1932

Abstract

The success of genome-wide association studies (GWASs) in uncovering genetic variants associated with complex eye diseases has paved the way for the development of risk prediction approaches based on disease genetics. Derived from GWAS data, polygenic risk scores (PRSs) have been emerging as a promising indicator of an individual's genetic liability to disease. In this review, we recap the current progress of PRS development and utility across a range of common eye diseases. While illustrating the prediction accuracy of PRSs and their valuable role in risk stratification for certain eye diseases, we also address PRSs’ uncertain implementation in clinical settings at this stage, particularly in circumstances where limited treatment options are available. Finally, we discuss obstacles in translating PRSs into practice, including barriers to clinical impact, issues when working with different ancestry groups, and communicating risk scores, as well as projections for future improvements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-103958
2024-09-18
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-103958.html?itemId=/content/journals/10.1146/annurev-vision-102122-103958&mimeType=html&fmt=ahah

Literature Cited

  1. Aboobakar IF, Kinzy TG, Zhao Y, Fan B, Pasquale LR, et al. 2023.. Mitochondrial TXNRD2 and ME3 genetic risk scores are associated with specific primary open-angle glaucoma phenotypes. . Ophthalmology 130:(7):75663
    [Crossref] [Google Scholar]
  2. Adams GG, Karas MP. 1999.. Effect of amblyopia on employment prospects. . Br. J. Ophthalmol. 83:(3):380
    [Crossref] [Google Scholar]
  3. Agerbo E, Sullivan PF, Vilhjálmsson BJ, Pedersen CB, Mors O, et al. 2015.. Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish population-based study and meta-analysis. . JAMA Psychiatry 72:(7):63541
    [Crossref] [Google Scholar]
  4. Age-Relat. Eye Dis. Study Res. Group. 2001.. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. . Arch. Ophthalmol. 119:(10):141736
    [Crossref] [Google Scholar]
  5. Bailey JNC, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, et al. 2016.. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. . Nat. Genet. 48:(2):18994
    [Crossref] [Google Scholar]
  6. Banda Y, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D, et al. 2015.. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. . Genetics 200:(4):128595
    [Crossref] [Google Scholar]
  7. Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, et al. 2015.. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. . Diabetologia 58:(10):228897
    [Crossref] [Google Scholar]
  8. Burdon KP, MacGregor S, Hewitt AW, Sharma S, Chidlow G, et al. 2011.. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. . Nat. Genet. 43:(6):57478
    [Crossref] [Google Scholar]
  9. Charlesworth J, Kramer PL, Dyer T, Diego V, Samples JR, et al. 2010.. The path to open-angle glaucoma gene discovery: endophenotypic status of intraocular pressure, cup-to-disc ratio, and central corneal thickness. . Investig. Ophthalmol. Vis. Sci. 51:(7):350914
    [Crossref] [Google Scholar]
  10. Chen CY-C, Scurrah KJ, Stankovich J, Garoufalis P, Dirani M, et al. 2007.. Heritability and shared environment estimates for myopia and associated ocular biometric traits: the Genes in Myopia (GEM) family study. . Hum. Genet. 121:(3–4):51120
    [Crossref] [Google Scholar]
  11. Chen S-F, Dias R, Evans D, Salfati EL, Liu S, et al. 2020.. Genotype imputation and variability in polygenic risk score estimation. . Genome Med. 12:(1):100
    [Crossref] [Google Scholar]
  12. Cheng C-Y, Schache M, Ikram MK, Young TL, Guggenheim JA, et al. 2013.. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. . Am. J. Hum. Genet. 93:(2):26477
    [Crossref] [Google Scholar]
  13. Chia A, Lu Q-S, Tan D. 2016.. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: myopia control with atropine 0.01% eyedrops. . Ophthalmology 123:(2):39199
    [Crossref] [Google Scholar]
  14. Choi SW, Mak TS-H, O'Reilly PF. 2020.. Tutorial: a guide to performing polygenic risk score analyses. . Nat. Protoc. 15:(9):275972
    [Crossref] [Google Scholar]
  15. Choquet H, Melles RB, Anand D, Yin J, Cuellar-Partida G, et al. 2021.. A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. . Nat. Commun. 12::3595
    [Crossref] [Google Scholar]
  16. Congdon N, Broman KW, Lai H, Munoz B, Bowie H, et al. 2004.. Nuclear cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. . Investig. Ophthalmol. Vis. Sci. 45:(7):218286
    [Crossref] [Google Scholar]
  17. Craig JE, Han X, Qassim A, Hassall M, Bailey JNC, et al. 2020.. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. . Nat. Genet. 52:(2):16066
    [Crossref] [Google Scholar]
  18. Cuellar-Partida G, Craig JE, Burdon KP, Wang JJ, Vote BJ, et al. 2016a.. Assessment of polygenic effects links primary open-angle glaucoma and age-related macular degeneration. . Sci. Rep. 6::26885
    [Crossref] [Google Scholar]
  19. Cuellar-Partida G, Lu Y, Kho PF, Hewitt AW, Wichmann H-E, et al. 2016b.. Assessing the genetic predisposition of education on myopia: a Mendelian randomization study. . Genet. Epidemiol. 40:(1):6672
    [Crossref] [Google Scholar]
  20. Diabet. Control Complicat. Trial Res. Group. 1997.. Clustering of long-term complications in families with diabetes in the Diabetes Control and Complications trial. . Diabetes 46:(11):182939
    [Crossref] [Google Scholar]
  21. Dimasi DP, Burdon KP, Craig JE. 2010.. The genetics of central corneal thickness. . Br. J. Ophthalmol. 94:(8):97176
    [Crossref] [Google Scholar]
  22. Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, et al. 2005.. Complement factor H polymorphism and age-related macular degeneration. . Science 308:(5720):42124
    [Crossref] [Google Scholar]
  23. Fisher CR, Ferrington DA. 2018.. Perspective on AMD pathobiology: a bioenergetic crisis in the RPE. . Investig. Ophthalmol. Vis. Sci. 59:(4):AMD4147
    [Crossref] [Google Scholar]
  24. Forrest IS, Chaudhary K, Paranjpe I, Vy HMT, Marquez-Luna C, et al. 2021.. Genome-wide polygenic risk score for retinopathy of type 2 diabetes. . Hum. Mol. Genet. 30:(10):95260
    [Crossref] [Google Scholar]
  25. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, et al. 2013.. Seven new loci associated with age-related macular degeneration. . Nat. Genet. 45:(4):43339, 439e12
    [Google Scholar]
  26. Fritsche LG, Igl W, Bailey JNC, Grassmann F, Sengupta S, et al. 2016.. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. . Nat. Genet. 48:(2):13443
    [Crossref] [Google Scholar]
  27. Gao XR, Huang H, Kim H. 2019.. Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort. . Hum. Mol. Genet. 28:(7):116272
    [Crossref] [Google Scholar]
  28. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. 2019.. Polygenic prediction via Bayesian regression and continuous shrinkage priors. . Nat. Commun. 10::1776
    [Crossref] [Google Scholar]
  29. Gharahkhani P, Burdon KP, Fogarty R, Sharma S, Hewitt AW, et al. 2014.. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. . Nat. Genet. 46:(10):112025
    [Crossref] [Google Scholar]
  30. Gola D, Erdmann J, Läll K, Mägi R, Müller-Myhsok B, et al. 2020.. Population bias in polygenic risk prediction models for coronary artery disease. . Circ. Genom. Precis. Med. 13:(6):e002932
    [Crossref] [Google Scholar]
  31. Golestaneh N, Chu Y, Xiao Y-Y, Stoleru GL, Theos AC. 2017.. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. . Cell Death Dis. 8:(1):e2537
    [Crossref] [Google Scholar]
  32. Graham PS, Kaidonis G, Abhary S, Gillies MC, Daniell M, et al. 2018.. Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy. . BMC Med. Genet. 19::71
    [Crossref] [Google Scholar]
  33. Gratten J, Wray NR, Keller MC, Visscher PM. 2014.. Large-scale genomics unveils the genetic architecture of psychiatric disorders. . Nat. Neurosci. 17:(6):78290
    [Crossref] [Google Scholar]
  34. Guggenheim JA, Clark R, Williams C. 2023.. Can a polygenic score for refractive error identify infants at risk of strabismus and amblyopia?. Investig. Ophthalmol. Vis. Sci. 64:(8):4176
    [Google Scholar]
  35. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, et al. 2005.. Complement factor H variant increases the risk of age-related macular degeneration. . Science 308:(5720):41921
    [Crossref] [Google Scholar]
  36. Hammond CJ, Duncan DD, Snieder H, de Lange M, West SK, et al. 2001.. The heritability of age-related cortical cataract: the twin eye study. . Investig. Ophthalmol. Vis. Sci. 42:(3):6015
    [Google Scholar]
  37. Hammond CJ, Snieder H, Spector TD, Gilbert CE. 2000.. Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. . N. Engl. J. Med. 342:(24):178690
    [Crossref] [Google Scholar]
  38. Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, et al. 2023.. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. . Nat. Genet. 55:(7):111625
    [Crossref] [Google Scholar]
  39. Han X, Gharahkhani P, Mitchell P, Liew G, Hewitt AW, et al. 2020a.. Genome-wide meta-analysis identifies novel loci associated with age-related macular degeneration. . J. Hum. Genet. 65:(8):65765
    [Crossref] [Google Scholar]
  40. Han X, Hewitt AW, MacGregor S. 2021.. Predicting the future of genetic risk profiling of glaucoma: a narrative review. . JAMA Ophthalmol. 139:(2):22431
    [Crossref] [Google Scholar]
  41. Han X, Ong JS, An J, Craig JE, Gharahkhani P, et al. 2020b.. Association of myopia and intraocular pressure with retinal detachment in European descent participants of the UK Biobank cohort: a Mendelian randomization study. . JAMA Ophthalmol. 138:(6):67178
    [Crossref] [Google Scholar]
  42. Hanus J, Zhao F, Wang S. 2016.. Current therapeutic developments in atrophic age-related macular degeneration. . Br. J. Ophthalmol. 100:(1):12227
    [Crossref] [Google Scholar]
  43. Hardcastle AJ, Liskova P, Bykhovskaya Y, McComish BJ, Davidson AE, et al. 2021.. A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. . Commun. Biol. 4::266
    [Crossref] [Google Scholar]
  44. He M, Xiang F, Zeng Y, Mai J, Chen Q, et al. 2015.. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. . J. Am. Med. Assoc. 314:(11):114248
    [Crossref] [Google Scholar]
  45. He W, Han X, Ong J-S, Hewitt AW, Mackey DA, et al. 2022.. Association of novel loci with keratoconus susceptibility in a multitrait genome-wide association study of the UK Biobank database and Canadian Longitudinal Study on Aging. . JAMA Ophthalmol. 140:(6):56876
    [Crossref] [Google Scholar]
  46. He W, Han X, Ong J-S, Wu Y, Hewitt AW, et al. 2024.. Genome-wide meta-analysis identifies novel loci and improves disease prediction of age-related macular degeneration. . Ophthalmology 131:(1):P1629
    [Crossref] [Google Scholar]
  47. Heiba IM, Elston RC, Klein BE, Klein R. 1993.. Genetic etiology of nuclear cataract: evidence for a major gene. . Am. J. Med. Genet. 47:(8):120814
    [Crossref] [Google Scholar]
  48. Hirschhorn JN, Daly MJ. 2005.. Genome-wide association studies for common diseases and complex traits. . Nat. Rev. Genet. 6:(2):95108
    [Crossref] [Google Scholar]
  49. Hsu C-C, Chuang H-K, Hsiao Y-J, Teng Y-C, Chiang P-H, et al. 2022.. Polygenic risk score improves cataract prediction in East Asian population. . Biomedicines 10:(8):1920
    [Crossref] [Google Scholar]
  50. Hsu E, Desai M. 2023.. Glaucoma and systemic disease. . Life 13:(4):1018
    [Crossref] [Google Scholar]
  51. Hysi PG, Choquet H, Khawaja AP, Wojciechowski R, Tedja MS, et al. 2020.. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. . Nat. Genet. 52:(4):4017
    [Crossref] [Google Scholar]
  52. Hysi PG, Young TL, Mackey DA, Andrew T, Fernández-Medarde A, et al. 2010.. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. . Nat. Genet. 42:(10):9025
    [Crossref] [Google Scholar]
  53. Int. Schizophr. Consort., Purcell SM, Wray NR, Stone JL, Visscher PM, et al. 2009.. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. . Nature 460:(7256):74852
    [Crossref] [Google Scholar]
  54. Jaakko MT, Jaakko K, Markku K, O'Donnell J. 1992.. Heritability of defects of far vision in young adults—a twin study. . Scand. J. Soc. Med. 20:(2):7378
    [Crossref] [Google Scholar]
  55. Jee D, Kang S, Huang S, Park S. 2020.. Polygenetic-risk scores related to crystallin metabolism are associated with age-related cataract formation and interact with hyperglycemia, hypertension, Western-style diet, and Na intake. . Nutrients 12:(11):3534
    [Crossref] [Google Scholar]
  56. Jee D, Kang S, Park S. 2022.. Association of age-related cataract risk with high polygenetic risk scores involved in galactose-related metabolism and dietary interactions. . Lifestyle Genom. 15:(2):5566
    [Crossref] [Google Scholar]
  57. Khawaja AP, Rojas Lopez KE, Hardcastle AJ, Hammond CJ, Liskova P, et al. 2019.. Genetic variants associated with corneal biomechanical properties and potentially conferring susceptibility to keratoconus in a genome-wide association study. . JAMA Ophthalmol. 137:(9):100512
    [Crossref] [Google Scholar]
  58. Khor CC, Do T, Jia H, Nakano M, George R, et al. 2016.. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. . Nat. Genet. 48:(5):55662
    [Crossref] [Google Scholar]
  59. Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, et al. 2013.. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. . PLOS Genet. 9:(2):e1003299
    [Crossref] [Google Scholar]
  60. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. 2005.. Complement factor H polymorphism in age-related macular degeneration. . Science 308:(5720):38589
    [Crossref] [Google Scholar]
  61. Ko F, Foster PJ, Strouthidis NG, Shweikh Y, Yang Q, et al. 2017.. Associations with retinal pigment epithelium thickness measures in a large cohort: results from the UK Biobank. . Ophthalmology 124:(1):10517
    [Crossref] [Google Scholar]
  62. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, et al. 2023.. FinnGen provides genetic insights from a well-phenotyped isolated population. . Nature 613:(7944):50818
    [Crossref] [Google Scholar]
  63. Lee CM, Afshari NA. 2017.. The global state of cataract blindness. . Curr. Opin. Ophthalmol. 28:(1):98103
    [Crossref] [Google Scholar]
  64. Leslie RD, Pyke DA. 1982.. Diabetic retinopathy in identical twins. . Diabetes 31:(1):1921
    [Crossref] [Google Scholar]
  65. Lewis ACF, Perez EF, Prince AER, Flaxman HR, Gomez L, et al. 2022.. Patient and provider perspectives on polygenic risk scores: implications for clinical reporting and utilization. . Genome Med. 14:(1):114
    [Crossref] [Google Scholar]
  66. Li X, Bykhovskaya Y, Haritunians T, Siscovick D, Aldave A, et al. 2012.. A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. . Hum. Mol. Genet. 21:(2):42129
    [Crossref] [Google Scholar]
  67. Liao J, Su X, Chen P, Wang X, Xu L, et al. 2014.. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. . Hum. Mol. Genet. 23:(22):611928
    [Crossref] [Google Scholar]
  68. Liao W-L, Lin J-M, Chen W-L, Hsieh M-C, Wu C-M, et al. 2018.. Multilocus genetic risk score for diabetic retinopathy in the Han Chinese population of Taiwan. . Sci. Rep. 8::14535
    [Crossref] [Google Scholar]
  69. Lin H-J, Huang Y-C, Lin J-M, Wu J-Y, Chen L-A, et al. 2010.. Single-nucleotide polymorphisms in chromosome 3p14.1-3p14.2 are associated with susceptibility of type 2 diabetes with cataract. . Mol. Vis. 16::120614
    [Google Scholar]
  70. Liu B, Calton MA, Abell NS, Benchorin G, Gloudemans MJ, et al. 2019a.. Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms. . Commun. Biol. 2::186
    [Crossref] [Google Scholar]
  71. Liu C, Chen G, Bentley AR, Doumatey A, Zhou J, et al. 2019b.. Genome-wide association study for proliferative diabetic retinopathy in Africans. . NPJ Genom. Med. 4::20
    [Crossref] [Google Scholar]
  72. Liu C, Nongpiur ME, Cheng C-Y, Khor C-C, Yu M, et al. 2021.. Evaluation of primary angle-closure glaucoma susceptibility loci for estimating angle closure disease severity. . Ophthalmology 128:(3):4039
    [Crossref] [Google Scholar]
  73. Lloyd-Jones LR, Zeng J, Sidorenko J, Yengo L, Moser G, et al. 2019.. Improved polygenic prediction by Bayesian multiple regression on summary statistics. . Nat. Commun. 10::5086
    [Crossref] [Google Scholar]
  74. Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, et al. 2013.. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. . Nat. Genet. 45:(2):15563
    [Crossref] [Google Scholar]
  75. Luo L, Harmon J, Yang X, Chen H, Patel S, et al. 2008.. Familial aggregation of age-related macular degeneration in the Utah population. . Vis. Res. 48:(3):494500
    [Crossref] [Google Scholar]
  76. Mabuchi F, Mabuchi N, Sakurada Y, Yoneyama S, Kashiwagi K, et al. 2017.. Additive effects of genetic variants associated with intraocular pressure in primary open-angle glaucoma. . PLOS ONE 12:(8):e0183709
    [Crossref] [Google Scholar]
  77. Mabuchi F, Mabuchi N, Sakurada Y, Yoneyama S, Kashiwagi K, et al. 2022.. Genetic variants associated with glaucomatous visual field loss in primary open-angle glaucoma. . Sci. Rep. 12::20744
    [Crossref] [Google Scholar]
  78. MacGregor S, Ong J-S, An J, Han X, Zhou T, et al. 2018.. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. . Nat. Genet. 50:(8):106771
    [Crossref] [Google Scholar]
  79. Mackay TF. 2001.. The genetic architecture of quantitative traits. . Annu. Rev. Genet. 35::30339
    [Crossref] [Google Scholar]
  80. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. 2017.. Polygenic scores via penalized regression on summary statistics. . Genet. Epidemiol. 41:(6):46980
    [Crossref] [Google Scholar]
  81. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. 2009.. Finding the missing heritability of complex diseases. . Nature 461:(7265):74753
    [Crossref] [Google Scholar]
  82. Márquez-Luna C, Loh P-R, South Asian Type 2 Diabet. (SAT2D) Consort., SIGMA Type 2 Diabet. Consort., Price AL. 2017.. Multiethnic polygenic risk scores improve risk prediction in diverse populations. . Genet. Epidemiol. 41:(8):81123
    [Crossref] [Google Scholar]
  83. Mars N, Lindbohm JV, Della Briotta Parolo P, Widén E, Kaprio J, et al. 2022.. Systematic comparison of family history and polygenic risk across 24 common diseases. . Am. J. Hum. Genet. 109:(12):215262
    [Crossref] [Google Scholar]
  84. Marshall HN, Hollitt GL, Wilckens K, Mullany S, Kuruvilla S, et al. 2023a.. High polygenic risk is associated with earlier trabeculectomy in patients with primary open-angle glaucoma. . Ophthalmol. Glaucoma 6:(1):5457
    [Crossref] [Google Scholar]
  85. Marshall HN, Mullany S, Han X, Qassim A, He W, et al. 2023b.. High polygenic risk is associated with earlier initiation and escalation of treatment in early primary open-angle glaucoma. . Ophthalmology 130:(8):83036
    [Crossref] [Google Scholar]
  86. Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, et al. 2017.. Human demographic history impacts genetic risk prediction across diverse populations. . Am. J. Hum. Genet. 107:(4):78889
    [Crossref] [Google Scholar]
  87. McComish BJ, Sahebjada S, Bykhovskaya Y, Willoughby CE, Richardson AJ, et al. 2020.. Association of genetic variation with keratoconus. . JAMA Ophthalmol. 138:(2):17481
    [Crossref] [Google Scholar]
  88. Meng W, Shah KP, Pollack S, Toppila I, Hebert HL, et al. 2018.. A genome-wide association study suggests new evidence for an association of the NADPH oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. . Acta Ophthalmol. 96:(7):e81119
    [Crossref] [Google Scholar]
  89. Nannini DR, Kim H, Fan F, Gao X. 2018.. Genetic risk score is associated with vertical cup-to-disc ratio and improves prediction of primary open-angle glaucoma in Latinos. . Ophthalmology 125:(6):81521
    [Crossref] [Google Scholar]
  90. Nongpiur ME, Khor C-C, Cheng C-Y, Husain R, Boey PY, et al. 2019.. Integration of genetic and biometric risk factors for detection of primary angle closure glaucoma. . Am. J. Ophthalmol. 208::16065
    [Crossref] [Google Scholar]
  91. Plotnikov D, Pärssinen O, Williams C, Atan D, Guggenheim JA. 2022.. Commonly occurring genetic polymorphisms with a major impact on the risk of nonsyndromic strabismus: replication in a sample from Finland. . J. AAPOS 26:(1):12.e112.e6
    [Crossref] [Google Scholar]
  92. Plotnikov D, Shah RL, Rodrigues JN, Cumberland PM, Rahi JS, et al. 2019.. A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus. . Hum. Genet. 138:(7):72337
    [Crossref] [Google Scholar]
  93. Pollack S, Igo RP Jr., Jensen RA, Christiansen M, Li X, et al. 2019.. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control. . Diabetes 68:(2):44156
    [Crossref] [Google Scholar]
  94. Pyke DA, Tattersall RB. 1973.. Diabetic retinopathy in identical twins. . Diabetes 22:(8):61318
    [Crossref] [Google Scholar]
  95. Qassim A, Mullany S, Awadalla MS, Hassall MM, Nguyen T, et al. 2021.. A polygenic risk score predicts intraocular pressure readings outside office hours and early morning spikes as measured by home tonometry. . Ophthalmol. Glaucoma 4:(4):41120
    [Crossref] [Google Scholar]
  96. Qassim A, Souzeau E, Siggs OM, Hassall MM, Han X, et al. 2020.. An intraocular pressure polygenic risk score stratifies multiple primary open-angle glaucoma parameters including treatment intensity. . Ophthalmology 127:(7):9017
    [Crossref] [Google Scholar]
  97. Ramdas WD, Amin N, van Koolwijk LME, Janssens ACJW, Demirkan A, et al. 2011.. Genetic architecture of open angle glaucoma and related determinants. . J. Med. Genet. 48:(3):19096
    [Crossref] [Google Scholar]
  98. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. 2003.. Risk factors and prognosis for corneal ectasia after LASIK. . Ophthalmology 110:(2):26775
    [Crossref] [Google Scholar]
  99. Ritchie MD, Verma SS, Hall MA, Goodloe RJ, Berg RL, et al. 2014.. Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. . Mol. Vis. 20::128195
    [Google Scholar]
  100. Ruan Y, Lin Y-F, Feng Y-CA, Chen C-Y, Lam M, et al. 2022.. Improving polygenic prediction in ancestrally diverse populations. . Nat. Genet. 54:(5):57380
    [Crossref] [Google Scholar]
  101. Sahebjada S, Schache M, Richardson AJ, Snibson G, MacGregor S, et al. 2013.. Evaluating the association between keratoconus and the corneal thickness genes in an independent Australian population. . Investig. Ophthalmol. Vis. Sci. 54:(13):822428
    [Crossref] [Google Scholar]
  102. Sanfilippo PG, Hammond CJ, Staffieri SE, Kearns LS, Melissa Liew SH, et al. 2012.. Heritability of strabismus: Genetic influence is specific to eso-deviation and independent of refractive error. . Twin Res. Hum. Genet. 15:(5):62430
    [Crossref] [Google Scholar]
  103. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. 2010.. The heritability of ocular traits. . Surv. Ophthalmol. 55:(6):56183
    [Crossref] [Google Scholar]
  104. Seddon JM, Cote J, Page WF, Aggen SH, Neale MC. 2005.. The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences. . Arch. Ophthalmol. 123:(3):32127
    [Crossref] [Google Scholar]
  105. Senabouth A, Daniszewski M, Lidgerwood GE, Liang HH, Hernández D, et al. 2022.. Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration. . Nat. Commun. 13::4233
    [Crossref] [Google Scholar]
  106. Shaaban S, MacKinnon S, Andrews C, Staffieri SE, Maconachie GDE, et al. 2018.. Genome-wide association study identifies a susceptibility locus for comitant esotropia and suggests a parent-of-origin effect. . Investig. Ophthalmol. Vis. Sci. 59:(10):405464
    [Crossref] [Google Scholar]
  107. Siggs OM, Han X, Qassim A, Souzeau E, Kuruvilla S, et al. 2021.. Association of monogenic and polygenic risk with the prevalence of open-angle glaucoma. . JAMA Ophthalmol. 139:(9):102328
    [Crossref] [Google Scholar]
  108. Siggs OM, Qassim A, Han X, Marshall HN, Mullany S, et al. 2022.. Association of high polygenic risk with visual field worsening despite treatment in early primary open-angle glaucoma. . JAMA Ophthalmol. 141:(1):7377
    [Crossref] [Google Scholar]
  109. Solouki AM, Verhoeven VJM, van Duijn CM, Verkerk AJMH, Ikram MK, et al. 2010.. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. . Nat. Genet. 42:(10):897901
    [Crossref] [Google Scholar]
  110. Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, et al. 2018.. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. . Nat. Genet. 50:(6):83448
    [Crossref] [Google Scholar]
  111. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. 2014.. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. . Ophthalmology 121:(11):208190
    [Crossref] [Google Scholar]
  112. Tham Y-C, Liao J, Vithana EN, Khor C-C, Teo Y-Y, et al. 2015.. Aggregate effects of intraocular pressure and cup-to-disc ratio genetic variants on glaucoma in a multiethnic Asian population. . Ophthalmology 122:(6):114957
    [Crossref] [Google Scholar]
  113. Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. 2018.. Genetic architecture: the shape of the genetic contribution to human traits and disease. . Nat. Rev. Genet. 19:(2):11024
    [Crossref] [Google Scholar]
  114. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, et al. 2018.. Multi-trait analysis of genome-wide association summary statistics using MTAG. . Nat. Genet. 50:(2):22937
    [Crossref] [Google Scholar]
  115. Upadhyay A, Beuerman RW. 2020.. Biological mechanisms of atropine control of myopia. . Eye Contact Lens 46:(3):12935
    [Crossref] [Google Scholar]
  116. Verhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, et al. 2013.. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. . Nat. Genet. 45:(3):31418
    [Crossref] [Google Scholar]
  117. Visscher PM, Brown MA, McCarthy MI, Yang J. 2012.. Five years of GWAS discovery. . Am. J. Hum. Genet. 90:(1):724
    [Crossref] [Google Scholar]
  118. Vithana EN, Khor C-C, Qiao C, Nongpiur ME, George R, et al. 2012.. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. . Nat. Genet. 44:(10):114246
    [Crossref] [Google Scholar]
  119. Waksmunski AR, Kinzy TG, Cruz LA, Nealon CL, Halladay CW, et al. 2022.. Glaucoma genetic risk scores in the Million Veteran Program. . Ophthalmology 129:(11):126374
    [Crossref] [Google Scholar]
  120. Waksmunski AR, Kinzy TG, Cruz LA, Nealon CL, Halladay CW, et al. 2023.. Diversity is key for cross-ancestry transferability of glaucoma genetic risk scores in Hispanic veterans in the Million Veteran Program. . Pac. Symp. Biocomput. 28::41324
    [Google Scholar]
  121. Wang B, Watt K, Chen Z, Kang P. 2023.. Predicting the child who will become myopic—can we prevent onset?. Clin. Exp. Optom. 106:(8):81524
    [Crossref] [Google Scholar]
  122. Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A. 2017.. Classification of common human diseases derived from shared genetic and environmental determinants. . Nat. Genet. 49:(9):131925
    [Crossref] [Google Scholar]
  123. Wang W, Lo ACY. 2018.. Diabetic retinopathy: pathophysiology and treatments. . Int. J. Mol. Sci. 19:(6):1816
    [Crossref] [Google Scholar]
  124. Wang Y, Rabinowitz YS, Rotter JI, Yang H. 2000.. Genetic epidemiological study of keratoconus: evidence for major gene determination. . Am. J. Med. Genet. 93:(5):4039
    [Crossref] [Google Scholar]
  125. Weiner DJ, Nadig A, Jagadeesh KA, Dey KK, Neale BM, et al. 2023.. Polygenic architecture of rare coding variation across 394,783 exomes. . Nature 614:(7948):49299
    [Crossref] [Google Scholar]
  126. Wilmer JB, Backus BT. 2009.. Genetic and environmental contributions to strabismus and phoria: evidence from twins. . Vis. Res. 49:(20):248593
    [Crossref] [Google Scholar]
  127. Wolfs RC, Klaver CC, Ramrattan RS, van Duijn CM, Hofman A, de Jong PT. 1998.. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. . Arch. Ophthalmol. 116:(12):164045
    [Crossref] [Google Scholar]
  128. Wray NR, Goddard ME, Visscher PM. 2007.. Prediction of individual genetic risk to disease from genome-wide association studies. . Genome Res. 17:(10):152028
    [Crossref] [Google Scholar]
  129. Yang J, Li Y, Chan L, Tsai Y-T, Wu W-H, et al. 2014.. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. . Hum. Mol. Genet. 23:(13):344555
    [Crossref] [Google Scholar]
  130. Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. 2017.. Concepts, estimation and interpretation of SNP-based heritability. . Nat. Genet. 49:(9):130410
    [Crossref] [Google Scholar]
  131. Yonova-Doing E, Forkin ZA, Hysi PG, Williams KM, Spector TD, et al. 2016.. Genetic and dietary factors influencing the progression of nuclear cataract. . Ophthalmology 123:(6):123744
    [Crossref] [Google Scholar]
  132. Yu X, Rong S. 2023.. Genome-wide associations and confirmatory meta-analyses in diabetic retinopathy. . Genes 14:(3):653
    [Crossref] [Google Scholar]
  133. Zheutlin AB, Ross DA. 2018.. Polygenic risk scores: What are they good for?. Biol. Psychiatry 83:(11):e5153
    [Crossref] [Google Scholar]
  134. Zhu M, Zhao S. 2007.. Candidate gene identification approach: progress and challenges. . Int. J. Biol. Sci. 3:(7):42027
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-103958
Loading
/content/journals/10.1146/annurev-vision-102122-103958
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error