1932

Abstract

The superior colliculus (SC) is a subcortical brain structure that is relevant for sensation, cognition, and action. In nonhuman primates, a rich history of studies has provided unprecedented detail about this structure's role in controlling orienting behaviors; as a result, the primate SC has become primarily regarded as a motor control structure. However, as in other species, the primate SC is also a highly visual structure: A fraction of its inputs is retinal and complemented by inputs from visual cortical areas, including the primary visual cortex. Motivated by this, recent investigations are revealing the rich visual pattern analysis capabilities of the primate SC, placing this structure in an ideal position to guide orienting movements. The anatomical proximity of the primate SC to both early visual inputs and final motor control apparatuses, as well as its ascending feedback projections to the cortex, affirms an important role for this structure in active perception.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111022-123817
2023-09-15
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-111022-123817.html?itemId=/content/journals/10.1146/annurev-vision-111022-123817&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmadlou M, Heimel JA. 2015. Preference for concentric orientations in the mouse superior colliculus. Nat. Commun. 6:6773
    [Google Scholar]
  2. Azzopardi P, Cowey A. 1996. The overrepresentation of the fovea and adjacent retina in the striate cortex and dorsal lateral geniculate nucleus of the macaque monkey. Neuroscience 72:627–39
    [Google Scholar]
  3. Barash S, Melikyan A, Sivakov A, Tauber M. 1998. Shift of visual fixation dependent on background illumination. J. Neurophysiol. 79:2766–81
    [Google Scholar]
  4. Bashivan P, Kar K, DiCarlo JJ. 2019. Neural population control via deep image synthesis. Science 364:eaav9436
    [Google Scholar]
  5. Bassett DS, Cullen KE, Eickhoff SB, Farah MJ, Goda Y et al. 2020. Reflections on the past two decades of neuroscience. Nat. Rev. Neurosci. 21:524–34
    [Google Scholar]
  6. Basso MA, May PJ 2017. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3:197–226
    [Google Scholar]
  7. Baumann MP, Bogadhi AR, Denninger AF, Hafed ZM. 2022. Sensory tuning in neuronal movement commands. bioRxiv 2022.11.08.515621. https://doi.org/10.1101/2022.11.08.515621
    [Crossref]
  8. Beltramo R, Scanziani M. 2019. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363:64–69
    [Google Scholar]
  9. Bender DB, Davidson RM. 1986. Global visual processing in the monkey superior colliculus. Brain Res. 381:372–75
    [Google Scholar]
  10. Bogadhi AR, Buonocore A, Hafed ZM. 2020. Task-irrelevant visual forms facilitate covert and overt spatial selection. J. Neurosci. 40:9496–506
    [Google Scholar]
  11. Bogadhi AR, Hafed ZM. 2022. Express detection and discrimination of visual objects by primate superior colliculus neurons. bioRxiv 2022.02.08.479583. https://doi.org/10.1101/2022.02.08.479583
    [Crossref]
  12. Bogadhi AR, Katz LN, Bollimunta A, Leopold DA, Krauzlis RJ. 2021. Midbrain activity shapes high-level visual properties in the primate temporal cortex. Neuron 109:690–99.e5
    [Google Scholar]
  13. Bollmann JH. 2019. The zebrafish visual system: from circuits to behavior. Annu. Rev. Vis. Sci. 5:269–93
    [Google Scholar]
  14. Bredfeldt CE, Ringach DL. 2002. Dynamics of spatial frequency tuning in macaque V1. J. Neurosci. 22:1976–84
    [Google Scholar]
  15. Buonocore A, Baumann MP, Hafed ZM. 2020. Visual pattern analysis by motor neurons (abstract). Computational and Systems Neuroscience (COSYNE) 2020 Conference147 N.p.: COSYNE
    [Google Scholar]
  16. Cang J, Savier E, Barchini J, Liu X. 2018. Visual function, organization, and development of the mouse superior colliculus. Annu. Rev. Vis. Sci. 4:239–62
    [Google Scholar]
  17. Cerkevich CM, Lyon DC, Balaram P, Kaas JH. 2014. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye Brain 2014:121–37
    [Google Scholar]
  18. Chang DHF, Hess RF, Mullen KT. 2016. Color responses and their adaptation in human superior colliculus and lateral geniculate nucleus. NeuroImage 138:211–20
    [Google Scholar]
  19. Chen CY, Hafed ZM. 2018. Orientation and contrast tuning properties and temporal flicker fusion characteristics of primate superior colliculus neurons. Front. Neural Circuits 12:58
    [Google Scholar]
  20. Chen CY, Hoffmann KP, Distler C, Hafed ZM. 2019. The foveal visual representation of the primate superior colliculus. Curr. Biol. 29:2109–19.e7
    [Google Scholar]
  21. Chen CY, Ignashchenkova A, Thier P, Hafed ZM. 2015. Neuronal response gain enhancement prior to microsaccades. Curr. Biol. 25:2065–74
    [Google Scholar]
  22. Chen CY, Sonnenberg L, Weller S, Witschel T, Hafed ZM. 2018. Spatial frequency sensitivity in macaque midbrain. Nat. Commun. 9:2852
    [Google Scholar]
  23. Churan J, Guitton D, Pack CC. 2012. Spatiotemporal structure of visual receptive fields in macaque superior colliculus. J. Neurophysiol. 108:2653–67
    [Google Scholar]
  24. Cooper EA, Norcia AM. 2015. Predicting cortical dark/bright asymmetries from natural image statistics and early visual transforms. PLOS Comput. Biol. 11:e1004268
    [Google Scholar]
  25. Cowey A, Perry VH. 1980. The projection of the fovea to the superior colliculus in rhesus monkeys. Neuroscience 5:53–61
    [Google Scholar]
  26. Cynader M, Berman N. 1972. Receptive-field organization of monkey superior colliculus. J. Neurophysiol. 35:187–201
    [Google Scholar]
  27. Davidson RM, Bender DB. 1991. Selectivity for relative motion in the monkey superior colliculus. J. Neurophysiol. 65:1115–33
    [Google Scholar]
  28. Davidson RM, Joly TJ, Bender DB. 1992. Effect of corticotectal tract lesions on relative motion selectivity in the monkey superior colliculus. Exp. Brain Res. 92:246–58
    [Google Scholar]
  29. Dow BM, Snyder AZ, Vautin RG, Bauer R. 1981. Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp. Brain Res. 44:213–28
    [Google Scholar]
  30. Drager UC, Hubel DH. 1976. Topography of visual and somatosensory projections to mouse superior colliculus. J. Neurophysiol. 39:91–101
    [Google Scholar]
  31. Edelman JA, Goldberg ME. 2001. Dependence of saccade-related activity in the primate superior colliculus on visual target presence. J. Neurophysiol. 86:676–91
    [Google Scholar]
  32. Edelman JA, Goldberg ME. 2003. Saccade-related activity in the primate superior colliculus depends on the presence of local landmarks at the saccade endpoint. J. Neurophysiol. 90:1728–36
    [Google Scholar]
  33. Ellis EM, Gauvain G, Sivyer B, Murphy GJ. 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:602–10
    [Google Scholar]
  34. Feinberg EH, Meister M. 2015. Orientation columns in the mouse superior colliculus. Nature 519:229–32
    [Google Scholar]
  35. Foster RE, Hall WC. 1975. The connections and laminar organization of the optic tectum in a reptile (Iguana iguana). J. Comp. Neurol. 163:397–425
    [Google Scholar]
  36. Fries W. 1984. Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase. J. Comp. Neurol. 230:55–76
    [Google Scholar]
  37. Gandhi NJ, Katnani HA. 2011. Motor functions of the superior colliculus. Annu. Rev. Neurosci. 34:205–31
    [Google Scholar]
  38. Gibaldi A, Banks MS. 2019. Binocular eye movements are adapted to the natural environment. J. Neurosci. 39:2877–88
    [Google Scholar]
  39. Goldberg ME, Wurtz RH. 1972. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35:542–59
    [Google Scholar]
  40. Hafed ZM. 2013. Alteration of visual perception prior to microsaccades. Neuron 77:775–86
    [Google Scholar]
  41. Hafed ZM 2016. Saccades and smooth pursuit eye movements. From Neuron to Cognition via Computational Neuroscience MA Arbib, JJ Bonaiuto 559–84. Cambridge, MA: MIT Press
    [Google Scholar]
  42. Hafed ZM, Chen C-Y. 2016. Sharper, stronger, faster upper visual field representation in primate superior colliculus. Curr. Biol. 26:1647–58
    [Google Scholar]
  43. Hafed ZM, Chen C-Y, Khademi F. 2022. Superior colliculus visual neural sensitivity at the lower limit of natural self-induced image displacements. bioRxiv 2022.06.26.497631. https://doi.org/10.1101/2022.06.26.497631
    [Crossref]
  44. Hafed ZM, Chen C-Y, Tian X. 2015. Vision, perception, and attention through the lens of microsaccades: mechanisms and implications. Front. Syst. Neurosci. 9:167
    [Google Scholar]
  45. Hafed ZM, Chen C-Y, Tian X, Baumann M, Zhang T. 2021. Active vision at the foveal scale in the primate superior colliculus. J. Neurophysiol. 125:1121–38
    [Google Scholar]
  46. Hafed ZM, Goffart L. 2020. Gaze direction as equilibrium: more evidence from spatial and temporal aspects of small-saccade triggering in the rhesus macaque monkey. J. Neurophysiol. 123:308–22
    [Google Scholar]
  47. Hafed ZM, Goffart L, Krauzlis RJ. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323:940–43
    [Google Scholar]
  48. Hafed ZM, Krauzlis RJ. 2008. Goal representations dominate superior colliculus activity during extrafoveal tracking. J. Neurosci. 28:9426–39
    [Google Scholar]
  49. Hall N, Colby C. 2014. S-cone visual stimuli activate superior colliculus neurons in old world monkeys: implications for understanding blindsight. J. Cogn. Neurosci. 26:1234–56
    [Google Scholar]
  50. Hall NJ, Colby CL. 2016. Express saccades and superior colliculus responses are sensitive to short-wavelength cone contrast. PNAS 113:6743–48
    [Google Scholar]
  51. He S, Cavanagh P, Intriligator J. 1996. Attentional resolution and the locus of visual awareness. Nature 383:334–37
    [Google Scholar]
  52. Hendrickson A, Wilson ME, Toyne MJ. 1970. The distribution of optic nerve fibers in Macaca mulatta. Brain Res. 23:425–27
    [Google Scholar]
  53. Herman JP, Krauzlis RJ. 2017. Color-change detection activity in the primate superior colliculus. eNeuro 4:ENEURO.0046-17.2017
    [Google Scholar]
  54. Himmelbach M, Linzenbold W, Ilg UJ. 2013. Dissociation of reach-related and visual signals in the human superior colliculus. NeuroImage 82:61–67
    [Google Scholar]
  55. Hubel DH, LeVay S, Wiesel TN. 1975. Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res. 96:25–40
    [Google Scholar]
  56. Huberman AD, Niell CM. 2011. What can mice tell us about how vision works?. Trends Neurosci. 34:464–73
    [Google Scholar]
  57. Humphrey NK. 1968. Responses to visual stimuli of units in the superior colliculus of rats and monkeys. Exp. Neurol. 20:312–40
    [Google Scholar]
  58. Isa T, Marquez-Legorreta E, Grillner S, Scott EK. 2021. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr. Biol. 31:R741–62
    [Google Scholar]
  59. Isa T, Yoshida M. 2021. Neural mechanism of blindsight in a macaque model. Neuroscience 469:138–61
    [Google Scholar]
  60. Ito S, Feldheim DA. 2018. The mouse superior colliculus: an emerging model for studying circuit formation and function. Front Neural Circuits 12:10
    [Google Scholar]
  61. Kadoya S, Massopust LC Jr., Wolin LR. 1971a. Striate cortex-superior colliculus projection in squirrel monkey. Exp. Neurol. 32:98–110
    [Google Scholar]
  62. Kadoya S, Wolin LR, Massopust LC Jr 1971b. Photically evoked unit activity in the tectum opticum of the squirrel monkey. J. Comp. Neurol. 142:495–508
    [Google Scholar]
  63. Katyal S, Ress D. 2014. Endogenous attention signals evoked by threshold contrast detection in human superior colliculus. J. Neurosci. 34:892–900
    [Google Scholar]
  64. Katyal S, Zughni S, Greene C, Ress D. 2010. Topography of covert visual attention in human superior colliculus. J. Neurophysiol. 104:3074–83
    [Google Scholar]
  65. Keller EL. 1974. Participation of medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol. 37:316–32
    [Google Scholar]
  66. Keller EL 1977. Control of saccadic eye movements by midline brain stem neurons. Control of Gaze by Brain Stem Neurons R Baker, A Berthoz 327–36. Amsterdam: Elsevier
    [Google Scholar]
  67. Kinoshita M, Kato R, Isa K, Kobayashi K, Kobayashi K et al. 2019. Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nat. Commun. 10:135
    [Google Scholar]
  68. Ko HK, Poletti M, Rucci M. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13:1549–53
    [Google Scholar]
  69. Krauzlis RJ. 2004. Activity of rostral superior colliculus neurons during passive and active viewing of motion. J. Neurophysiol. 92:949–58
    [Google Scholar]
  70. Krauzlis RJ, Basso MA, Wurtz RH. 1997. Shared motor error for multiple eye movements. Science 276:1693–95
    [Google Scholar]
  71. Krauzlis RJ, Lovejoy LP, Zenon A. 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82
    [Google Scholar]
  72. Kroell LM, Rolfs M. 2021. The peripheral sensitivity profile at the saccade target reshapes during saccade preparation. Cortex 139:12–26
    [Google Scholar]
  73. Kroell LM, Rolfs M 2022. Foveal vision anticipates defining features of eye movement targets. eLife 11:e78106
    [Google Scholar]
  74. Le QV, Le QV, Nishimaru H, Matsumoto J, Takamura Y et al. 2020. A prototypical template for rapid face detection is embedded in the monkey superior colliculus. Front. Syst. Neurosci. 14:5
    [Google Scholar]
  75. Lee C, Rohrer WH, Sparks DL. 1988. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–60
    [Google Scholar]
  76. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH. 1959. What the frog's eye tells the frog's brain. Proc. IRE 47:1940–51
    [Google Scholar]
  77. Li X, Basso MA. 2008. Preparing to move increases the sensitivity of superior colliculus neurons. J. Neurosci. 28:4561–77
    [Google Scholar]
  78. Linzenbold W, Himmelbach M. 2012. Signals from the deep: reach-related activity in the human superior colliculus. J. Neurosci. 32:13881–88
    [Google Scholar]
  79. Linzenbold W, Lindig T, Himmelbach M. 2011. Functional neuroimaging of the oculomotor brainstem network in humans. NeuroImage 57:1116–23
    [Google Scholar]
  80. Lock TM, Baizer JS, Bender DB. 2003. Distribution of corticotectal cells in macaque. Exp. Brain Res. 151:455–70
    [Google Scholar]
  81. Loureiro JR, Hagberg GE, Ethofer T, Erb M, Bause J et al. 2017. Depth-dependence of visual signals in the human superior colliculus at 9.4 T. Hum. Brain Mapp. 38:574–87
    [Google Scholar]
  82. Loureiro JR, Himmelbach M, Ethofer T, Pohmann R, Martin P et al. 2018. In-vivo quantitative structural imaging of the human midbrain and the superior colliculus at 9.4T. NeuroImage 177:117–28
    [Google Scholar]
  83. Lui F, Gregory KM, Blanks RH, Giolli RA. 1995. Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey. J. Comp. Neurol. 363:439–60
    [Google Scholar]
  84. Lund RD. 1972. Synaptic patterns in the superficial layers of the superior colliculus of the monkey, Macaca mulatta. Exp. Brain Res. 15:194–211
    [Google Scholar]
  85. Maior RS, Hori E, Barros M, Teixeira DS, Tavares MC et al. 2011. Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys. Neurosci. Lett. 504:257–60
    [Google Scholar]
  86. Maior RS, Hori E, Uribe CE, Saletti PG, Ono T et al. 2012. A role for the superior colliculus in the modulation of threat responsiveness in primates: toward the ontogenesis of the social brain. Rev. Neurosci. 23:697–706
    [Google Scholar]
  87. Malevich T, Buonocore A, Hafed ZM 2020. Rapid stimulus-driven modulation of slow ocular position drifts. eLife 9:e57595
    [Google Scholar]
  88. Malevich T, Zhang T, Baumann MP, Bogadhi AR, Hafed ZM. 2022. Faster detection of “darks” than “brights” by monkey superior colliculus neurons. J. Neurosci. 42:9356–71
    [Google Scholar]
  89. Marchiafava PL, Pepeu G. 1966. The responses of units in the superior colliculus of the cat to a moving visual stimulus. Experientia 22:51–53
    [Google Scholar]
  90. Marrocco RT, Li RH. 1977. Monkey superior colliculus: properties of single cells and their afferent inputs. J. Neurophysiol. 40:844–60
    [Google Scholar]
  91. Massot C, Jagadisan UK, Gandhi NJ. 2019. Sensorimotor transformation elicits systematic patterns of activity along the dorsoventral extent of the superior colliculus in the macaque monkey. Commun. Biol 2:287
    [Google Scholar]
  92. Matthis JS, Yates JL, Hayhoe MM. 2018. Gaze and the control of foot placement when walking in natural terrain. Curr. Biol. 28:1224–33.e5
    [Google Scholar]
  93. May PJ. 2006. The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151:321–78
    [Google Scholar]
  94. Mazer JA, Vinje WE, McDermott J, Schiller PH, Gallant JL. 2002. Spatial frequency and orientation tuning dynamics in area V1. PNAS 99:1645–50
    [Google Scholar]
  95. McIlwain JT, Buser P. 1968. Receptive fields of single cells in the cat's superior colliculus. Exp. Brain Res. 5:314–25
    [Google Scholar]
  96. Michael CR. 1970. Integration of retinal and cortical information in the superior colliculus of the ground squirrel. Brain Behav. Evol. 3:205–9
    [Google Scholar]
  97. Mohler CW, Wurtz RH. 1976. Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. J. Neurophysiol. 39:722–44
    [Google Scholar]
  98. Montardy Q, Kwan WC, Mundinano IC, Fox DM, Wang L et al. 2021. Mapping the neural circuitry of predator fear in the nonhuman primate. Brain Struct. Funct. 226:195–205
    [Google Scholar]
  99. Moore T, Tolias AS, Schiller PH. 1998. Visual representations during saccadic eye movements. PNAS 95:8981–84
    [Google Scholar]
  100. Moors J, Vendrik AJ. 1979a. Responses of single units in the monkey superior colliculus to moving stimuli. Exp. Brain Res. 35:349–69
    [Google Scholar]
  101. Moors J, Vendrik AJ. 1979b. Responses of single units in the monkey superior colliculus to stationary flashing stimuli. Exp. Brain Res. 35:333–47
    [Google Scholar]
  102. Munoz DP, Wurtz RH. 1993. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J. Neurophysiol. 70:559–75
    [Google Scholar]
  103. Nagy A, Kruse W, Rottmann S, Dannenberg S, Hoffmann KP. 2006. Somatosensory-motor neuronal activity in the superior colliculus of the primate. Neuron 52:525–34
    [Google Scholar]
  104. Nguyen MN, Matsumoto J, Hori E, Maior RS, Tomaz C et al. 2014. Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Front. Behav. Neurosci. 8:85
    [Google Scholar]
  105. Nuthmann A, Clayden AC, Fisher RB. 2021. The effect of target salience and size in visual search within naturalistic scenes under degraded vision. J. Vis. 21:2
    [Google Scholar]
  106. Ottes FP, Van Gisbergen JA, Eggermont JJ. 1986. Visuomotor fields of the superior colliculus: a quantitative model. Vis. Res. 26:857–73
    [Google Scholar]
  107. Perry VH, Cowey A. 1984. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–37
    [Google Scholar]
  108. Philipp R, Hoffmann KP. 2014. Arm movements induced by electrical microstimulation in the superior colliculus of the macaque monkey. J. Neurosci. 34:3350–63
    [Google Scholar]
  109. Pollack JG, Hickey TL. 1979. The distribution of retino-collicular axon terminals in rhesus monkey. J. Comp. Neurol. 185:587–602
    [Google Scholar]
  110. Previc FH. 1990. Functional specialization in the lower and upper visual-fields in humans—its ecological origins and neurophysiological implications. Behav. Brain Sci. 13:519–75
    [Google Scholar]
  111. Purushothaman G, Chen X, Yampolsky D, Casagrande VA. 2014. Neural mechanisms of coarse-to-fine discrimination in the visual cortex. J. Neurophysiol. 112:2822–33
    [Google Scholar]
  112. Rahmati M, DeSimone K, Curtis CE, Sreenivasan KK. 2020. Spatially specific working memory activity in the human superior colliculus. J. Neurosci. 40:9487–95
    [Google Scholar]
  113. Robinson DA. 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12:1795–808
    [Google Scholar]
  114. Robinson DL, Wurtz RH. 1976. Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. J. Neurophysiol. 39:852–70
    [Google Scholar]
  115. Rubin N, Nakayama K, Shapley R. 1996. Enhanced perception of illusory contours in the lower versus upper visual hemifields. Science 271:651–53
    [Google Scholar]
  116. Ruderman DL, Bialek W. 1994. Statistics of natural images: scaling in the woods. Phys. Rev. Lett. 73:814–17
    [Google Scholar]
  117. Savjani RR, Katyal S, Halfen E, Kim JH, Ress D. 2018. Polar-angle representation of saccadic eye movements in human superior colliculus. NeuroImage 171:199–208
    [Google Scholar]
  118. Schiller PH, Koerner F. 1971. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 34:920–36
    [Google Scholar]
  119. Schiller PH, Malpeli JG. 1977. Properties and tectal projections of monkey retinal ganglion cells. J. Neurophysiol. 40:428–45
    [Google Scholar]
  120. Schiller PH, Malpeli JG, Schein SJ. 1979. Composition of geniculostriate input ot superior colliculus of the rhesus monkey. J. Neurophysiol. 42:1124–33
    [Google Scholar]
  121. Schiller PH, Stryker M, Cynader M, Berman N. 1974. Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J. Neurophysiol. 37:181–94
    [Google Scholar]
  122. Schneider GE. 1967. Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychol. Forsch. 31:52–62
    [Google Scholar]
  123. Schneider KA, Kastner S. 2005. Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. J. Neurophysiol. 94:2491–503
    [Google Scholar]
  124. Soares SC, Maior RS, Isbell LA, Tomaz C, Nishijo H. 2017. Fast detector/first responder: interactions between the superior colliculus-pulvinar pathway and stimuli relevant to primates. Front. Neurosci. 11:67
    [Google Scholar]
  125. Sommer MA, Wurtz RH. 2002. A pathway in primate brain for internal monitoring of movements. Science 296:1480–82
    [Google Scholar]
  126. Sommer MA, Wurtz RH. 2004. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91:1381–402
    [Google Scholar]
  127. Sommer MA, Wurtz RH. 2006. Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–77
    [Google Scholar]
  128. Sprague JM. 1966. Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153:1544–47
    [Google Scholar]
  129. Sprague JM, Berlucchi G, Di Berardino A. 1970. The superior colliculus and pretectum in visually guided behavior and visual discrimination in the cat. Brain Behav. Evol. 3:285–94
    [Google Scholar]
  130. Sprague JM, Meikle TH Jr. 1965. The role of the superior colliculus in visually guided behavior. Exp. Neurol. 11:115–46
    [Google Scholar]
  131. Sprague WW, Cooper EA, Reissier S, Yellapragada B, Banks MS. 2016. The natural statistics of blur. J. Vis. 16:23
    [Google Scholar]
  132. Sterling P, Wickelgren BG. 1969. Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32:1–15
    [Google Scholar]
  133. Straschill M, Hoffmann KP. 1969. Functional aspects of localization in the cat's tectum opticum. Brain Res. 13:274–83
    [Google Scholar]
  134. Tailby C, Cheong SK, Pietersen AN, Solomon SG, Martin PR. 2012. Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. J. Physiol. 590:4061–77
    [Google Scholar]
  135. Tolhurst DJ, Tadmor Y, Chao T. 1992. Amplitude spectra of natural images. Ophthalmic Physiol. Opt. 12:229–32
    [Google Scholar]
  136. Trevethan CT, Sahraie A. 2003. Spatial and temporal processing in a subject with cortical blindness following occipital surgery. Neuropsychologia 41:1296–306
    [Google Scholar]
  137. Udin SB. 2007. The instructive role of binocular vision in the Xenopus tectum. Biol. Cybern. 97:493–503
    [Google Scholar]
  138. Updyke BV. 1974. Characteristics of unit responses in superior colliculus of the Cebus monkey. J. Neurophysiol. 37:896–909
    [Google Scholar]
  139. Werner W, Dannenberg S, Hoffmann KP. 1997. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Exp. Brain Res. 115:191–205
    [Google Scholar]
  140. White BJ, Berg DJ, Kan JY, Marino RA, Itti L, Munoz DP. 2017. Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nat. Commun. 8:14263
    [Google Scholar]
  141. White BJ, Boehnke SE, Marino RA, Itti L, Munoz DP. 2009. Color-related signals in the primate superior colliculus. J. Neurosci. 29:12159–66
    [Google Scholar]
  142. White BJ, Stritzke M, Gegenfurtner KR. 2008. Saccadic facilitation in natural backgrounds. Curr. Biol. 18:124–28
    [Google Scholar]
  143. Wickelgren BG, Sterling P. 1969. Influence of visual cortex on receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32:16–23
    [Google Scholar]
  144. Willeke KF, Tian X, Buonocore A, Bellet J, Ramirez-Cardenas A, Hafed ZM. 2019. Memory-guided microsaccades. Nat. Commun. 10:3710
    [Google Scholar]
  145. Wilson ME, Toyne MJ. 1970. Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res. 24:395–406
    [Google Scholar]
  146. Wurtz RH. 2008. Neuronal mechanisms of visual stability. Vis. Res. 48:2070–89
    [Google Scholar]
  147. Wurtz RH, Sommer MA, Cavanaugh J. 2005. Drivers from the deep: the contribution of collicular input to thalamocortical processing. Prog. Brain Res. 149:207–25
    [Google Scholar]
  148. Wylie DR, Gutierrez-Ibanez C, Pakan JM, Iwaniuk AN. 2009. The optic tectum of birds: mapping our way to understanding visual processing. Can. J. Exp. Psychol. 63:328–38
    [Google Scholar]
  149. Yeh CI, Xing D, Shapley RM. 2009. “Black” responses dominate macaque primary visual cortex v1. J. Neurosci. 29:11753–60
    [Google Scholar]
  150. Zhang T, Malevich T, Baumann MP, Hafed ZM. 2022. Superior colliculus saccade motor bursts do not dictate movement kinematics. Commun. Biol. 5:1222
    [Google Scholar]
/content/journals/10.1146/annurev-vision-111022-123817
Loading
/content/journals/10.1146/annurev-vision-111022-123817
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error