Glaucoma is a complex disorder of aging defined by the death of retinal ganglion cells and remodeling of connective tissues at the optic nerve head. Intraocular pressure-induced axonal injury at the optic nerve head leads to apoptosis. Loss of retinal ganglion cells follows a slowly progressive sequence. Clinical features of the disease have suggested and corroborated pathological events. The death of retinal ganglion cells causes secondary loss of neurons in the brain, but only as a by-product of injury to the retinal ganglion cells. Although therapy to lower intraocular pressure is moderately effective, new treatments are being developed to alter the remodeling of ocular connective tissue, to interrupt the injury signal from axon to soma, and to upregulate a variety of survival mechanisms.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. 2012. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 31:152–81Summarizes in detail many potential mechanisms of ganglion cell death in experimental glaucoma. [Google Scholar]
  2. Anderson DR. 1969. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch. Ophthalmol. 82:800–14 [Google Scholar]
  3. Anderson DR, Hendrickson A. 1974. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investig. Ophthalmol. Vis. Sci. 13:771–83 [Google Scholar]
  4. Andrews RM, Griffiths PG, Johnson MA, Turnbull DM. 1999. Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br. J. Ophthalmol. 83:231–35 [Google Scholar]
  5. Arciero J, Harris A, Siesky B, Amireskandari A, Gershuny V. et al. 2013. Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Investig. Ophthalmol. Vis. Sci. 54:5584–93 [Google Scholar]
  6. Beirowski B, Babetto E, Coleman MP, Martin KR. 2008. The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model. Eur. J. Neurosci. 28:1166–79 [Google Scholar]
  7. Bussel II, Wollstein G, Schuman JS. 2014. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br. J. Ophthalmol. 98:Suppl. 215–19 [Google Scholar]
  8. Calkins DJ. 2012. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog. Retin. Vis. Res. 31:702–19 [Google Scholar]
  9. Caprioli J, Miller JM. 1987. Optic disc rim area is related to disc size in normal subjects. Arch. Ophthalmol. 105:1683–85 [Google Scholar]
  10. Cellerino A, Bahr M, Isenmann S. 2000. Apoptosis in the developing visual system. Cell Tissue Res. 301:53–69 [Google Scholar]
  11. Chaturvedi N, Hedley-Whyte ET, Dreyer EB. 1993. Lateral geniculate nucleus in glaucoma. Am. J. Ophthalmol. 116:182–88 [Google Scholar]
  12. Chauhan BC, O'Leary N, Almobarak FA, Reis AS, Yang H. et al. 2013. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120:535–43 [Google Scholar]
  13. Chauhan BC, Malik R, Shuba LM, Rafuse PE, Nicolela MT, Artes PH. 2014. Rates of glaucomatous visual field change in a large clinical population. Investig. Ophthalmol. Vis. Sci. 55:4135–43 [Google Scholar]
  14. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. 2013. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr. Opin. Pharmacol. 13:36–42 [Google Scholar]
  15. Collaborative Normal-Tension Glaucoma Study Group 1998. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am. J. Ophthalmol. 126:487–97 [Google Scholar]
  16. Cordeiro MF, Guo L, Luong V, Harding G, Wang W. et al. 2004. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. PNAS 101:13352–56 [Google Scholar]
  17. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. 2012. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Investig. Ophthalmol. Vis. Sci. 53:1714–28 [Google Scholar]
  18. Crespo D, O'Leary DDM, Cowan WM. 1985. Changes in the numbers of optic nerve fibers during late prenatal and postnatal development in the albino rat. Brain Res. 19:129–34 [Google Scholar]
  19. Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ. 2010. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. PNAS 107:5196–201 [Google Scholar]
  20. Danesh-Meyer HV, Boland MV, Savino PJ, Miller NR, Subramanian PS. et al. 2010. Optic disc morphology in open angle glaucoma compared with anterior ischemic optic neuropathies. Investig. Ophthalmol. Vis. Sci. 51:2003–10 [Google Scholar]
  21. Danias J, Lee KC, Zamora MF, Chen B, Shen F. et al. 2003. Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. Investig. Ophthalmol. Vis. Sci. 44:5151–62 [Google Scholar]
  22. Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO. 2013. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 33:17444–57 [Google Scholar]
  23. Drance SM. 1972. Some factors in the production of low tension glaucoma. Br. J. Ophthalmol. 56:229–42 [Google Scholar]
  24. Drance SM. 1989. Disc hemorrhages in the glaucomas. Surv. Ophthalmol. 33:331–37 [Google Scholar]
  25. El-Danaf RN, Huberman AD. 2015. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J. Neurosci. 35:2329–43 [Google Scholar]
  26. Emery JM, Landis D, Paton D, Boniuk M, Craig JM. 1974. The lamina cribrosa in normal and glaucomatous human eyes. Trans. Am. Acad. Ophthalmol. Otolaryngol. 78:OP290–97 [Google Scholar]
  27. Fariss RN, Li ZY, Milam AH. 2000. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am. J. Ophthalmol. 129:215–23 [Google Scholar]
  28. Fernandes KA, Harder JM, Fornarola LB, Freeman RS, Clark AF. et al. 2012. JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death. Neurobiol. Dis. 46:393–401 [Google Scholar]
  29. Fortune B, Burgoyne CF, Cull G, Reynaud J, Wang L. 2013. Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 54:5653–61 [Google Scholar]
  30. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. 2002. The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 86:238–42 [Google Scholar]
  31. Friedenwald JS, Wilder HC, Maumenee AE, Sanders TE, Keyes JEL. et al. 1952. Ophthalmic Pathology: An Atlas and Textbook Philadelphia: WB Saunders
  32. Gaasterland D, Tanishima T, Kuwabara T. 1978. Axoplasmic flow during chronic experimental glaucoma. 1. Light and electron microscopic studies of the monkey optic nerve head during development of glaucomatous cupping. Investig. Ophthalmol. Vis. Sci. 17:838–46 [Google Scholar]
  33. Galli-Resta L, Ensini M. 1996. An intrinsic time limit between genesis and death of individual neurons in the developing retinal ganglion cell layer. J. Neurosci. 16:2318–24 [Google Scholar]
  34. Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. 1995. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp. Eye Res. 61:33–44 [Google Scholar]
  35. Gilley J, Coleman MP. 2010. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLOS Biol. 8:e1000300 [Google Scholar]
  36. Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT, Barres BA. 2002. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33:689–702 [Google Scholar]
  37. Grytz R, Girkin CA, Libertiaux V, Downs JC. 2012. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma. Mech. Res. Commun. 42:92–106Comprehensively evaluates the role of the mechanical features of the support structures of the eye and their responses to glaucoma. [Google Scholar]
  38. Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M, Yücel YH. 2009. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br. J. Ophthalmol. 93:56–60 [Google Scholar]
  39. Hahnenberger RW. 1980. Inhibition of fast anterograde axoplasmic transport by a pressure barrier: the effect of pressure gradient and maximal pressure. Acta Physiol. Scand. 109:117–21 [Google Scholar]
  40. Hare WA, WoldeMussie E, Weinreb RN, Ton H, Ruiz G. et al. 2004. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey. II: Structural measures. Investig. Ophthalmol. Vis. Sci. 45:2640–51 [Google Scholar]
  41. Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. 2010. Linking structure and function in glaucoma. Prog. Retin. Eye Res. 29:249–71Presents an analytical framework for understanding how RGCs’ structure and their function change in experimental glaucoma. [Google Scholar]
  42. Healey PR, Mitchell P. 2000. The relationship between optic disc area and open-angle glaucoma. J. Glaucoma 9:203–4 [Google Scholar]
  43. Heijl A, Buchholz P, Norrgren G, Bengtsson B. 2013. Rates of visual field progression in clinical glaucoma care. Acta Ophthalmol. 91:406–12 [Google Scholar]
  44. Hernandez MR. 2000. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog. Retin. Eye Res. 19:297–321 [Google Scholar]
  45. Hernandez MR, Miao H, Lukas T. 2008. Astrocytes in glaucomatous optic neuropathy. Prog. Brain Res. 173:353–73Provides detailed information on the potential role of glial cells in glaucomatous neuropathy. [Google Scholar]
  46. Hollows FC, Graham PA. 1966. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br. J. Ophthalmol. 50:570–86 [Google Scholar]
  47. Howell GR, MacNicoll KH, Braine CE, Soto I, Macalinao DG. et al. 2014. Combinatorial targeting of early pathways profoundly inhibits neurodegeneration in a mouse model of glaucoma. Neurobiol. Dis. 71:44–52 [Google Scholar]
  48. Hoyt WF, Luis O. 1962. Visual fiber anatomy in the infrageniculate pathway of the primate. Arch. Ophthalmol. 68:94–106 [Google Scholar]
  49. Huang W, Fileta JB, Dobberfuhl A, Filippopolous T, Guo Y. et al. 2005. Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. PNAS 102:12242–47 [Google Scholar]
  50. Isenmann S, Kretz A, Cellerino A. 2003. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog. Retin. Eye Res. 22:483–543 [Google Scholar]
  51. Jakobs TC, Libby RT, Ben Y, John SW, Masland RH. 2005. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 171:313–25 [Google Scholar]
  52. Ju WK, Kim KY, Lindsey JD, Angert M, Duong-Polk KX. et al. 2008. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Investig. Ophthalmol. Vis. Sci. 49:4903–11 [Google Scholar]
  53. Kalesnykas G, Oglesby EN, Zack DJ, Cone FE, Steinhart MR. et al. 2012. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 53:3847–57 [Google Scholar]
  54. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN. 1995. Primary open-angle glaucoma is not associated with photoreceptor loss. Investig. Ophthalmol. Vis. Sci. 36:200–5 [Google Scholar]
  55. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME. 1997. TUNEL-positive ganglion cells in human primary open angle glaucoma. Arch. Ophthalmol. 115:1031–35 [Google Scholar]
  56. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. 2000. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investig. Ophthalmol. Vis. Sci. 41:741–48 [Google Scholar]
  57. Kielczewski JL, Pease ME, Quigley HA. 2005. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Investig. Ophthalmol. Vis. Sci. 46:3188–96 [Google Scholar]
  58. Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM. 2012. Optic disc change with incipient myopia of childhood. Ophthalmology 119:21–26 [Google Scholar]
  59. Kimball EC, Nguyen C, Steinhart MR, Nguyen T, Pease ME. et al. 2014. Experimental scleral cross-linking increases glaucoma damage in a mouse model. Exp. Eye Res. 128:129–40 [Google Scholar]
  60. Kolb H, Nelson R. 1993. OFF-alpha and OFF-beta ganglion cells in the cat retina. II. Neural circuitry as revealed by electron microscopy of HRP stains. J. Comp. Neurol. 329:85–110 [Google Scholar]
  61. Kunzevitzky NJ, Almeida MV, Duan Y, Li S, Xiang M, Goldberg JL. 2011. Foxn4 is required for retinal ganglion cell distal axon patterning. Mol. Cell. Neurosci. 46:731–41 [Google Scholar]
  62. Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S. et al. 2006. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 13:1328–41 [Google Scholar]
  63. Lee EJ, Kim TW, Weinreb RN. 2012. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology 119:1359–66 [Google Scholar]
  64. Lei Y, Garrahan N, Hermann B, Fautsch MP, Johnson DH. et al. 2011. Transretinal degeneration in ageing human retina: a multiphoton microscopy analysis. Br. J. Ophthalmol. 95:727–30 [Google Scholar]
  65. Leske MC. 2007. Open-angle glaucoma—an epidemiologic overview. Ophthalmic Epidemiology 14:166–72 [Google Scholar]
  66. Leske MC. 2009. Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr. Opin. Ophthalmol. 20:73–78 [Google Scholar]
  67. Levkovitch-Verbin H, Harizman N, Dardik R, Nisgav Y, Vander S, Melamed S. 2007. Regulation of cell death and survival pathways in experimental glaucoma. Exp. Eye Res. 85:250–58 [Google Scholar]
  68. Levkovitch-Verbin H, Makarovsky D, Vander S. 2013. Comparison between axonal and retinal ganglion cell gene expression in various optic nerve injuries including glaucoma. Mol. Vis. 19:2526–41 [Google Scholar]
  69. Levkovitch-Verbin H, Quigley HA, Martin KR, Harizman N, Valenta DF. et al. 2005. The transcription factor c-jun is activated in retinal ganglion cells in experimental rat glaucoma. Exp. Eye Res. 80:663–70 [Google Scholar]
  70. Li ZW, Liu S, Weinreb RN, Lindsey JD, Yu M. et al. 2011. Tracking dendritic shrinkage of retinal ganglion cells after acute elevation of intraocular pressure. Investig. Ophthalmol. Vis. Sci. 52:7205–12 [Google Scholar]
  71. Libby RT, Li Y, Savinova OV, Barter J, Smith RS. et al. 2005. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLOS Genet. 1:17–26 [Google Scholar]
  72. Lingor P, Koeberle P, Kugler S, Bahr M. 2005. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 128:550–58 [Google Scholar]
  73. Lubińska L. 1982. Patterns of Wallerian degeneration of myelinated fibres in short and long peripheral stumps and in isolated segments of rat phrenic nerve: interpretation of the role of axoplasmic flow of the trophic factor. Brain Res. 233:227–40 [Google Scholar]
  74. Maddess T, Severt WL. 1999. Testing for glaucoma with the frequency-doubling illusion in the whole, macular and eccentric visual fields. Aust. N. Z. J. Ophthalmol. 27:194–96 [Google Scholar]
  75. Martin KRG, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J. et al. 2003. Gene therapy with brain-derived neurotrophic factor protects retinal ganglion cells in a rat glaucoma model. Investig. Ophthalmol. Vis. Sci. 44:4357–65Presents the results of the first successful gene therapy experiment in rodent glaucoma. [Google Scholar]
  76. McKinnon SJ, Lehman DM, Tahzib NG, Ransom NL, Reitsamer HA. et al. 2002. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. 5:780–87 [Google Scholar]
  77. Medeiros FA, Zangwill LM, Anderson DR, Liebmann JM, Girkin CA. et al. 2012. Estimating the rate of retinal ganglion cell loss in glaucoma. Am. J. Ophthalmol. 154:814–24 [Google Scholar]
  78. Minckler DS. 1980. The organization of nerve fiber bundles in the primate optic nerve head. Arch. Ophthalmol. 98:1630–36 [Google Scholar]
  79. Minckler DS, Bunt AH, Klock IB. 1978. Radioautographic and cytochemical ultrastructural studies of axoplasmic transport in the monkey optic nerve head. Investig. Ophthalmol. Vis. Sci. 17:33–50 [Google Scholar]
  80. Minckler DS, McLean IW, Tso MO. 1976a. Distribution of axonal and glial elements in the rhesus optic nerve head studied by electron microscopy. Am. J. Ophthalmol. 82:179–87 [Google Scholar]
  81. Minckler DS, Tso MO, Zimmerman LE. 1976b. A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am. J. Ophthalmol. 82:741–57 [Google Scholar]
  82. Morgan WH, Yu D-Y, Alder VA, Cringle SJ, Cooper RL. et al. 1998. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Investig. Ophthalmol. Vis. Sci. 39:1419–28 [Google Scholar]
  83. Mosinger Ogilvie J, Deckwerth TL, Knudson CM, Korsmeyer SJ. 1998. Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. Investig. Ophthalmol. Vis. Sci. 39:1713–20 [Google Scholar]
  84. Murphy JA, Clarke DB. 2006. Target-derived neurotrophins may influence the survival of adult retinal ganglion cells when local neurotrophic support is disrupted: implications for glaucoma. Med. Hypotheses 67:1208–12 [Google Scholar]
  85. Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP. et al. 2014. Displaced retinal ganglion cells in albino and pigmented rats. Front. Neuroanat. 8:99 [Google Scholar]
  86. Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T. et al. 2006. Tumor necrosis factor-α mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J. Neurosci. 26:12633–41 [Google Scholar]
  87. Nelson R, Famiglietti EV, Kolb H. 1978. Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina. J. Neurophysiol. 41:472–83 [Google Scholar]
  88. Neufeld AH, Sawada A, Becker B. 1999. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. PNAS 96:9944–48 [Google Scholar]
  89. Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD. et al. 2000. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch. Ophthalmol. 118:235–45 [Google Scholar]
  90. Norman RE, Flanagan JG, Sigal IA, Rausch SMK, Tertinegg I, Ethier CR. 2011. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp. Eye Res. 93:4–12 [Google Scholar]
  91. Ogden TE, Miller RF. 1966. Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties. Vis. Res. 6:485–506 [Google Scholar]
  92. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. 2000. Obstructed axonal transport of the neurotrophin receptor TrkB in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 41:764–74 [Google Scholar]
  93. Pease ME, Zack DJ, Berlinicke CA, Bloom KM, Cone FE. et al. 2009. CNTF over-expression leads to increased retinal ganglion cell survival in experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 50:2194–200 [Google Scholar]
  94. Penn AA, Riquelme PA, Feller MB, Shatz CJ. 1998. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279:2108–12 [Google Scholar]
  95. Perry GW, Burmeister DW, Grafstein B. 1987. Fast axonally transported proteins in regenerating goldfish optic axons. J. Neurosci. 7:792–806 [Google Scholar]
  96. Perry VH, Henderson Z, Linden R. 1983. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J. Comp. Neurol. 219:356–68 [Google Scholar]
  97. Quigley HA. 1977. The pathogenesis of reversible cupping in congenital glaucoma. Am. J. Ophthalmol. 84:358–70 [Google Scholar]
  98. Quigley HA. 2012. Clinical trials for glaucoma neuroprotection are not impossible. Curr. Opin. Ophthalmol. 23:144–54 [Google Scholar]
  99. Quigley HA, Addicks EM. 1980. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure on optic nerve head and axonal transport. Investig. Ophthalmol. Vis. Sci. 19:137–52 [Google Scholar]
  100. Quigley HA, Addicks EM. 1981. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 99:137–43 [Google Scholar]
  101. Quigley HA, Addicks EM, Green WR. 1982. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, disc edema, and toxic neuropathy. Arch. Ophthalmol. 100:135–46 [Google Scholar]
  102. Quigley HA, Addicks EM, Green WR, Maumenee AE. 1981. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol. 99:635–49 [Google Scholar]
  103. Quigley HA, Anderson DR. 1976. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Investig. Ophthalmol. 15:606–16 [Google Scholar]
  104. Quigley HA, Brown AE, Morrison JC, Drance SM. 1990. The size and shape of the optic disc in normal human eyes. Arch. Ophthalmol. 108:51–57 [Google Scholar]
  105. Quigley HA, Davis EB, Anderson DR. 1977. Descending optic nerve degeneration in primates. Investig. Ophthalmol. 16:841–49 [Google Scholar]
  106. Quigley HA, Green WR. 1979. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 10:1803–27 [Google Scholar]
  107. Quigley HA, Guy J, Anderson DR. 1979. Blockade of rapid axonal transport: effect of intraocular pressure elevation in primate optic nerve. Arch. Ophthalmol. 97:525–31 [Google Scholar]
  108. Quigley HA, Nguyen C, Steinhart MR, Nguyen TD, Pease ME. et al. 2015. Losartan treatment protects retinal ganglion cells from experimental glaucoma damage in mice. PLOS ONE 10:e0141137Describes the first successful neuroprotection study in experimental glaucoma aimed at scleral responsiveness. [Google Scholar]
  109. Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ. 1995. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Investig. Ophthalmol. Vis. Sci. 36:774–86 [Google Scholar]
  110. Quigley HA, Sanchez RM, Dunkelberger GR, L'Hernault NL, Baginski TA. 1987. Chronic glaucoma selectively damages large optic nerve fibers. Investig. Ophthalmol. Vis. Sci. 28:913–20 [Google Scholar]
  111. Radius RL, Anderson DR. 1979. The course of axons through the retina and optic nerve head. Arch. Ophthalmol. 97:1154–58 [Google Scholar]
  112. Radius RL, Maumenee AE, Green WR. 1978. Pit-like changes of the optic nerve head in open-angle glaucoma. Br. J. Ophthalmol. 62:389–93 [Google Scholar]
  113. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700 [Google Scholar]
  114. Ray TA, Kay JN. 2015. Following directions from the retina to the brain. Neuron 86:855–57 [Google Scholar]
  115. Raza AS, Zhang X, De Moraes CG, Reisman CA, Liebmann JM. et al. 2014. Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 55:612–24Demonstrates a potentially useful approach to matching structure and function in glaucoma diagnostic testing. [Google Scholar]
  116. Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ. et al. 2009. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 50:681–90 [Google Scholar]
  117. Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ, Jiménez-López M, Mayor-Torroglosa S. et al. 2010. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Exp. Eye Res. 90:168–83 [Google Scholar]
  118. Salt TE, Nizari S, Cordeiro MF, Russ H, Danysz W. 2014. Effect of the Aβ aggregation modulator MRZ-99030 on retinal damage in an animal model of glaucoma. Neurotox. Res. 26:440–46 [Google Scholar]
  119. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD. et al. 1991. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N. Engl. J. Med. 325:1412–17 [Google Scholar]
  120. Soto I, Pease ME, Son JL, Shi X, Quigley HA, Marsh-Armstrong N. 2011. Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Investig. Ophthalmol. Vis. Sci. 52:434–41 [Google Scholar]
  121. Stephan AH, Barres BA, Stevens B. 2012. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35:369–89 [Google Scholar]
  122. Sun H, Wang Y, Pang IH, Shen J, Tang X. et al. 2011. Protective effect of a JNK inhibitor against retinal ganglion cell loss induced by acute moderate ocular hypertension. Mol. Vis. 17:864–75 [Google Scholar]
  123. Tezel G, Chauhan BC, LeBlanc RP, Wax MB. 2003. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Investig. Ophthalmol. Vis. Sci. 44:3025–33 [Google Scholar]
  124. Tezel G, Hernandez MR, Wax MB. 2001. In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 34:178–89 [Google Scholar]
  125. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. 2014. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–90 [Google Scholar]
  126. Tielsch JM, Sommer A, Katz J. et al. 1991. Racial variations in the prevalence of primary open angle glaucoma: the Baltimore Eye Survey. JAMA 266:369–74 [Google Scholar]
  127. Vaney DI. 1991. Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci. Lett. 125:187–90 [Google Scholar]
  128. Varma R, Hilton SC, Tielsch JM, Katz J, Quigley HA, Sommer A. 1995. Neural rim area declines with increased intraocular pressure in urban Americans. Arch. Ophthalmol. 113:1001–5 [Google Scholar]
  129. Varma R, Tielsch JM, Quigley HA, Hilton SC, Katz J. et al. 1994. Race-, age-, gender-, and refractive error-related differences in the normal optic disc. Arch. Ophthalmol. 112:1068–76 [Google Scholar]
  130. Wang JT, Medress ZA, Barres BA. 2012. Axon degeneration: molecular mechanisms of a self-destruction pathway. J. Cell Biol. 196:7–18 [Google Scholar]
  131. Ward MS, Khoobehi A, Lavik EB, Langer R, Young MJ. 2006. Neuroprotection of retinal ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres. J. Pharm. Sci. 96:558–68 [Google Scholar]
  132. Wassle H, Boycott BB, Illing R-B. 1981. Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proc. R. Soc. Lond. B 212:177–95 [Google Scholar]
  133. Weber AJ, Chen H, Hubbard WC, Kaufman PL. 2000. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Investig. Ophthalmol. Vis. Sci. 41:1370–79 [Google Scholar]
  134. Weber AJ, Kaufman PL, Hubbard WC. 1998. Morphology of single ganglion cells in the glaucomatous primate retina. Investig. Ophthalmol. Vis. Sci. 39:2304–20 [Google Scholar]
  135. Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X. et al. 2013. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. PNAS 110:4045–50Describes the first use of sustained delivery of a neuroprotective agent in experimental glaucoma. [Google Scholar]
  136. Wollner DA, Catterall WA. 1986. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. PNAS 83:8424–28 [Google Scholar]
  137. Wygnanski T, Desatnik H, Quigley HA, Glovinsky Y. 1995. Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am. J. Ophthalmol. 120:184–89 [Google Scholar]
  138. Xu G, Weinreb RN, Leung CK. 2013. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology 120:2493–500 [Google Scholar]
  139. Xu HP, Furman M, Mineur YS, Chen H, King SL. et al. 2011. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70:1115–27 [Google Scholar]
  140. Yang Z, Quigley HA, Pease ME, Yang Y, Qian J. et al. 2007. Changes in gene expression in experimental glaucoma and optic nerve transection: the equilibrium between protective and detrimental mechanisms. Investig. Ophthalmol. Vis. Sci. 48:5539–48 [Google Scholar]
  141. Yu D-Y, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su E-N. 2013. Retinal ganglion cells: energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog. Retin. Eye Res. 36:217–46 [Google Scholar]
  142. Yücel Y, Gupta N. 2008. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog. Brain Res. 173:465–78 [Google Scholar]
  143. Yu-Wai-Man P, Griffiths PG, Chinnery PF. 2011. Mitochondrial optic neuropathies: disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 30:81–114 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error