mutation (S673G) and a protein-truncating mutation of the Zfp644 mimic human disease phenotype. . Cell Biosci. 9::21
    [Crossref] [Google Scholar]
  119. Tekin M, Chioza BA, Matsumoto Y, Diaz-Horta O, Cross HE, et al. 2013.. SLITRK6 mutations cause myopia and deafness in humans and mice. . J. Clin. Investig. 123::2094102
    [Crossref] [Google Scholar]
  120. Tian Q, Tong P, Chen G, Deng M, Cai T, et al. 2023.. GLRA2 gene mutations cause high myopia in humans and mice. . J. Med. Genet. 60::193203
    [Crossref] [Google Scholar]
  121. Tkatchenko AV, Tkatchenko TV, Guggenheim JA, Verhoeven VJ, Hysi PG, et al. 2015.. APLP2 regulates refractive error and myopia development in mice and humans. . PLOS Genet. 11::e1005432
    [Crossref] [Google Scholar]
  122. Tkatchenko TV, Shah RL, Nagasaki T, Tkatchenko AV. 2019.. Analysis of genetic networks regulating refractive eye development in collaborative cross progenitor strain mice reveals new genes and pathways underlying human myopia. . BMC Med. Genom. 12::113
    [Crossref] [Google Scholar]
  123. Tkatchenko TV, Shen Y, Braun RD, Bawa G, Kumar P, et al. 2013.. Photopic visual input is necessary for emmetropization in mice. . Exp. Eye Res. 115::8795
    [Crossref] [Google Scholar]
  124. Troilo D, Smith EL III, Nickla DL, Ashby R, Tkatchenko AV, et al. 2019.. IMI—report on experimental models of emmetropization and myopia. . Investig. Ophthalmol. Vis. Sci. 60::M3188
    [Crossref] [Google Scholar]
  125. Upton BA, Diaz NM, Gordon SA, Van Gelder RN, Buhr ED, Lang RA. 2021.. Evolutionary constraint on visual and nonvisual mammalian opsins. . J. Biol. Rhythms 36::10926
    [Crossref] [Google Scholar]
  126. van der Sande E, Polling JR, Tideman JWL, Meester-Smoor MA, Thiadens A, et al. 2023.. Myopia control in Mendelian forms of myopia. . Ophthalmic Physiol. Opt. 43::494504
    [Crossref] [Google Scholar]
  127. Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, et al. 2013.. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. . Nat. Genet. 45::31418
    [Crossref] [Google Scholar]
  128. Volland S, Esteve-Rudd J, Hoo J, Yee C, Williams DS. 2015.. A comparison of some organizational characteristics of the mouse central retina and the human macula. . PLOS ONE 10::e0125631
    [Crossref] [Google Scholar]
  129. Waring GO IV, Chang DH, Rocha KM, Gouvea L, Penatti R. 2021.. Correlation of intraoperative optical coherence tomography of crystalline lens diameter, thickness, and volume with biometry and age. . Am. J. Ophthalmol. 225::14756
    [Crossref] [Google Scholar]
  130. Wildsoet CF, Chia A, Cho P, Guggenheim JA, Polling JR, et al. 2019.. IMI—Interventions Myopia Institute: interventions for controlling myopia onset and progression report. . Investig. Ophthalmol. Vis. Sci. 60::M10631
    [Crossref] [Google Scholar]
  131. Wilmet B, Callebert J, Duvoisin R, Goulet R, Tourain C, et al. 2022.. Mice lacking Gpr179 with complete congenital stationary night blindness are a good model for myopia. . Int. J. Mol. Sci. 24::219
    [Crossref] [Google Scholar]
  132. Wisard J, Faulkner A, Chrenek MA, Waxweiler T, Waxweiler W, et al. 2011.. Exaggerated eye growth in IRBP-deficient mice in early development. . Investig. Ophthalmol. Vis. Sci. 52::580411
    [Crossref] [Google Scholar]
  133. Wu H, Chen W, Zhao F, Zhou Q, Reinach PS, et al. 2018.. Scleral hypoxia is a target for myopia control. . PNAS 115::E7091100
    [Google Scholar]
  134. Wu W, Su Y, Hu C, Tao H, Jiang Y, et al. 2022.. Hypoxia-induced scleral HIF-2α upregulation contributes to rises in MMP-2 expression and myopia development in mice. . Investig. Ophthalmol. Vis. Sci. 63::2
    [Crossref] [Google Scholar]
  135. Wu XH, Li YY, Zhang PP, Qian KW, Ding JH, et al. 2015.. Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia. . Investig. Ophthalmol. Vis. Sci. 56::96777
    [Crossref] [Google Scholar]
  136. Wu XH, Qian KW, Xu GZ, Li YY, Ma YY, et al. 2016.. The role of retinal dopamine in C57BL/6 mouse refractive development as revealed by intravitreal administration of 6-hydroxydopamine. . Investig. Ophthalmol. Vis. Sci. 57::5393404
    [Crossref] [Google Scholar]
  137. Yan T, Xiong W, Huang F, Zheng F, Ying H, et al. 2015.. Daily injection but not continuous infusion of apomorphine inhibits form-deprivation myopia in mice. . Investig. Ophthalmol. Vis. Sci. 56::247585
    [Crossref] [Google Scholar]
  138. Yilmaz M, Meister M. 2013.. Rapid innate defensive responses of mice to looming visual stimuli. . Curr. Biol. 23::201115
    [Crossref] [Google Scholar]
  139. Young TL, Ronan SM, Drahozal LA, Wildenberg SC, Alvear AB, et al. 1998.. Evidence that a locus for familial high myopia maps to chromosome 18p. . Am. J. Hum. Genet. 63::10919
    [Crossref] [Google Scholar]
  140. Yu Y, Chen H, Tuo J, Zhu Y. 2011.. Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice. . Ophthalmic Res. 46::8087
    [Crossref] [Google Scholar]
  141. Zhang Y, Jeong H, Mori K, Ikeda SI, Shoda C, et al. 2022.. Vascular endothelial growth factor from retinal pigment epithelium is essential in choriocapillaris and axial length maintenance. . PNAS Nexus 1::pgac166
    [Crossref] [Google Scholar]
  142. Zhao F, Li Q, Chen W, Zhu H, Zhou D, et al. 2022.. Dysfunction of VIPR2 leads to myopia in humans and mice. . J. Med. Genet. 59::88100
    [Crossref] [Google Scholar]
  143. Zhao F, Wu H, Reinach PS, Wu Y, Zhai Y, et al. 2020a.. Up-regulation of matrix metalloproteinase-2 by scleral monocyte-derived macrophages contributes to myopia development. . Am. J. Pathol. 190::1888908
    [Crossref] [Google Scholar]
  144. Zhao F, Zhang D, Zhou Q, Zhao F, He M, et al. 2020b.. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. . EBioMedicine 57::102878
    [Crossref] [Google Scholar]
  145. Zhao F, Zhou H, Chen W, Zhao C, Zheng Y, et al. 2021.. Declines in PDE4B activity promote myopia progression through downregulation of scleral collagen expression. . Exp. Eye Res. 212::108758
    [Crossref] [Google Scholar]
  146. Zhao F, Zhou Q, Reinach PS, Yang J, Ma L, et al. 2018.. Cause and effect relationship between changes in scleral matrix metallopeptidase-2 expression and myopia development in mice. . Am. J. Pathol. 188::175467
    [Crossref] [Google Scholar]
  147. Zhou G, Williams RW. 1999.. Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice. . Optom. Vis. Sci. 76::40818
    [Crossref] [Google Scholar]
  148. Zhou X, An J, Wu X, Lu R, Huang Q, et al. 2010a.. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice. . Photochem. Photobiol. 86::13137
    [Crossref] [Google Scholar]
  149. Zhou X, Huang Q, An J, Lu R, Qin X, et al. 2010b.. Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice. . Investig. Ophthalmol. Vis. Sci. 51::436270
    [Crossref] [Google Scholar]
  150. Zhu X, Du Y, Li D, Xu J, Wu Q, et al. 2021.. Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia. . Nat. Commun. 12::2102
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-102059
Loading
/content/journals/10.1146/annurev-vision-102122-102059
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error