Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS. et al. 2001. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28:92–95 [Google Scholar]
  2. Adams MK, Belyaeva OV, Wu L, Kedishvili NY. 2014. The retinaldehyde reductase activity of DHRS3 is reciprocally activated by retinol dehydrogenase 10 to control retinoid homeostasis. J. Biol. Chem. 289:14868–80 [Google Scholar]
  3. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA. et al. 1997a. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–7 [Google Scholar]
  4. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A. et al. 1997b. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 15:236–46 [Google Scholar]
  5. Amengual J, Golczak M, Palczewski K, von Lintig J. 2012. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. J. Biol. Chem. 287:24216–27 [Google Scholar]
  6. Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K, Von Lintig J. 2014. STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum. Mol. Genet. 23:5402–17 [Google Scholar]
  7. Anantharaman V, Aravind L. 2003. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 4:R11 [Google Scholar]
  8. Andrews JS, Futterman S. 1964. Metabolism of the retina. V. The role of microsomes in vitamin A esterification in the visual cycle. J. Biol. Chem. 239:4073–76 [Google Scholar]
  9. Angel TE, Gupta S, Jastrzebska B, Palczewski K, Chance MR. 2009. Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. PNAS 106:14367–72 [Google Scholar]
  10. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R. et al. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358:2231–39 [Google Scholar]
  11. Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR. et al. 2004. Lecithin–retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. J. Biol. Chem. 279:10422–32 [Google Scholar]
  12. Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L. et al. 2005. Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLOS Med. 2:1177–89 [Google Scholar]
  13. Bavik C, Henry SH, Zhang Y, Mitts K, McGinn T. et al. 2015. Visual cycle modulation as an approach toward preservation of retinal integrity. PLOS ONE 10:e0124940 [Google Scholar]
  14. Bernstein PS, Law WC, Rando RR. 1987. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. PNAS 84:1849–53 [Google Scholar]
  15. Bernstein PS, Rando RR. 1986. In vivo isomerization of all-trans- to 11-cis-retinoids in the eye occurs at the alcohol oxidation state. Biochemistry 25:6473–78 [Google Scholar]
  16. Bouillet P, Sapin V, Chazaud C, Messaddeq N, Decimo D. et al. 1997. Developmental expression pattern of Stra6, a retinoic acid–responsive gene encoding a new type of membrane protein. Mech. Dev. 63:173–86 [Google Scholar]
  17. Bunt-Milam AH, Saari JC. 1983. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biol. 97:703–12 [Google Scholar]
  18. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M. et al. 2012. Mechanism of all-trans-retinal toxicity with implications for Stargardt disease and age-related macular degeneration. J. Biol. Chem. 287:5059–69 [Google Scholar]
  19. Chen Y, Palczewska G, Mustafi D, Golczak M, Dong Z. et al. 2013. Systems pharmacology identifies drug targets for Stargardt disease–associated retinal degeneration. J. Clin. Investig. 123:5119–34 [Google Scholar]
  20. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF. et al. 2011. Crystal structure of metarhodopsin II. Nature 471:651–55 [Google Scholar]
  21. Chou CM, Nelson C, Tarle SA, Pribila JT, Bardakjian T. et al. 2015. Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. Cell 161:634–46 [Google Scholar]
  22. Cideciyan AV. 2010. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog. Retin. Eye Res. 29:398–427 [Google Scholar]
  23. Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB. et al. 2009. ABCA4 disease progression and a proposed strategy for gene therapy. Hum. Mol. Genet. 18:931–41 [Google Scholar]
  24. Cowan SW, Newcomer ME, Jones TA. 1993. Crystallographic studies on a family of cellular lipophilic transport proteins: refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with all-trans-retinol. J. Mol. Biol. 230:1225–46 [Google Scholar]
  25. Deigner PS, Law WC, Canada FJ, Rando RR. 1989. Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science 244:968–71 [Google Scholar]
  26. den Hollander AI, McGee TL, Ziviello C, Banfi S, Dryja TP. et al. 2009. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 50:1864–72 [Google Scholar]
  27. Devine EL, Oprian DD, Theobald DL. 2013. Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. PNAS 110:13351–55 [Google Scholar]
  28. Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG. et al. 1986. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79 [Google Scholar]
  29. Dobri N, Qin Q, Kong J, Yamamoto K, Liu Z. et al. 2013. A1120, a nonretinoid RBP4 antagonist, inhibits formation of cytotoxic bisretinoids in the animal model of enhanced retinal lipofuscinogenesis. Investig. Ophthalmol. Vis. Sci. 54:85–95 [Google Scholar]
  30. Dowling JE. 1960. Chemistry of visual adaptation in the rat. Nature 188:114–18 [Google Scholar]
  31. Driessen CA, Winkens HJ, Hoffmann K, Kuhlmann LD, Janssen BP. et al. 2000. Disruption of the 11-cis-retinol dehydrogenase gene leads to accumulation of cis-retinols and cis-retinyl esters. Mol. Cell. Biol. 20:4275–87 [Google Scholar]
  32. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS. et al. 1990. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–66 [Google Scholar]
  33. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–97 [Google Scholar]
  34. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114:126–63 [Google Scholar]
  35. Farjo KM, Moiseyev G, Nikolaeva O, Sandell LL, Trainor PA, Ma JX. 2011. RDH10 is the primary enzyme responsible for the first step of embryonic vitamin A metabolism and retinoic acid synthesis. Dev. Biol. 357:347–55 [Google Scholar]
  36. Farjo KM, Moiseyev G, Takahashi Y, Crouch RK, Ma JX. 2009. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Investig. Ophthalmol. Vis. Sci. 50:5089–97 [Google Scholar]
  37. Fleisch VC, Schonthaler HB, von Lintig J, Neuhauss SC. 2008. Subfunctionalization of a retinoid-binding protein provides evidence for two parallel visual cycles in the cone-dominant zebrafish retina. J. Neurosci. 28:8208–16 [Google Scholar]
  38. Fong SL, Bridges CD. 1988. Internal quadruplication in the structure of human interstitial retinol-binding protein deduced from its cloned cDNA. J. Biol. Chem. 263:15330–34 [Google Scholar]
  39. Golczak M, Imanishi Y, Kuksa V, Maeda T, Kubota R, Palczewski K. 2005a. Lecithin:retinol acyltransferase is responsible for amidation of retinylamine, a potent inhibitor of the retinoid cycle. J. Biol. Chem. 280:42263–73 [Google Scholar]
  40. Golczak M, Kuksa V, Maeda T, Moise AR, Palczewski K. 2005b. Positively charged retinoids are potent and selective inhibitors of the transcis isomerization in the retinoid (visual) cycle. PNAS 102:8162–67 [Google Scholar]
  41. Golczak M, Sears AE, Kiser PD, Palczewski K. 2015. LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. Nat. Chem. Biol. 11:26–32 [Google Scholar]
  42. Goldstein EB. 1970. Cone pigment regeneration in the isolated frog retina. Vis. Res. 10:1065–68 [Google Scholar]
  43. Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B. et al. 2007. Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am. J. Hum. Genet. 80:1179–87 [Google Scholar]
  44. Gu SM, Thompson DA, Srikumari CR, Lorenz B, Finckh U. et al. 1997. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 17:194–97 [Google Scholar]
  45. Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K. 1998. Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J. Biol. Chem. 273:21790–99 [Google Scholar]
  46. Haeseleer F, Jang GF, Imanishi Y, Driessen CA, Matsumura M. et al. 2002. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J. Biol. Chem. 277:45537–46 [Google Scholar]
  47. Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM. 1993. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J. Biol. Chem. 268:15751–57 [Google Scholar]
  48. Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI. 2012. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J. Clin. Investig. 122:3221–26 [Google Scholar]
  49. Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E. et al. 1983. The structure of bovine rhodopsin. Biophys. Struct. Mech. 9:235–44 [Google Scholar]
  50. He XQ, Lobsiger J, Stocker A. 2009. Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. PNAS 106:18545–50 [Google Scholar]
  51. Hubbard R, Wald G. 1952. Cistrans isomers of vitamin A and retinene in the rhodopsin system. J. Gen. Physiol. 36:269–315 [Google Scholar]
  52. Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M. et al. 1997. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat. Genet. 15:216–19 [Google Scholar]
  53. Illing M, Molday LL, Molday RS. 1997. The 220-kDa Rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J. Biol. Chem. 272:10303–10 [Google Scholar]
  54. Imanishi Y, Batten ML, Piston DW, Baehr W, Palczewski K. 2004. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. J. Cell Biol. 164:373–83 [Google Scholar]
  55. Isken A, Golczak M, Oberhauser V, Hunzelmann S, Driever W. et al. 2008. RBP4 disrupts vitamin A uptake homeostasis in a STRA6-deficient animal model for Matthew-Wood syndrome. Cell Metab. 7:258–68 [Google Scholar]
  56. Jacobson SG, Aleman TS, Cideciyan AV, Heon E, Golczak M. et al. 2007. Human cone photoreceptor dependence on RPE65 isomerase. PNAS 104:15123–28 [Google Scholar]
  57. Jacobson SG, Cideciyan AV, Regunath G, Rodriguez FJ, Vandenburgh K. et al. 1995. Night blindness in Sorsby's fundus dystrophy reversed by vitamin A. Nat. Genet. 11:27–32 [Google Scholar]
  58. Janecke AR, Thompson DA, Utermann G, Becker C, Hubner CA. et al. 2004. Mutations in RDH12 encoding a photoreceptor cell retinol dehydrogenase cause childhood-onset severe retinal dystrophy. Nat. Genet. 36:850–54 [Google Scholar]
  59. Jang GF, McBee JK, Alekseev AM, Haeseleer F, Palczewski K. 2000. Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. J. Biol. Chem. 275:28128–38 [Google Scholar]
  60. Jin M, Li S, Moghrabi WN, Sun H, Travis GH. 2005. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122:449–59 [Google Scholar]
  61. Kanai M, Raz A, Goodman DS. 1968. Retinol-binding protein: the transport protein for vitamin A in human plasma. J. Clin. Investig. 47:2025–44 [Google Scholar]
  62. Kanan Y, Kasus-Jacobi A, Moiseyev G, Sawyer K, Ma JX, Al-Ubaidi MR. 2008. Retinoid processing in cone and Müller cell lines. Exp. Eye Res. 86:344–54 [Google Scholar]
  63. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J. et al. 2007. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–25 [Google Scholar]
  64. Kawaguchi R, Yu J, Ter-Stepanian M, Zhong M, Cheng G. et al. 2011. Receptor-mediated cellular uptake mechanism that couples to intracellular storage. ACS Chem. Biol. 6:1041–51 [Google Scholar]
  65. Kawaguchi R, Yu J, Wiita P, Honda J, Sun H. 2008. An essential ligand-binding domain in the membrane receptor for retinol-binding protein revealed by large-scale mutagenesis and a human polymorphism. J. Biol. Chem. 283:15160–68 [Google Scholar]
  66. Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J. et al. 2013. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat. Chem. Biol. 9:30–36 [Google Scholar]
  67. Kessler C, Tillman M, Burns ME, Pugh EN Jr. 2014. Rhodopsin in the rod surface membrane regenerates more rapidly than bulk rhodopsin in the disc membranes in vivo. J. Physiol. 592:2785–97 [Google Scholar]
  68. Kevany BM, Palczewski K. 2010. Phagocytosis of retinal rod and cone photoreceptors. Physiology 25:8–15 [Google Scholar]
  69. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR. 2007. The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. PNAS 104:19273–78 [Google Scholar]
  70. Kim TS, Maeda A, Maeda T, Heinlein C, Kedishvili N. et al. 2005. Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: a role of RDH11 in visual processes in vivo. J. Biol. Chem. 280:8694–704 [Google Scholar]
  71. Kiser PD, Farquhar ER, Shi W, Sui X, Chance MR, Palczewski K. 2012a. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. PNAS 109:E2747–56 [Google Scholar]
  72. Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K. 2009. Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. PNAS 106:17325–30 [Google Scholar]
  73. Kiser PD, Golczak M, Maeda A, Palczewski K. 2012b. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim. Biophys. Acta 1821:137–51 [Google Scholar]
  74. Kiser PD, Golczak M, Palczewski K. 2014. Chemistry of the retinoid (visual) cycle. Chem. Rev. 114:194–232 [Google Scholar]
  75. Kiser PD, Zhang J, Badiee M, Li Q, Shi W. et al. 2015. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nat. Chem. Biol. 11:409–15 [Google Scholar]
  76. Koenekoop RK, Sui R, Sallum J, van den Born LI, Ajlan R. et al. 2014. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet 384:1513–20 [Google Scholar]
  77. Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D. 2012. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina 32:183–88 [Google Scholar]
  78. Kühne W. 1977. Chemical processes in the retina. Vis. Res. 17:1269–316 [Google Scholar]
  79. Kwok-Keung Fung B, Stryer L. 1980. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. PNAS 77:2500–4 [Google Scholar]
  80. Lai YL, Wiggert B, Liu YP, Chader GJ. 1982. Interphotoreceptor retinol-binding proteins: possible transport vehicles between compartments of the retina. Nature 298:848–49 [Google Scholar]
  81. Loew A, Gonzalez-Fernandez F. 2002. Crystal structure of the functional unit of interphotoreceptor retinoid binding protein. Structure 10:43–49 [Google Scholar]
  82. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. 2003. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–47 [Google Scholar]
  83. Ma L, Kaufman Y, Zhang J, Washington I. 2011. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J. Biol. Chem. 286:7966–74 [Google Scholar]
  84. MacDonald PN, Ong DE. 1987. Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II. J. Biol. Chem. 262:10550–56 [Google Scholar]
  85. MacDonald PN, Ong DE. 1988. A lecithin:retinol acyltransferase activity in human and rat liver. Biochem. Biophys. Res. Commun. 156:157–63 [Google Scholar]
  86. Maeda A, Golczak M, Chen Y, Okano K, Kohno H. et al. 2012. Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat. Chem. Biol. 8:170–78 [Google Scholar]
  87. Maeda A, Maeda T, Golczak M, Chou S, Desai A. et al. 2009a. Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J. Biol. Chem. 284:15173–83 [Google Scholar]
  88. Maeda A, Maeda T, Golczak M, Imanishi Y, Leahy P. et al. 2006a. Effects of potent inhibitors of the retinoid cycle on visual function and photoreceptor protection from light damage in mice. Mol. Pharmacol. 70:1220–29 [Google Scholar]
  89. Maeda A, Maeda T, Imanishi Y, Kuksa V, Alekseev A. et al. 2005. Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. J. Biol. Chem. 280:18822–32 [Google Scholar]
  90. Maeda A, Maeda T, Imanishi Y, Sun W, Jastrzebska B. et al. 2006b. Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice. J. Biol. Chem. 281:37697–704 [Google Scholar]
  91. Maeda A, Maeda T, Palczewski K. 2006c. Improvement in rod and cone function in mouse model of Fundus albipunctatus after pharmacologic treatment with 9-cis-retinal. Investig. Ophthalmol. Vis. Sci. 47:4540–46 [Google Scholar]
  92. Maeda A, Maeda T, Sun W, Zhang H, Baehr W, Palczewski K. 2007. Redundant and unique roles of retinol dehydrogenases in the mouse retina. PNAS 104:19565–70 [Google Scholar]
  93. Maeda A, Palczewska G, Golczak M, Kohno H, Dong Z. et al. 2014. Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. PNAS 111:E1428–37 [Google Scholar]
  94. Maeda T, Cideciyan AV, Maeda A, Golczak M, Aleman TS. et al. 2009b. Loss of cone photoreceptors caused by chromophore depletion is partially prevented by the artificial chromophore pro-drug, 9-cis-retinyl acetate. Hum. Mol. Genet. 18:2277–87 [Google Scholar]
  95. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr., Mingozzi F. et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:2240–48 [Google Scholar]
  96. Marlhens F, Bareil C, Griffoin JM, Zrenner E, Amalric P. et al. 1997. Mutations in RPE65 cause Leber's congenital amaurosis. Nat. Genet. 17:139–41 [Google Scholar]
  97. Mata NL, Lichter JB, Vogel R, Han Y, Bui TV, Singerman LJ. 2013. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina 33:498–507 [Google Scholar]
  98. Mata NL, Radu RA, Clemmons RC, Travis GH. 2002. Isomerization and oxidation of vitamin A in cone-dominant retinas: a novel pathway for visual-pigment regeneration in daylight. Neuron 36:69–80 [Google Scholar]
  99. Maw MA, Kennedy B, Knight A, Bridges R, Roth KE. et al. 1997. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat. Genet. 17:198–200 [Google Scholar]
  100. McBee JK, Kuksa V, Alvarez R, de Lera AR, Prezhdo O. et al. 2000. Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. Biochemistry 39:11370–80 [Google Scholar]
  101. McBee JK, Palczewski K, Baehr W, Pepperberg DR. 2001. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog. Retin. Eye Res. 20:469–529 [Google Scholar]
  102. Moise AR, Golczak M, Imanishi Y, Palczewski K. 2007. Topology and membrane association of lecithin:retinol acyltransferase. J. Biol. Chem. 282:2081–90 [Google Scholar]
  103. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX. 2005. RPE65 is the isomerohydrolase in the retinoid visual cycle. PNAS 102:12413–18 [Google Scholar]
  104. Molday LL, Rabin AR, Molday RS. 2000. ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat. Genet. 25:257–58 [Google Scholar]
  105. Monaco HL, Rizzi M, Coda A. 1995. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268:1039–41 [Google Scholar]
  106. Mondal MS, Ruiz A, Bok D, Rando RR. 2000. Lecithin retinol acyltransferase contains cysteine residues essential for catalysis. Biochemistry 39:5215–20 [Google Scholar]
  107. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. 1998. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. PNAS 95:3088–93 [Google Scholar]
  108. Muniz A, Betts BS, Trevino AR, Buddavarapu K, Roman R. et al. 2009. Evidence for two retinoid cycles in the cone-dominated chicken eye. Biochemistry 48:6854–63 [Google Scholar]
  109. Nathans J. 1990. Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry 29:9746–52 [Google Scholar]
  110. Nathans J, Hogness DS. 1983. Isolation, sequence analysis, and intron–exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–14 [Google Scholar]
  111. Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U. et al. 1984. The three-dimensional structure of retinol-binding protein. EMBO J. 3:1451–54 [Google Scholar]
  112. Nociari MM, Lehmann GL, Perez Bay AE, Radu RA, Jiang Z. et al. 2014. Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium. PNAS 111:E1402–8 [Google Scholar]
  113. Ong DE, Chytil F. 1975. Specificity of cellular retinol-binding protein for compounds with vitamin A activity. Nature 255:74–75 [Google Scholar]
  114. Palczewski K. 2006. G protein–coupled receptor rhodopsin. Annu. Rev. Biochem. 75:743–67 [Google Scholar]
  115. Palczewski K. 2010. Retinoids for treatment of retinal diseases. Trends Pharmacol. Sci. 31:284–95 [Google Scholar]
  116. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H. et al. 2000. Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289:739–45 [Google Scholar]
  117. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD. et al. 2003. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–27 [Google Scholar]
  118. Papermaster DS, Schneider BG, Zorn MA, Kraehenbuhl JP. 1978. Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J. Cell Biol. 78:415–25 [Google Scholar]
  119. Parker RO, Crouch RK. 2010. Retinol dehydrogenases (RDHs) in the visual cycle. Exp. Eye Res. 91:788–92 [Google Scholar]
  120. Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR. et al. 2007. Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am. J. Hum. Genet. 80:550–60 [Google Scholar]
  121. Poliakov E, Gubin AN, Stearn O, Li Y, Campos MM. et al. 2012. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates. PLOS ONE 7:e49975 [Google Scholar]
  122. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R. et al. 1999. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 18:4633–44 [Google Scholar]
  123. Quazi F, Lenevich S, Molday RS. 2012. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat. Commun. 3:925 [Google Scholar]
  124. Quazi F, Molday RS. 2014. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. PNAS 111:5024–29 [Google Scholar]
  125. Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH. 2008. Retinal pigment epithelium–retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J. Biol. Chem. 283:19730–38 [Google Scholar]
  126. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH. 2003. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt's macular degeneration. PNAS 100:4742–47 [Google Scholar]
  127. Rattner A, Smallwood PM, Nathans J. 2000. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J. Biol. Chem. 275:11034–43 [Google Scholar]
  128. Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. 2005. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. PNAS 102:13658–63 [Google Scholar]
  129. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D. et al. 1998. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20:344–51 [Google Scholar]
  130. Ripps H. 2008. The color purple: milestones in photochemistry. FASEB J. 22:4038–43 [Google Scholar]
  131. Ruiz A, Mark M, Jacobs H, Klopfenstein M, Hu J. et al. 2012. Retinoid content, visual responses, and ocular morphology are compromised in the retinas of mice lacking the retinol-binding protein receptor, STRA6. Investig. Ophthalmol. Vis. Sci. 53:3027–39 [Google Scholar]
  132. Ruiz A, Winston A, Lim YH, Gilbert BA, Rando RR, Bok D. 1999. Molecular and biochemical characterization of lecithin retinol acyltransferase. J. Biol. Chem. 274:3834–41 [Google Scholar]
  133. Saari JC. 2012. Vitamin A metabolism in rod and cone visual cycles. Annu. Rev. Nutr. 32:125–45 [Google Scholar]
  134. Saari JC, Bredberg DL. 1989. Lecithin:retinol acyltransferase in retinal pigment epithelial microsomes. J. Biol. Chem. 264:8636–40 [Google Scholar]
  135. Saari JC, Bredberg L, Garwin GG. 1982. Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J. Biol. Chem. 257:13329–33 [Google Scholar]
  136. Saari JC, Bunt AH, Futterman S, Berman ER. 1977. Localization of cellular retinal-binding protein in bovine retina and retinal pigment epithelium, with a consideration of the pigment epithelium isolation technique. Investig. Ophthalmol. Vis. Sci. 16:797–806 [Google Scholar]
  137. Saari JC, Nawrot M, Garwin GG, Kennedy MJ, Hurley JB. et al. 2002. Analysis of the visual cycle in cellular retinol-binding protein type I (CRBPI) knockout mice. Investig. Ophthalmol. Vis. Sci. 43:1730–35 [Google Scholar]
  138. Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB. et al. 2001. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739–48 [Google Scholar]
  139. Sakami S, Maeda T, Bereta G, Okano K, Golczak M. et al. 2011. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J. Biol. Chem. 286:10551–67 [Google Scholar]
  140. Sakmar TP, Franke RR, Khorana HG. 1989. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. PNAS 86:8309–13 [Google Scholar]
  141. Schertler GF, Villa C, Henderson R. 1993. Projection structure of rhodopsin. Nature 362:770–72 [Google Scholar]
  142. Sibulesky L, Hayes KC, Pronczuk A, Weigel-DiFranco C, Rosner B, Berson EL. 1999. Safety of <7500 RE (<25000 IU) vitamin A daily in adults with retinitis pigmentosa. Am. J. Clin. Nutr. 69:656–63 [Google Scholar]
  143. Simon A, Hellman U, Wernstedt C, Eriksson U. 1995. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J. Biol. Chem. 270:1107–12 [Google Scholar]
  144. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK. et al. 2012. The bisretinoids of retinal pigment epithelium. Prog. Retin. Eye Res. 31:121–35 [Google Scholar]
  145. Spudich JL, Yang CS, Jung KH, Spudich EN. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16:365–92 [Google Scholar]
  146. Sun H, Smallwood PM, Nathans J. 2000. Biochemical defects in ABCR protein variants associated with human retinopathies. Nat. Genet. 26:242–46 [Google Scholar]
  147. Thompson DA, Li Y, McHenry CL, Carlson TJ, Ding X. et al. 2001. Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy. Nat. Genet. 28:123–24 [Google Scholar]
  148. Trapani I, Colella P, Sommella A, Iodice C, Cesi G. et al. 2014. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol. Med. 6:194–211 [Google Scholar]
  149. Travis GH, Golczak M, Moise AR, Palczewski K. 2007. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu. Rev. Pharmacol. Toxicol. 47:469–512 [Google Scholar]
  150. Tsybovsky Y, Molday RS, Palczewski K. 2010. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. Adv. Exp. Med. Biol. 703:105–25 [Google Scholar]
  151. Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K. 2013. Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure 21:854–60 [Google Scholar]
  152. Van Gelder RN. 2008. Non-visual photoreception: sensing light without sight. Curr. Biol. 18:R38–R39 [Google Scholar]
  153. Van Hooser JP, Aleman TS, He YG, Cideciyan AV, Kuksa V. et al. 2000. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. PNAS 97:8623–28 [Google Scholar]
  154. Van Hooser JP, Liang Y, Maeda T, Kuksa V, Jang GF. et al. 2002. Recovery of visual functions in a mouse model of Leber congenital amaurosis. J. Biol. Chem. 277:19173–82 [Google Scholar]
  155. Wald G. 1968. The molecular basis of visual excitation. Nature 219:800–7 [Google Scholar]
  156. Wang JS, Estevez ME, Cornwall MC, Kefalov VJ. 2009. Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nat. Neurosci. 12:295–302 [Google Scholar]
  157. Wang JS, Kefalov VJ. 2011. The cone-specific visual cycle. Prog. Retin. Eye Res. 30:115–28 [Google Scholar]
  158. Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV. 1994. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266:422–24 [Google Scholar]
  159. Wenzel A, Oberhauser V, Pugh EN Jr., Lamb TD, Grimm C. et al. 2005. The retinal G protein–coupled receptor (RGR) enhances isomerohydrolase activity independent of light. J. Biol. Chem. 280:29874–84 [Google Scholar]
  160. Woodruff ML, Wang Z, Chung HY, Redmond TM, Fain GL, Lem J. 2003. Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat. Genet. 35:158–64 [Google Scholar]
  161. Wu BX, Chen Y, Fan J, Rohrer B, Crouch RK, Ma JX. 2002. Cloning and characterization of a novel all-trans retinol short-chain dehydrogenase/reductase from the RPE. Investig. Ophthalmol. Vis. Sci. 43:3365–72 [Google Scholar]
  162. Wu BX, Moiseyev G, Chen Y, Rohrer B, Crouch RK, Ma JX. 2004. Identification of RDH10, an all-trans retinol dehydrogenase, in retinal Müller cells. Investig. Ophthalmol. Vis. Sci. 45:3857–62 [Google Scholar]
  163. Xie YA, Lee W, Cai C, Gambin T, Noupuu K. et al. 2014. New syndrome with retinitis pigmentosa is caused by nonsense mutations in retinol dehydrogenase RDH11. Hum. Mol. Genet. 23:5774–80 [Google Scholar]
  164. Yamamoto H, Simon A, Eriksson U, Harris E, Berson EL, Dryja TP. 1999. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat. Genet. 22:188–91 [Google Scholar]
  165. Zhang J, Kiser PD, Badiee M, Palczewska G, Dong Z. et al. 2015. Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J. Clin. Investig. 125:2781–94 [Google Scholar]
  166. Zimmerman WF. 1976. Subcellular distribution of 11-cis retinol dehydrogenase activity in bovine pigment epithelium. Exp. Eye Res. 23:159–64 [Google Scholar]
  167. Zimmerman WF, Lion F, Daemen FJ, Bonting SL. 1975. Biochemical aspects of the visual process. XXX. Distribution of stereospecific retinol dehydrogenase activities in subcellular fractions of bovine retina and pigment epithelium. Exp. Eye Res. 21:325–32 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error