1932

Abstract

Augmented reality (AR) systems aim to alter our view of the world and enable us to see things that are not actually there. The resulting discrepancy between perception and reality can create compelling entertainment and can support innovative approaches to education, guidance, and assistive tools. However, building an AR system that effectively integrates with our natural visual experience is hard. AR systems often suffer from visual limitations and artifacts, and addressing these flaws requires basic knowledge of perception. At the same time, AR system development can serve as a catalyst that drives innovative new research in perceptual science. This review describes recent perceptual research pertinent to and driven by modern AR systems, with the goal of highlighting thought-provoking areas of inquiry and open questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111022-123758
2023-09-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-111022-123758.html?itemId=/content/journals/10.1146/annurev-vision-111022-123758&mimeType=html&fmt=ahah

Literature Cited

  1. Adams H, Stefanucci J, Creem-Regehr S, Bodenheimer B. 2022. Depth perception in augmented reality: the effects of display, shadow, and position. Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)792–801. Piscataway, NJ: IEEE
  2. Aizenman AM, Koulieris GA, Gibaldi A, Sehgal V, Levi DM, Banks MS. 2022. The statistics of eye movements and binocular disparities during VR gaming: implications for headset design. ACM Trans. Graph. 42:17
    [Google Scholar]
  3. Akeley K, Watt SJ, Girshick AR, Banks MS. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23:3804–13
    [Google Scholar]
  4. Akşit K, Chakravarthula P, Rathinavel K, Jeong Y, Albert R et al. 2019. Manufacturing application-driven foveated near-eye displays. IEEE Trans. Vis. Comput. Graph. 25:51928–39
    [Google Scholar]
  5. Anderson BL. 2003. The role of occlusion in the perception of depth, lightness, and opacity. Psychol. Rev. 110:4785–801
    [Google Scholar]
  6. Austin RL, Denning BS, Drews BC, Fedoriouk VB, Calpito RC. 2018. Qualified viewing space determination of near-eye and head-up displays. J. Soc. Inf. Disp. 26:9567–75
    [Google Scholar]
  7. Banks MS, Hoffman DM, Kim J, Wetzstein G. 2016. 3D displays. Annu. Rev. Vis. Sci. 2:397–435
    [Google Scholar]
  8. Basgöze Z, White DN, Burge J, Cooper EA. 2020. Natural statistics of depth edges modulate perceptual stability. J. Vis. 20:810
    [Google Scholar]
  9. Brainard DH, Radonjić A 2014. Color constancy. The New Visual Neurosciences JS Werner, LM Chalupa 545–56. Cambridge, MA: MIT Press
    [Google Scholar]
  10. Braunstein ML, Andersen GJ, Rouse MW, Tittle JS. 1986. Recovering viewer-centered depth from disparity, occlusion, and velocity gradients. Percept. Psychophys. 40:4216–24
    [Google Scholar]
  11. Brown R, DuTell V, Walter B, Rosenholtz R, Shirley P et al. 2022. Efficient dataflow modeling of peripheral encoding in the human visual system. ACM Trans. Appl. Percept. 20:11
    [Google Scholar]
  12. Cakmakci O, Ha Y, Rolland JP. 2004. A compact optical see-through head-worn display with occlusion support. Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality16–25. Piscataway, NJ/New York: IEEE/ACM
  13. Cakmakci O, Hoffman DM, Balram N. 2019. 3D eyebox in augmented and virtual reality optics. SID Symp. Dig. Tech. Pap. 50:1438–41
    [Google Scholar]
  14. Campbell FW. 1957. The depth of field of the human eye. Opt. Acta Int. J. Opt. 4:4157–64
    [Google Scholar]
  15. Charman WN, Tucker J. 1978. Accommodation as a function of object form. Am. J. Optom. Physiol. Opt. 55:284–92
    [Google Scholar]
  16. Chen Q, Peng Z, Li Y, Liu S, Zhou P et al. 2019. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films. Opt. Express 27:912039–47
    [Google Scholar]
  17. Chen Z, Denison RN, Whitney D, Maus GW. 2018. Illusory occlusion affects stereoscopic depth perception. Sci. Rep. 8:5297
    [Google Scholar]
  18. Choi S, Gopakumar M, Peng Y, Kim J, Wetzstein G. 2021. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays. ACM Trans. Graphics 40:6240
    [Google Scholar]
  19. Cholewiak SA, Başgöze Z, Cakmakci O, Hoffman D, Cooper EA. 2020. A perceptual eyebox for near-eye displays. Opt. Express 28:2538008–28
    [Google Scholar]
  20. Cholewiak SA, Love GD, Banks MS. 2018. Creating correct blur and its effect on accommodation. J. Vision 18:91
    [Google Scholar]
  21. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:15–25
    [Google Scholar]
  22. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE 1990. Human photoreceptor topography. J. Comp. Neurol. 292:4497–523
    [Google Scholar]
  23. Dey A, Billinghurst M, Lindeman RW, Swan JE. 2018. A systematic review of 10 years of augmented reality usability studies: 2005 to 2014. Front. Robot. AI 5:37
    [Google Scholar]
  24. Ding J, Levi DM. 2017. Binocular combination of luminance profiles. J. Vis. 17:134
    [Google Scholar]
  25. Duinkharjav B, Chakravarthula P, Brown R, Patney A, Sun Q. 2022. Image features influence reaction time: a learned probabilistic perceptual model for saccade latency. ACM Trans. Graph. 41:4144
    [Google Scholar]
  26. Ellis SR, Menges BM. 1998. Localization of virtual objects in the near visual field. Hum. Factors 40:3415–31
    [Google Scholar]
  27. Fisher SK, Ciuffreda KJ. 1988. Accommodation and apparent distance. Perception 17:5609–21
    [Google Scholar]
  28. Freeman J, Simoncelli EP. 2011. Metamers of the ventral stream. Nat. Neurosci. 14:91195–201
    [Google Scholar]
  29. Gabbard JL, Swan JE, Hix D. 2006. The effects of text drawing styles, background textures, and natural lighting on text legibility in outdoor augmented reality. Presence 15:116–32
    [Google Scholar]
  30. Gabbard JL, Swan JE, Zedlitz J, Winchester WW. 2010. More than meets the eye: an engineering study to empirically examine the blending of real and virtual color spaces. Proceedings of the 2010 IEEE Virtual Reality Conference (VR)79–86. Piscataway, NJ: IEEE
  31. Gagnon HC, Rosales CS, Mileris R, Stefanucci JK, Creem-Regehr SH, Bodenheimer RE. 2021a. Estimating distances in action space in augmented reality. ACM Trans. Appl. Percept. 18:27
    [Google Scholar]
  32. Gagnon HC, Zhao Y, Richardson M, Pointon GD, Stefanucci JK et al. 2021b. Gap affordance judgments in mixed reality: testing the role of display weight and field of view. Front. Virtual Real. 2: https://doi.org/10.3389/frvir.2021.654656
    [Google Scholar]
  33. Geisler WS, Perry JS. 1998. Real-time foveated multiresolution system for low-bandwidth video communication. Proc. SPIE 3299:294–305
    [Google Scholar]
  34. Gilchrist AL, Jacobsen A. 1983. Lightness constancy through a veiling luminance. J. Exp. Psychol. Hum. Percept. Perform. 9:6936–44
    [Google Scholar]
  35. Guenter B, Finch M, Drucker S, Tan D, Snyder J. 2012. Foveated 3D graphics. ACM Trans. Graph. 31:6164
    [Google Scholar]
  36. Hassani N, Murdoch MJ. 2019. Investigating color appearance in optical see-through augmented reality. Color Res. Appl. 44:4492–507
    [Google Scholar]
  37. Hincapie-Ramos JD, Ivanchuk L, Sridharan SK, Irani PP. 2015. SmartColor: real-time color and contrast correction for optical see-through head-mounted displays. IEEE Trans. Vis. Comput. Graphics 21:121336–48
    [Google Scholar]
  38. Hoffman DM, Banks MS. 2010. Focus information is used to interpret binocular images. J. Vis. 10:513
    [Google Scholar]
  39. Hoffman DM, Girshick AR, Akeley K, Banks MS. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8:333
    [Google Scholar]
  40. Howard IP, Rogers BJ. 2002. Seeing in Depth, Vol. 2: Depth Perception Toronto: Univ. Toronto Press
    [Google Scholar]
  41. Huang H-P, Wei M, Chen S 2021. White appearance of virtual stimuli produced by augmented reality. Color Res. Appl. 46:2294–302
    [Google Scholar]
  42. Jennings BJ, Kingdom FAA. 2016. Detection of between-eye differences in color: interactions with luminance. J. Vis. 16:323
    [Google Scholar]
  43. Jones JA, Swan JE, Singh G, Kolstad E, Ellis SR. 2008. The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization9–14. New York: ACM
  44. Kaufeld M, Mundt M, Forst S, Hecht H. 2022. Optical see-through augmented reality can induce severe motion sickness. Displays 74:102283
    [Google Scholar]
  45. Kelly JW. 2023. Distance perception in virtual reality: a meta-analysis of the effect of head-mounted display characteristics. IEEE Trans. Visual Comput. Graphics In press
    [Google Scholar]
  46. Kim J, Jeong Y, Stengel M, Akşit K, Albert R et al. 2019. Foveated AR: dynamically-foveated augmented reality display. ACM Trans. Graph. 38:499
    [Google Scholar]
  47. Kingdom FAA. 2011. Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy. Vis. Res. 51:7652–73
    [Google Scholar]
  48. Kingdom FAA, Seulami NM, Jennings BJ, Georgeson MA. 2019. Interocular difference thresholds are mediated by binocular differencing, not summing, channels. J. Vis. 19:1418
    [Google Scholar]
  49. Kiyokawa K, Billinghurst M, Campbell B, Woods E. 2003. An occlusion capable optical see-through head mount display for supporting co-located collaboration. Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality133–41. Piscataway, NJ/New York: IEEE/ACM
  50. Klymenko V, Harding TH, Beasley HH, Martin JS. 1999. The effect of helmet mounted display field-of-view configurations on target acquisition Rep. 99-19 U. S. Army Aeromed. Res. Lab. Fort Rucker, AL: https://apps.dtic.mil/sti/citations/ADA368601
  51. Klymenko V, Verona RW, Beasley HH, Martin JS, McLean WE. 1994. Factors affecting the visual fragmentation of the field-of-view in partial binocular overlap displays Rep. 94–29 U. S. Army Aeromed. Res. Lab. Fort Rucker, AL: https://apps.dtic.mil/sti/citations/ADA283081
  52. Knill DC, Richards W. 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press
  53. Kooi FL, Toet A. 2004. Visual comfort of binocular and 3D displays. Displays 25:2–399–108
    [Google Scholar]
  54. Krajancich B, Kellnhofer P, Wetzstein G. 2021. A perceptual model for eccentricity-dependent spatio-temporal flicker fusion and its applications to foveated graphics. ACM Trans. Graph. 40:447
    [Google Scholar]
  55. Kramida G. 2016. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Trans. Vis. Comput. Graph. 22:71912–31
    [Google Scholar]
  56. Kress BC. 2020. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets Bellingham, WA: SPIE
  57. Labhishetty V, Cholewiak SA, Roorda A, Banks MS. 2021. Lags and leads of accommodation in humans: fact or fiction?. J. Vis. 21:321
    [Google Scholar]
  58. Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn W. 2009. Visual discomfort and visual fatigue of stereoscopic displays: a review. J. Imag. Sci. Technol. 53:330201
    [Google Scholar]
  59. Lanman D, Luebke D. 2013. Near-eye light field displays. ACM Trans. Graph. 32:6220
    [Google Scholar]
  60. Lee S, Cho J, Lee B, Jo Y, Jang C et al. 2018. Foveated retinal optimization for see-through near-eye multi-layer displays. IEEE Access 6:2170–80
    [Google Scholar]
  61. Legge GE, Rubin GS. 1981. Binocular interactions in suprathreshold contrast perception. Percept. Psychophys. 30:149–61
    [Google Scholar]
  62. Levelt WJM. 1965. On binocular rivalry PhD Diss., Inst. Percept. RVO–TNO Soesterberg, Neth:.
  63. Lin JJ-W, Duh HBL, Parker DE, Abi-Rached H, Furness TA. 2002. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. Proceedings of the 2002 IEEE Virtual Reality Conference (VR)164–71. Piscataway, NJ: IEEE
  64. Liu S, Cheng D, Hua H. 2008. An optical see-through head mounted display with addressable focal planes. Proceedings of the 2008 IEEE Virtual Reality Conference (VR)164–71. Piscataway, NJ: IEEE
  65. Love GD, Hoffman DM, Hands PJW, Gao J, Kirby AK, Banks MS. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Express 17:1815716–25
    [Google Scholar]
  66. Ludvigh E. 1941. Extrafoveal visual acuity as measured with Snellen test-letters. Am. J. Ophthalmol. 24:3302–10
    [Google Scholar]
  67. Macedo MCF, Apolinario AL 2023. Occlusion handling in augmented reality: past, present and future. IEEE Trans. Vis. Comput. Graph 29:21590–609
    [Google Scholar]
  68. MacKenzie KJ, Dickson RA, Watt SJ. 2011. Vergence and accommodation to multiple-image-plane stereoscopic displays: “real world” responses with practical image-plane separations?. Proc. SPIE 7863:786315
    [Google Scholar]
  69. MacKenzie KJ, Hoffman DM, Watt SJ. 2010. Accommodation to multiple-focal-plane displays: implications for improving stereoscopic displays and for accommodation control. J. Vis. 10:22
    [Google Scholar]
  70. MacKenzie KJ, Watt SJ. 2010. Eliminating accommodation-convergence conflicts in stereoscopic displays: Can multiple-focal-plane displays elicit continuous and consistent vergence and accommodation responses?. Proc. SPIE 7524:752417
    [Google Scholar]
  71. MacKenzie KJ, Watt SJ. 2011. The stimulus to accommodation: changes in retinal contrast matter, not the spatial frequency content. J. Vis. 11:516
    [Google Scholar]
  72. Maimone A, Georgiou A, Kollin JS. 2017. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36:485
    [Google Scholar]
  73. Maimone A, Lanman D, Rathinavel K, Keller K, Luebke D, Fuchs H. 2014. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. 33:489
    [Google Scholar]
  74. Maisto M, Pacchierotti C, Chinello F, Salvietti G, De Luca A, Prattichizzo D. 2017. Evaluation of wearable haptic systems for the fingers in augmented reality applications. IEEE Trans. Haptics 10:4511–22
    [Google Scholar]
  75. Mandelbaum J. 1960. An accommodation phenomenon. Arch. Ophthalmol. 63:6923–26
    [Google Scholar]
  76. Mantiuk RK, Denes G, Chapiro A, Kaplanyan A, Rufo G et al. 2021. FovVideoVDP: a visible difference predictor for wide field-of-view video. ACM Trans. Graph. 40:449
    [Google Scholar]
  77. Marto A, Gonçalves A. 2022. Augmented reality games and presence: a systematic review. J. Imag. Sci. Technol. 8:491
    [Google Scholar]
  78. Mathews S, Kruger PB. 1994. Spatiotemporal transfer function of human accommodation. Vis. Res. 34:151965–80
    [Google Scholar]
  79. McLean B, Smith S. 1987. Developing a wide field of view Hmd for simulators. Proc. SPIE 0778:79–82
    [Google Scholar]
  80. Melzer JE, Moffitt K. 1989. Partial binocular-overlap in helmet-mounted displays. Proc. SPIE 1117:56–62
    [Google Scholar]
  81. Melzer JE, Moffitt KW. 1991. Ecological approach to partial binocular overlap. Proc. SPIE 1456:124–31
    [Google Scholar]
  82. Metelli F. 1974. The perception of transparency. Sci. Am. 230:490–98
    [Google Scholar]
  83. Milgram P, Takemura H, Utsumi A, Kishino F. 1995. Augmented reality: a class of displays on the reality-virtuality continuum. Proc. SPIE 2351282–92
    [Google Scholar]
  84. Moffitt K, Browne MP. 2019. Visibility of color symbology in head-up and head-mounted displays in daylight environments. Opt. Eng. 58:5051809
    [Google Scholar]
  85. Murdoch MJ. 2020. Brightness matching in optical see-through augmented reality. J. Opt. Soc. Am. A 37:121927–36
    [Google Scholar]
  86. Noorlander C, Koenderink JJ, den Ouden RJ, Edens BW. 1983. Sensitivity to spatiotemporal colour contrast in the peripheral visual field. Vis. Res. 23:11–11
    [Google Scholar]
  87. Owens DA. 1979. The Mandelbaum effect: evidence for an accommodative bias toward intermediate viewing distances. J. Opt. Soc. Am. B 69:5646–52
    [Google Scholar]
  88. Owens DA. 1980. A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings. Vis. Res. 20:2159–67
    [Google Scholar]
  89. Padmanaban N, Konrad R, Stramer T, Cooper EA, Wetzstein G. 2017. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. PNAS 114:92183–88
    [Google Scholar]
  90. Patney A, Salvi M, Kim J, Kaplanyan A, Wyman C et al. 2016. Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. 35:6179
    [Google Scholar]
  91. Plopski A, Hirzle T, Norouzi N, Qian L, Bruder G, Langlotz T. 2022. The eye in extended reality: a survey on gaze interaction and eye tracking in head-worn extended reality. ACM Comput. Surv. 55:353
    [Google Scholar]
  92. Pointon G, Thompson C, Creem-Regehr S, Stefanucci J, Joshi M et al. 2018. Judging action capabilities in augmented reality. Proceedings of the 15th ACM Symposium on Applied Perception Art. 6 New York: ACM
  93. Radonjić A, Cottaris NP, Brainard DH. 2015. Color constancy in a naturalistic, goal-directed task. J. Vis. 15:133
    [Google Scholar]
  94. Ratnam K, Konrad R, Lanman D, Zannoli M. 2019. Retinal image quality in near-eye pupil-steered systems. Opt. Express 27:2638289–311
    [Google Scholar]
  95. Ren D, Goldschwendt T, Chang Y, Hollerer T. 2016. Evaluating wide-field-of-view augmented reality with mixed reality simulation. Proceedings of the 2016 IEEE Virtual Reality Conference (VR)93–102. Piscataway, NJ: IEEE
  96. Renner RS, Velichkovsky BM, Helmert JR. 2013. The perception of egocentric distances in virtual environments—a review. ACM Comput. Surv. 46:223
    [Google Scholar]
  97. Rolland JP, Krueger MW, Goon A. 2000. Multifocal planes head-mounted displays. Appl. Opt. 39:193209–15
    [Google Scholar]
  98. Rolland JP, Meyer C, Arthur K, Rinalducci E 2002. Method of adjustments versus method of constant stimuli in the quantification of accuracy and precision of rendered depth in head-mounted displays. Presence 11:6610–25
    [Google Scholar]
  99. Rolland JP, Yoshida A, Davis LD, Reif JH. 1998. High-resolution inset head-mounted display. Appl. Opt. 37:194183–93
    [Google Scholar]
  100. Rosenfield M, Ciuffreda KJ. 1991. Accommodative responses to conflicting stimuli. J. Opt. Soc. Am. A 8:2422–27
    [Google Scholar]
  101. Rosenholtz R. 2016. Capabilities and limitations of peripheral vision. Annu. Rev. Vis. Sci. 2:437–57
    [Google Scholar]
  102. Sebastian S, Burge J, Geisler WS. 2015. Defocus blur discrimination in natural images with natural optics. J. Vis. 15:516
    [Google Scholar]
  103. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW et al. 1995. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:5212889–93
    [Google Scholar]
  104. Shibata T, Kim J, Hoffman DM, Banks MS. 2011. The zone of comfort: predicting visual discomfort with stereo displays. J. Vis. 11:811
    [Google Scholar]
  105. Shimojo S, Nakayama K. 1990. Real world occlusion constraints and binocular rivalry. Vis. Res. 30:169–80
    [Google Scholar]
  106. Singh G, Swan JE, Jones JA, Ellis SR. 2010. Depth judgment measures and occluding surfaces in near-field augmented reality. APGV ’10: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization149–56. New York: ACM
  107. Singh V, Burge J, Brainard DH. 2022. Equivalent noise characterization of human lightness constancy. J. Vis. 22:22
    [Google Scholar]
  108. Smith PC, Smith OW. 1961. Ball throwing responses to photographically portrayed targets. J. Exp. Psychol. 62:223–33
    [Google Scholar]
  109. Sodnik J, Tomazic S, Grasset R, Duenser A, Billinghurst M. 2006. Spatial sound localization in an augmented reality environment. Proceedings of the 18th Australia Conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments111–18. New York: ACM
  110. Spector RH 2011. Visual fields. Clinical Methods: The History, Physical, and Laboratory Examinations HK Walker, WD Hall, JW Hurst 565–672. Boston: Butterworths
    [Google Scholar]
  111. Spjut J, Boudaoud B, Kim J, Greer T, Albert R et al. 2020. Toward standardized classification of foveated displays. IEEE Trans. Vis. Comput. Graph. 26:52126–34
    [Google Scholar]
  112. Stanney K, Lawson BD, Rokers B, Dennison M, Fidopiastis C et al. 2020. Identifying causes of and solutions for cybersickness in immersive technology: reformulation of a research and development agenda. Int. J. Hum.-Comput. Interface 36:191783–803
    [Google Scholar]
  113. Stefanucci JK, Creem-Regehr S, Bodenheimer B. 2021. Comparing distance judgments in real and augmented reality. Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)82–86. Piscataway, NJ: IEEE
  114. Sutherland IE. 1968. A head-mounted three dimensional display. Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I757–64. New York: ACM
    [Google Scholar]
  115. Swafford NT, Iglesias-Guitian JA, Koniaris C, Moon B, Cosker D, Mitchell K. 2016. User, metric, and computational evaluation of foveated rendering methods. Proceedings of the ACM Symposium on Applied Perception7–14. New York: ACM
  116. Swan JE II, Jones A, Kolstad E, Livingston MA, Smallman HS 2007. Egocentric depth judgments in optical, see-through augmented reality. IEEE Trans. Vis. Comput. Graph. 13:3429–42
    [Google Scholar]
  117. Tan G, Lee Y-H, Zhan T, Yang J, Liu S et al. 2018. Foveated imaging for near-eye displays. Opt. Express 26:1925076–85
    [Google Scholar]
  118. Thibos LN. 2020. Retinal image formation and sampling in a three-dimensional world. Annu. Rev. Vis. Sci. 6:469–89
    [Google Scholar]
  119. Thibos LN, Cheney FE, Walsh DJ. 1987. Retinal limits to the detection and resolution of gratings. J. Opt. Soc. Am. A 4:81524–29
    [Google Scholar]
  120. Thomas ML, Siegmund WP, Antos SE, Robinson RM. 1990. Fiber optic development for use on the fiber optic helmet mounted display. Opt. Eng. 29:8855–61
    [Google Scholar]
  121. Trepkowski C, Eibich D, Maiero J, Marquardt A, Kruijff E, Feiner S. 2019. The effect of narrow field of view and information density on visual search performance in augmented reality. Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR)575–84. Piscataway, NJ: IEEE
  122. Van Nes FL, Bouman MA. 1967. Spatial modulation transfer in the human eye. J. Opt. Soc. Am. B 57:3401–6
    [Google Scholar]
  123. Vater C, Wolfe B, Rosenholtz R. 2022. Peripheral vision in real-world tasks: a systematic review. Psychon. Bull. Rev. 29:1531–57
    [Google Scholar]
  124. Wallach H, Norris CM. 1963. Accommodation as a distance cue. Am. J. Psychol. 76:659–64
    [Google Scholar]
  125. Walton DR, Anjos RKD, Friston S, Swapp D, Akşit K et al. 2021. Beyond blur: real-time ventral metamers for foveated rendering. ACM Trans. Graph. 40:448
    [Google Scholar]
  126. Wang M, Cooper EA. 2022. Perceptual guidelines for optimizing field of view in stereoscopic augmented reality displays. ACM Trans. Appl. Percept. 19:419
    [Google Scholar]
  127. Watson AB. 2007. The spatial standard observer: a new tool for display metrology. Inf. Disp. 23:112
    [Google Scholar]
  128. Watson AB, Ahumada AJ Jr. 2005. A standard model for foveal detection of spatial contrast. J. Vis. 5:9717–40
    [Google Scholar]
  129. Watt SJ, Akeley K, Ernst MO, Banks MS. 2005a. Focus cues affect perceived depth. J. Vis. 5:10834–62
    [Google Scholar]
  130. Watt SJ, Akeley K, Girshick AR, Banks MS. 2005b. Achieving near-correct focus cues in a 3D display using multiple image planes. Proc. SPIE 5666:393–401
    [Google Scholar]
  131. Weert CMM, Levelt WJM. 1974. Binocular brightness combinations: additive and non-additive aspects. Percept. Psychophys. 15:551–62
    [Google Scholar]
  132. Weiland C, Braun A-K, Heiden W. 2009. Colorimetric and photometric compensation for see-through displays. Universal Access in Human-Computer Interaction: Intelligent and Ubiquitous Interaction Environments, ed. C Stephanidis603–12. Lect. Notes Comput. Sci 5615 Berlin: Springer
    [Google Scholar]
  133. Wendt G, Faul F. 2022. Binocular luster—a review. Vis. Res. 194:108008
    [Google Scholar]
  134. Wetzstein G. 2020. Augmented and virtual reality. NANO-CHIPS 2030: On-Chip AI for an Efficient Data-Driven World B Murmann, B Hoefflinger 467–99. Berlin: Springer
    [Google Scholar]
  135. Wilcox LM, Lakra DC. 2007. Depth from binocular half-occlusions in stereoscopic images of natural scenes. Perception 36:6830–39
    [Google Scholar]
  136. Wilmott JP, Erkelens IM, Murdison ST, Rio KW. 2022. Perceptibility of jitter in augmented reality head-mounted displays. Proceedings of the IEEE International Symposium on Mixed and Augmented Reality470–78. Piscataway, NJ: IEEE
  137. Wilson A, Hua H. 2017. Design and prototype of an augmented reality display with per-pixel mutual occlusion capability. Opt. Express 25:2430539–49
    [Google Scholar]
  138. Yang X, Zhang L, Wong T-T, Heng P-A. 2012. Binocular tone mapping. ACM Trans. Graph. 31:493
    [Google Scholar]
  139. Zhan T, Yin K, Xiong J, He Z, Wu S-T 2020. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23:8101397
    [Google Scholar]
  140. Zhang L, Murdoch MJ. 2021. Perceived transparency in optical see-through augmented reality. Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)115–20. Piscataway, NJ: IEEE
  141. Zhang Y, Isoyama N, Sakata N, Kiyokawa K, Hua H. 2020. Super wide-view optical see-through head mounted displays with per-pixel occlusion capability. Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)301–11. Piscataway, NJ: IEEE
  142. Zhong F, Koulieris GA, Drettakis G, Banks MS, Chambe M et al. 2019. DiCE: dichoptic contrast enhancement for VR and stereo displays. ACM Trans. Graph. 38:6211
    [Google Scholar]
/content/journals/10.1146/annurev-vision-111022-123758
Loading
/content/journals/10.1146/annurev-vision-111022-123758
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error