1932

Abstract

Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111022-123830
2023-09-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-111022-123830.html?itemId=/content/journals/10.1146/annurev-vision-111022-123830&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DL, Horton JC. 2009. Ocular dominance columns: enigmas and challenges. Neuroscientist 15:162–77
    [Google Scholar]
  2. Adams DL, Sincich LC, Horton JC. 2007. Complete pattern of ocular dominance columns in human primary visual cortex. J. Neurosci. 27:3910391–403
    [Google Scholar]
  3. Aitken F, Menelaou G, Warrington O, Koolschijn RS, Corbin N et al. 2020. Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex. PLOS Biol. 18:12e3001023
    [Google Scholar]
  4. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. 1992. Time course EPI of human brain function during task activation. Magn. Reson. Med. 25:390–97
    [Google Scholar]
  5. Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R et al. 2019. Clinical 7T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br. J. Radiol. 92:20180492
    [Google Scholar]
  6. Bettencourt KC, Xu Y. 2015. Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nat. Neurosci. 19:1150–57
    [Google Scholar]
  7. Blazejewska AI, Fischl B, Wald LL, Polimeni JR. 2019. Intracortical smoothing of small-voxel fMRI data can provide increased detection power without spatial resolution losses compared to conventional large-voxel fMRI data. NeuroImage 189:601–14
    [Google Scholar]
  8. Bridge H, Parker AJ. 2007. Topographical representation of binocular depth in the human visual cortex using fMRI. J. Vis. 7:15
    [Google Scholar]
  9. Brouwer GJ, Heeger DJ. 2009. Decoding and reconstructing color from responses in human visual cortex. J. Neurosci. 29:4413992–4003
    [Google Scholar]
  10. Brouwer GJ, Heeger DJ. 2011. Cross-orientation suppression in human visual cortex. J. Neurophysiol. 106:52108–19
    [Google Scholar]
  11. Cayce JM, Friedman RM, Chen G, Jansen ED, Mahadevan-Jansen A, Roe AW. 2014. Infrared neural stimulation of primary visual cortex in non-human primates. NeuroImage 84:181–90
    [Google Scholar]
  12. Chaimow D, Yacoub E, Ugurbil K, Shmuel A. 2011. Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns. NeuroImage 56:2627–42
    [Google Scholar]
  13. Chen N, Bi T, Zhou T, Li S, Liu Z, Fang F. 2015. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning. NeuroImage 115:17–29
    [Google Scholar]
  14. Cheng K. 2018. Exploration of human visual cortex using high spatial resolution functional magnetic resonance imaging. NeuroImage 164:4–9
    [Google Scholar]
  15. Cheng K, Waggoner RA, Tanaka K. 2001. Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–74
    [Google Scholar]
  16. Chernov MM, Friedman RM, Chen G, Stoner GR, Roe AW. 2018. Functionally specific optogenetic modulation in primate visual cortex. PNAS 115:4110505–10
    [Google Scholar]
  17. de Martino F, Moerel M, Ugurbil K, Goebel R, Yacoub E, Formisano E. 2015. Frequency preference and attention effects across cortical depths in the human primary auditory cortex. PNAS 112:5216036–41
    [Google Scholar]
  18. D'Esposito M, Postle BR 2015. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66:115–42
    [Google Scholar]
  19. Di Russo F, Spinelli D, Morrone MC. 2001. Automatic gain control contrast mechanisms are modulated by attention in humans: evidence from visual evoked potentials. Vis. Res. 41:2435–47
    [Google Scholar]
  20. Dorjee D, Bowers JS. 2012. What can fMRI tell us about the locus of learning?. Cortex 48:4509–14
    [Google Scholar]
  21. Douglas RJ, Martin KAC. 2007. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17:13496–500
    [Google Scholar]
  22. Dowdle LT, Ghose G, Chen CCC, Ugurbil K, Yacoub E, Vizioli L. 2021. Statistical power or more precise insights into neuro-temporal dynamics? Assessing the benefits of rapid temporal sampling in fMRI. Prog. Neurobiol. 207:102171
    [Google Scholar]
  23. Engel SA, Wandell BA, Glover GG. 1997. Retintopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7:2181–92
    [Google Scholar]
  24. Ester EF, Nouri A, Rodriguez L. 2018. Retrospective cues mitigate information loss in human cortex during working memory storage. J. Neurosci. 38:408538–48
    [Google Scholar]
  25. Ester EF, Sprague TC, Serences JT. 2015. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87:4893–905
    [Google Scholar]
  26. Ester EF, Sutterer DW, Serences JT, Awh E. 2016. Feature-selective attentional modulations in human frontoparietal cortex. J. Neurosci. 36:318188–99
    [Google Scholar]
  27. Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. 2019. Layer-dependent activity in human prefrontal cortex during working memory. Nat. Neurosci. 22:101687–95
    [Google Scholar]
  28. Fracasso A, Petridou N, Dumoulin SO. 2016. Systematic variation of population receptive field properties across cortical depth in human visual cortex. NeuroImage 139:427–38
    [Google Scholar]
  29. Fukuda M, Moon C-H, Wang P, Kim S-G. 2006. Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J. Neurosci. 26:4611821–32
    [Google Scholar]
  30. Gardner JL, Liu T. 2019. Inverted encoding models reconstruct an arbitrary model response, not the stimulus. eNeuro 6:2 ENEURO.0363-18.2019
    [Google Scholar]
  31. Gau R, Bazin PL, Trampel R, Turner R, Noppeney U. 2020. Resolving multisensory and attentional influences across cortical depth in sensory cortices. eLife 9:e46856
    [Google Scholar]
  32. Gilbert CD, Li W. 2012. Adult visual cortical plasticity. Neuron 75:2250–64
    [Google Scholar]
  33. Gilbert CD, Wiesel T. 1983. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3:51116–33
    [Google Scholar]
  34. Goa PE, Koopmans PJ, Poser BA, Barth M, Norris DG. 2014. Bold fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla. Front. Neurosci. 8:49
    [Google Scholar]
  35. Goense J, Bohraus Y, Logothetis NK. 2016. fMRI at high spatial resolution: implications for BOLD-models. Front. Comput. Neurosci. 10:66
    [Google Scholar]
  36. Goldman-Rakic PS. 1995. Cellular basis of working memory review. Neuron 14:477–85
    [Google Scholar]
  37. Goncalves NR, Ban H, Sánchez-Panchuelo RM, Francis ST, Schluppeck D, Welchman AE. 2015. 7 Tesla fMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. J. Neurosci. 35:73056–72
    [Google Scholar]
  38. Harrison SA, Tong F. 2009. Decoding reveals the contents of visual working memory in early visual areas. Nature 458:7238632–35
    [Google Scholar]
  39. Haynes J-D, Rees G. 2005. Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat. Neurosci. 8:5686–91
    [Google Scholar]
  40. Hooks BM, Chen C. 2020. Circuitry underlying experience-dependent plasticity in the mouse visual system. Neuron 106:121–36
    [Google Scholar]
  41. Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T et al. 2014. Slab-selective, BOLD-corrected VASO at 7 tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magn. Reson. Med. 72:1137–48
    [Google Scholar]
  42. Huber L, Poser BA, Bandettini PA, Arora K, Wagstyl K et al. 2021a. LayNii: a software suite for layer-fMRI. NeuroImage 237:118091
    [Google Scholar]
  43. Huber L, Poser BA, Kaas AL, Fear EJ, Dresbach S et al. 2021b. Validating layer-specific VASO across species. NeuroImage 237:118195
    [Google Scholar]
  44. Iamshchinina P, Kaiser D, Yakupov R, Haenelt D, Sciarra A et al. 2021. Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Commun. Biol. 4::1069
    [Google Scholar]
  45. Ivanov D, Poser BA, Huber L, Pfeuffer J, Uludağ K. 2017. Optimization of simultaneous multislice EPI for concurrent functional perfusion and BOLD signal measurements at 7T. Magn. Reson. Med. 78:1121–29
    [Google Scholar]
  46. Jia K, Li Y, Gong M, Huang H, Wang Y, Li S. 2021a. Perceptual learning beyond perception: mnemonic representation in early visual cortex and intraparietal sulcus. J. Neurosci. 41:204476–86
    [Google Scholar]
  47. Jia K, Zamboni E, Kemper V, Rua C, Goncalves NR et al. 2020. Recurrent processing drives perceptual plasticity. Curr. Biol. 30:214177–87.e4
    [Google Scholar]
  48. Jia K, Zamboni E, Rua C, Goncalves NR, Kemper V et al. 2021b. A protocol for ultra-high field laminar fMRI in the human brain. STAR Protoc. 2:2100415
    [Google Scholar]
  49. Kamitani Y, Tong F. 2005. Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8:5679–85
    [Google Scholar]
  50. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:114302–11
    [Google Scholar]
  51. Kashyap S, Ivanov D, Havlicek M, Poser BA, Uludağ K. 2018. Impact of acquisition and analysis strategies on cortical depth-dependent fMRI. NeuroImage 168:332–44
    [Google Scholar]
  52. Kay K, Jamison KW, Zhang RY, Uğurbil K. 2020. A temporal decomposition method for identifying venous effects in task-based fMRI. Nat. Methods 17:101033–39
    [Google Scholar]
  53. Kay KN, Rokem A, Winawer J, Dougherty RF, Wandell BA. 2013. GLMdenoise: a fast, automated technique for denoising task-based fMRI data. Front. Neurosci. 7:247
    [Google Scholar]
  54. Kemper VG, de Martino F, Emmerling TC, Yacoub E, Goebel R. 2018. High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4 T. NeuroImage 164:48–58
    [Google Scholar]
  55. Kiebel SJ, Goebel R, Friston KJ. 2000. Anatomically informed basis functions. NeuroImage 11:6656–67
    [Google Scholar]
  56. Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S et al. 2021. Combining brain perturbation and neuroimaging in non-human primates. NeuroImage 235:118017
    [Google Scholar]
  57. Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. 2016. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr. Biol. 26:3371–76
    [Google Scholar]
  58. Koopmans PJ, Yacoub E. 2019. Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies. NeuroImage 197:668–76
    [Google Scholar]
  59. Krause F, Benjamins C, Eck J, Lührs M, van Hoof R, Goebel R. 2019. Active head motion reduction in magnetic resonance imaging using tactile feedback. Hum. Brain Mapp. 40:144026–37
    [Google Scholar]
  60. Kuehn E, Sereno MI. 2018. Modelling the human cortex in three dimensions. Trends Cogn. Sci. 22:121071–73
    [Google Scholar]
  61. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. PNAS 89:5675–79
    [Google Scholar]
  62. Larkum ME, Petro LS, Sachdev RNS, Muckli L. 2018. A perspective on cortical layering and layer-spanning neuronal elements. Front. Neuroanat. 12:56
    [Google Scholar]
  63. Lawrence SJD, Norris DG, de Lange FP. 2019. Dissociable laminar profiles of concurrent bottom-up and top-down modulation in the human visual cortex. eLife 8:e44422
    [Google Scholar]
  64. Lawrence SJD, van Mourik T, Kok P, Koopmans PJ, Norris DG, de Lange FP. 2018. Laminar organization of working memory signals in human visual cortex. Curr. Biol. 28:213435–40.e4
    [Google Scholar]
  65. Liu C, Guo F, Qian C, Zhang Z, Sun K et al. 2021. Layer-dependent multiplicative effects of spatial attention on contrast responses in human early visual cortex. Prog. Neurobiol. 207:101897
    [Google Scholar]
  66. Liu T, Cable D, Gardner JL. 2018. Inverted encoding models of human population response conflate noise and neural tuning width. J. Neurosci. 38:2398–408
    [Google Scholar]
  67. Lu H, Golay X, Pekar JJ, van Zijl PCM. 2003. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn. Reson. Med. 50:2263–74
    [Google Scholar]
  68. MacLaren J, Armstrong BSR, Barrows RT, Danishad KA, Ernst T et al. 2012. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLOS ONE 7:11e48088
    [Google Scholar]
  69. Malach R, Amir Y, Harel M, Grinvald A. 1993. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. PNAS 90:2210469–73
    [Google Scholar]
  70. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran RE et al. 2014. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522:225–59
    [Google Scholar]
  71. Masse NY, Hodnefield JM, Freedman DJ. 2017. Mnemonic encoding and cortical organization in parietal and prefrontal cortices. J. Neurosci. 37:256098–112
    [Google Scholar]
  72. McAdams CJ, Maunsell JHR. 1999. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19:1431–41
    [Google Scholar]
  73. Menon RS, Ogawa S, Strupp JP, Uǧurbil K. 1997. Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J. Neurophysiol. 77:52780–87
    [Google Scholar]
  74. Moerel M, de Martino F, Ugurbil K, Formisano E, Yacoub E. 2018. Evaluating the columnar stability of acoustic processing in the human auditory cortex. J. Neurosci. 38:367822–32
    [Google Scholar]
  75. Moon CH, Fukuda M, Park SH, Kim SG. 2007. Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J. Neurosci. 27:266892–902
    [Google Scholar]
  76. Muckli L, de Martino F, Vizioli L, Ugurbil K, Goebel R et al. 2015. Contextual feedback to superficial layers of V1. Curr. Biol. 25:202690–95
    [Google Scholar]
  77. Nasr S, Polimeni JR, Tootell RBH. 2016. Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J. Neurosci. 36:61841–57
    [Google Scholar]
  78. Ng AKT, Jia K, Goncalves NR, Zamboni E, Kemper VG et al. 2021. Ultra-high-field neuroimaging reveals fine-scale processing for 3D perception. J. Neurosci. 41:418362–74
    [Google Scholar]
  79. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G et al. 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. PNAS 89:5951–55
    [Google Scholar]
  80. Oshio K, Feinberg DA. 1991. GRASE (Gradient- and Spin-Echo) imaging: a novel fast MRI technique. Magn. Reson. Med. 20:2344–49
    [Google Scholar]
  81. Pizzuti A, Huber L, Gulban OF, Benitez-Andonegui A, Peters J, Goebel R. 2023. Imaging the columnar functional organization of human area MT+ to axis-of-motion stimuli using VASO at 7 Tesla. bioRxiv 2022.07.29.502034. https://doi.org/10.1101/2022.07.29.502034
  82. Polimeni JR, Fischl B, Greve DN, Wald LL. 2010. Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. NeuroImage 52:41334–46
    [Google Scholar]
  83. Polimeni JR, Renvall V, Zaretskaya N, Fischl B. 2018. Analysis strategies for high-resolution UHF-fMRI data. NeuroImage 168:296–320
    [Google Scholar]
  84. Poltoratski S, Maier A, Newton AT, Tong F. 2019. Figure-ground modulation in the human lateral geniculate nucleus is distinguishable from top-down attention. Curr. Biol. 29:122051–57.e3
    [Google Scholar]
  85. Preston TJ, Li S, Kourtzi Z, Welchman AE. 2008. Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. J. Neurosci. 28:4411315–27
    [Google Scholar]
  86. Qian Y, Zou J, Zhang Z, An J, Zuo Z et al. 2020. Robust functional mapping of layer-selective responses in human lateral geniculate nucleus with high-resolution 7T fMRI. Proc. R. Soc. B 287:192520200245
    [Google Scholar]
  87. Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:2168–85
    [Google Scholar]
  88. Reynolds JH, Pasternak T, Desimone R. 2000. Attention increases sensitivity of V4 neurons. Neuron 26:703–14
    [Google Scholar]
  89. Riggall AC, Postle BR. 2012. The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32:3812990–98
    [Google Scholar]
  90. Rockland KS, Pandya DN. 1979. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179:3–20
    [Google Scholar]
  91. Rutland JW, Delman BN, Gill CM, Zhu C, Shrivastava RK, Balchandani P. 2020. Emerging use of ultra-high-field 7 T MRI in the study of intracranial vascularity: state of the field and future directions. Am. J. Neuroradiol. 41:12–9
    [Google Scholar]
  92. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR et al. 2004. Thinning of the cerebral cortex in aging. Cereb. Cortex 14:7721–30
    [Google Scholar]
  93. Scheeringa R, Fries P. 2019. Cortical layers, rhythms and BOLD signals. NeuroImage 197:689–98
    [Google Scholar]
  94. Scheeringa R, Koopmans PJ, van Mourik T, Jensen O, Norris DG. 2016. The relationship between oscillatory EEG activity and the laminar-specific BOLD signal. PNAS 113:246761–66
    [Google Scholar]
  95. Schneider M, Kemper VG, Emmerling TC, de Martino F, Goebel R. 2019. Columnar clusters in the human motion complex reflect consciously perceived motion axis. PNAS 116:115096–101
    [Google Scholar]
  96. Schoups A, Vogels R, Qian N, Orban G. 2001. Practising orientation identification improves orientation coding in V1 neurons. Nature 412:2549–53
    [Google Scholar]
  97. Schwabe L, Obermayer K. 2005. Adaptivity of tuning functions in a generic recurrent network model of a cortical hypercolumn. J. Neurosci. 25:133323–32
    [Google Scholar]
  98. Self MW, van Kerkoerle T, Goebel R, Roelfsema PR. 2019. Benchmarking laminar fMRI: neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. NeuroImage 197:806–17
    [Google Scholar]
  99. Self MW, van Kerkoerle T, Supèr H, Roelfsema PR. 2013. Distinct roles of the cortical layers of area V1 in figure-ground segregation. Curr. Biol. 23:212121–29
    [Google Scholar]
  100. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW et al. 1995. Borders of multiple visual areas in humans revealed by functional MRI. Science 268:889–93
    [Google Scholar]
  101. Shushruth S, Mangapathy P, Ichida JM, Bressloff PC, Schwabe L, Angelucci A. 2012. Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex. J. Neurosci. 32:1308–21
    [Google Scholar]
  102. Siero JCW, Petridou N, Hoogduin H, Luijten PR, Ramsey NF. 2011. Cortical depth-dependent temporal dynamics of the BOLD response in the human brain. J. Cereb. Blood Flow Metab. 31:101999–2008
    [Google Scholar]
  103. Speck O, Hennig J, Zaitsev M. 2006. Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects. Magn. Reson. Mater. Phys. Biol. Med. 19:255–61
    [Google Scholar]
  104. Sprague TC, Ester EF, Serences JT. 2016. Restoring latent visual working memory representations in human cortex. Neuron 91:3694–707
    [Google Scholar]
  105. Sprague TC, Serences JT. 2013. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. Nat. Neurosci. 16:121879–87
    [Google Scholar]
  106. Sreenivasan KK, D'Esposito M 2019. The what, where and how of delay activity. Nat. Rev. Neurosci. 20:8466–81
    [Google Scholar]
  107. Sun P, Gardner JL, Costagli M, Ueno K, Waggoner RA et al. 2013. Demonstration of tuning to stimulus orientation in the human visual cortex: a high-resolution fMRI study with a novel continuous and periodic stimulation paradigm. Cereb. Cortex 23:71618–29
    [Google Scholar]
  108. Thesen S, Heid O, Mueller E, Schad LR. 2000. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn. Reson. Med. 44:3457–65
    [Google Scholar]
  109. Toi PT, Jang HJ, Min K, Kim S-P, Lee S-K et al. 2022. In vivo direct imaging of neuronal activity at high temporospatial resolution. Science 378:160–68
    [Google Scholar]
  110. Tootell RBH, Nasr S. 2017. Columnar segregation of magnocellular and parvocellular streams in human extrastriate cortex. J. Neurosci. 37:338014–32
    [Google Scholar]
  111. Trattnig S, Springer E, Bogner W, Hangel G, Strasser B et al. 2018. Key clinical benefits of neuroimaging at 7 T. NeuroImage 168:477–89
    [Google Scholar]
  112. Turner R. 2002. How much codex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. NeuroImage 16:41062–67
    [Google Scholar]
  113. Ugurbil K. 2016. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Philos. Trans. R. Soc. B 371:170520150361
    [Google Scholar]
  114. van den Heuvel MP, Sporns O. 2019. A cross-disorder connectome landscape of brain dysconnectivity. Nat. Rev. Neurosci. 20:7435–46
    [Google Scholar]
  115. van Mourik T, van der Eerden JPJM, Bazin PL, Norris DG. 2019. Laminar signal extraction over extended cortical areas by means of a spatial GLM. PLOS ONE 14:3e0212493
    [Google Scholar]
  116. Vizioli L, Moeller S, Dowdle L, Akçakaya M, de Martino F et al. 2021. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat. Commun. 12:5181
    [Google Scholar]
  117. Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P et al. 2014. Anatomically motivated modeling of cortical laminae. NeuroImage 93:210–20
    [Google Scholar]
  118. Welchman AE. 2016. The human brain in depth: how we see in 3D. Annu. Rev. Vis. Sci. 2:345–76
    [Google Scholar]
  119. Xu AG, Qian M, Tian F, Xu B, Friedman RM et al. 2019. Focal infrared neural stimulation with high-field functional MRI: a rapid way to map mesoscale brain connectomes. Sci. Adv. 5:4eaau7046
    [Google Scholar]
  120. Yacoub E, Harel N, Uǧurbil K. 2008. High-field fMRI unveils orientation columns in humans. PNAS 105:3010607–12
    [Google Scholar]
  121. Yacoub E, Shmuel A, Logothetis N, Uǧurbil K. 2007. Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. NeuroImage 37:41161–77
    [Google Scholar]
  122. Yang Z, Zhuang X, Sreenivasan K, Mishra V, Curran T, Cordes D. 2020. A robust deep neural network for denoising task-based fMRI data: an application to working memory and episodic memory. Med. Image Anal. 60:101622
    [Google Scholar]
  123. Yu M, Sporns O, Saykin AJ. 2021. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nat. Rev. Neurol. 17:9545–63
    [Google Scholar]
  124. Yu Y, Huber L, Yang J, Jangraw DC, Handwerker DA et al. 2019. Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Sci. Adv. 5:5eaav905
    [Google Scholar]
  125. Zamboni E, Kemper VG, Goncalves NR, Jia K, Karlaftis VM et al. 2020. Fine-scale computations for adaptive processing in the human brain. eLife 9:e57637
    [Google Scholar]
  126. Zimmermann J, Goebel R, de Martino F, van de Moortele PF, Feinberg D et al. 2011. Mapping the organization of axis of motion selective features in human area MT using high-field fMRI. PLOS ONE 6:12e28716
    [Google Scholar]
/content/journals/10.1146/annurev-vision-111022-123830
Loading
/content/journals/10.1146/annurev-vision-111022-123830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error