Retinal prostheses aim to restore vision to blind individuals suffering from retinal diseases such as retinitis pigmentosa and age-related macular degeneration. These devices function by electrically stimulating surviving retinal neurons, whose activation is interpreted by the brain as a visual percept. Many prostheses are currently under development. They are categorized as epiretinal, subretinal, and suprachoroidal prostheses on the basis of the placement of the stimulating microelectrode array. Each can activate ganglion cells through direct or indirect stimulation. The response of retinal neurons to these modes of stimulation are discussed in detail and are placed in context of the visual percept they are likely to evoke. This article further reviews challenges faced by retinal prosthesis and discusses potential solutions to address them.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abramian M, Lovell NH, Habib A, Morley JW, Suaning GJ, Dokos S. 2014. Quasi-monopolar electrical stimulation of the retina: a computational modelling study.. J. Neural Eng. 11:2025002 [Google Scholar]
  2. Ahuja AK, Behrend MR, Kuroda M, Humayun MS, Weiland JD. 2007. An in vitro model of a retinal prosthesis. IEEE Trans. Biomed. Eng. 55:61744–53 [Google Scholar]
  3. Asari H, Meister M. 2012. Divergence of visual channels in the inner retina. Nat. Neurosci. 15:111581–89 [Google Scholar]
  4. Asari H, Meister M. 2014. The projective field of retinal bipolar cells and its modulation by visual context. Neuron 81:3641–52 [Google Scholar]
  5. Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DAX. et al. 2014. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLOS ONE 9:12e115239 [Google Scholar]
  6. Baden T, Berens P, Bethge M, Euler T. 2013a. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23:148–52 [Google Scholar]
  7. Baden T, Euler T, Weckström M, Lagnado L. 2013b. Spikes and ribbon synapses in early vision. Trends Neurosci. 36:480–88 [Google Scholar]
  8. Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N. Engl. J. Med. 358:212231–39 [Google Scholar]
  9. Behrend MR, Ahuja AK, Humayun MS, Chow RH, Weiland JD. 2011. Resolution of the epiretinal prosthesis is not limited by electrode size. IEEE Trans. Neural Syst. Rehabil. Eng. 19:4436–42 [Google Scholar]
  10. Behrend MR, Ahuja AK, Humayun MS, Weiland JD, Chow RH. 2009. Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro. J. Neurosci. Methods 179:2166–72 [Google Scholar]
  11. Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H. et al. 2012. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. PNAS 109:62132–37 [Google Scholar]
  12. Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G. 2003. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J. Neurosci. 23:62306–13 [Google Scholar]
  13. Boinagrov D, Pangratz-Fuehrer S, Goetz G, Palanker D. 2014. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J. Neural Eng. 11:2026008 [Google Scholar]
  14. Boinagrov D, Pangratz-Fuehrer S, Suh B, Mathieson K, Naik N, Palanker D. 2012. Upper threshold of extracellular neural stimulation. J. Neurophysiol. 108:123233–38 [Google Scholar]
  15. Brindley GS. 1955. The site of electrical excitation of the human eye. J. Physiol. 127:1189–200 [Google Scholar]
  16. Brindley GS, Lewin WS. 1968. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196:2479–93 [Google Scholar]
  17. Busskamp V, Picaud S, Sahel JA, Roska B. 2012. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 19:2169–75 [Google Scholar]
  18. Cai C, Ren Q, Desai NJ, Rizzo JF III, Fried SI. 2011. Response variability to high rates of electric stimulation in retinal ganglion cells. J. Neurophysiol. 106:1153–62 [Google Scholar]
  19. Cai C, Twyford P, Fried S. 2013. The response of retinal neurons to high-frequency stimulation. J. Neural Eng. 10:3036009 [Google Scholar]
  20. Cameron MA, Suaning GJ, Lovell NH, Morley JW. 2013. Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. PLOS ONE 8:7e68882 [Google Scholar]
  21. Chadderton N, Millington-Ward S, Palfi A, O'Reilly M, Tuohy G. et al. 2009. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol. Ther. 17:4593–99 [Google Scholar]
  22. Chan LLH, Lee E-J, Humayun MS, Weiland JD. 2011. Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina. J. Neurophysiol. 105:62687–97 [Google Scholar]
  23. Coppola D, Purves D. 1996. The extraordinarily rapid disappearance of entopic images. PNAS 93:8001–4 [Google Scholar]
  24. Curcio CA, Allen KA. 1990. Topography of ganglion cells in human retina. J. Comp. Neurol. 300:15–25 [Google Scholar]
  25. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:4497–523 [Google Scholar]
  26. Daiger SP, Sullivan LS, Bowne SJ. 2013. Genes and mutations causing retinitis pigmentosa. Clin. Genet. 84:2132–41 [Google Scholar]
  27. Damiani D, Novelli E, Mazzoni F, Strettoi E. 2012. Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration. J. Comp. Neurol. 520:71406–23 [Google Scholar]
  28. Eckmiller R. 1997. Learning retina implants with epiretinal contacts. Ophthalmic Res. 29:5281–89 [Google Scholar]
  29. Eickenscheidt M, Jenkner M, Thewes R, Fromherz P, Zeck G. 2012. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array. J. Neurophysiol. 107:102742–55 [Google Scholar]
  30. Eickenscheidt M, Zeck G. 2014. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential. J. Neural Eng. 11:3036006 [Google Scholar]
  31. Euler T, Masland RH. 2000. Light-evoked responses of bipolar cells in a mammalian retina. J. Neurophysiol. 83:41817–29 [Google Scholar]
  32. Fariss RN, Li ZY, Milam AH. 2000. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am. J. Ophthalmol. 129:215–23 [Google Scholar]
  33. Foerster O. 1929. Beitrage zur pathophysiologie der sehbahn und der spehsphare. J. Psychol. Neurol.39435 [Google Scholar]
  34. Freeman DK, Eddington DK, Rizzo JF, Fried SI. 2010. Selective activation of neuronal targets with sinusoidal electric stimulation. J. Neurophysiol. 104:52778–91 [Google Scholar]
  35. Freeman DK, Fried SI. 2011. Multiple components of ganglion cell desensitization in response to prosthetic stimulation. J. Neural Eng. 8:016008 [Google Scholar]
  36. Fried SI, Lasker ACW, Desai NJ, Eddington DK, Rizzo JF. 2009. Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. J. Neurophysiol. 101:41972–87 [Google Scholar]
  37. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T. et al. 2012. Clinical trial of chronic implantation of suprachoroidal-transretinal stimulation system for retinal prosthesis. Sens. Mater. 24:4181–87 [Google Scholar]
  38. Geddes LA. 2004. Accuracy limitations of chronaxie values. IEEE Trans. Biomed. Eng. 51:1176–81 [Google Scholar]
  39. Goetz G, Smith R, Lei X, Galambos L, Kamins T. et al. 2015. Contrast sensitivity with a subretinal prosthesis and implications for efficient delivery of visual information. Investig. Ophthalmol. Vis. Sci. 56:127186–94 [Google Scholar]
  40. Goo YS, Ahn KN, Song YJ, Ahn SH, Han SK. et al. 2011. Spontaneous oscillatory rhythm in retinal activities of two retinal degeneration (rd1 and rd10) mice. Korean J. Physiol. Pharmacol. 15:6415–22 [Google Scholar]
  41. Greenberg RJ, Velte TJ, Humayun MS, Scarlatis GN, de Juan E. 1999. A computational model of electrical stimulation of the retinal ganglion cell. IEEE Trans. Biomed. Eng. 46:5505–14 [Google Scholar]
  42. Greenwald SH, Horsager A, Humayun MS, Greenberg RJ, McMahon MJ, Fine I. 2009. Brightness as a function of current amplitude in human retinal electrical stimulation. Investig. Ophthalmol. Vis. Sci. 50:115017–25 [Google Scholar]
  43. Grubb MS, Burrone J. 2010. Building and maintaining the axon initial segment. Curr. Opin. Neurobiol. 20:4481–88 [Google Scholar]
  44. Grubb MS, Shu Y, Kuba H, Rasband MN, Wimmer VC, Bender KJ. 2011. Short- and long-term plasticity at the axon initial segment. J. Neurosci. 31:4516049–55 [Google Scholar]
  45. Hadjinicolaou AE, Savage CO, Apollo NV, Garrett DJ, Cloherty SL. et al. 2015. Optimizing the electrical stimulation of retinal ganglion cells. IEEE Trans. Neural Syst. Rehabil. Eng. 23:2169–78 [Google Scholar]
  46. Hafed ZM, Stingl K, Bartz-Schmidt KU, Gekeler F, Zrenner E. 2015. Oculomotor behavior of blind patients seeing with a subretinal visual implant. Vis. Res. 118:119–31 [Google Scholar]
  47. Hartong DT, Berson EL, Dryja TP. 2006. Retinitis pigmentosa. Lancet 368:95491795–809 [Google Scholar]
  48. Hartveit E. 1999. Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. J. Neurophysiol. 81:62923–36 [Google Scholar]
  49. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB. et al. 2008. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19:10979–90 [Google Scholar]
  50. Hornig R, Zehnder T, Velikay-Parel M, Laube T, Feucht M, Richard G. 2008. The IMI retinal implant system. Artificial Sight M Humayun, J Weiland, G Chader, E Greenbaum 111–128 New York: Springer [Google Scholar]
  51. Howarth CI. 1954. Strength duration curves for electrical stimulation of the human eye. Q. J. Exp. Psychol. 6:247–61 [Google Scholar]
  52. Humayun MS, de Juan E Jr., Dagnelie G, Greenberg RJ, Propst RH, Phillips DH. 1996. Visual perception elicited by electrical stimulation of retina in blind humans. Arch. Ophthalmol. 114:140–46 [Google Scholar]
  53. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel J-A. et al. 2012. Interim results from the international trial of Second Sight's visual prosthesis. Ophthalmology 119:4779–88 [Google Scholar]
  54. Humayun MS, Prince M, de Juan E, Barron Y, Moskowitz M. et al. 1999. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 40:1143–48 [Google Scholar]
  55. Ichinose T, Shields CR, Lukasiewicz PD. 2005. Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells. J. Neurosci. 25:71856–65 [Google Scholar]
  56. Im M, Fried SI. 2015. Indirect activation elicits strong correlations between light and electrical responses in ON but not OFF retinal ganglion cells. J. Physiol. 593:163577–96 [Google Scholar]
  57. Jeng J, Tang S, Molnar A, Desai NJ, Fried SI. 2011. The sodium channel band shapes the response to electric stimulation in retinal ganglion cells. J. Neural Eng. 8:3036022 [Google Scholar]
  58. Jensen RJ, Rizzo JF III. 2007. Responses of ganglion cells to repetitive electrical stimulation of the retina. J. Neural Eng. 4:1S1 [Google Scholar]
  59. Jensen RJ, Ziv OR, Rizzo JF III. 2005. Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes. Investig. Ophthalmol. Vis. Sci. 46:41486–96 [Google Scholar]
  60. Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dąbrowski W. et al. 2013. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. J. Neurosci. 33:177194–205 [Google Scholar]
  61. Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dąbrowski W. et al. 2014. Spatially patterned electrical stimulation to enhance resolution of retinal prostheses. J. Neurosci. 34:144871–81 [Google Scholar]
  62. Kolb H, Linberg KA, Fisher SK. 1992. Neurons of the human retina: a Golgi study. J. Comp. Neurol. 318:2147–87 [Google Scholar]
  63. Kolb H, Nelson R, Mariani A. 1981. Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vis. Res. 21:71081–114 [Google Scholar]
  64. Ku CA, Hariprasad SM, Pennesi ME. 2016. Gene therapy trial update: a primer for vitreoretinal specialists. Ophthalmic Surg. Lasers Imaging Retina 47:16–12 [Google Scholar]
  65. Kuba H, Oichi Y, Ohmori H. 2010. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature 465:73011075–78 [Google Scholar]
  66. Lee DY, Lorach H, Huie P, Palanker D. 2016. Implantation of modular photovoltaic subretinal prosthesis. Ophthalmic Surg. Lasers Imaging Retina 47:2171–74 [Google Scholar]
  67. Lee SW, Eddington DK, Fried SI. 2013. Responses to pulsatile subretinal electric stimulation: effects of amplitude and duration. J. Neurophysiol. 109:71954–68 [Google Scholar]
  68. Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. 2015. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 1595:51–73 [Google Scholar]
  69. Lohmann TK, Kanda H, Morimoto T, Endo T, Miyoshi T. et al. 2015. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal–transretinal stimulation prosthesis in middle-sized animals. Graefe's Arch. Clin. Exp. Ophthalmol. 254:4661–73 [Google Scholar]
  70. Lorach H, Goetz G, Mandel Y, Lei X, Kamins TI. et al. 2014. Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration. Vis. Res. 111:142–48 [Google Scholar]
  71. Loudin JD, Simanovskii DM, Vijayraghavan K, Sramek CK, Butterwick AF. et al. 2007. Optoelectronic retinal prosthesis: system design and performance. J. Neural Eng. 4:1S72–S84 [Google Scholar]
  72. Luo YH-L, da Cruz L. 2015. The Argus® II Retinal Prosthesis System. Prog. Retinal Eye Res. 50:89–107 [Google Scholar]
  73. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F. et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:212240–48 [Google Scholar]
  74. Mandel Y, Goetz G, Lavinsky D, Huie P, Mathieson K. et al. 2013. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4:1980 [Google Scholar]
  75. Marc RE, Jones BW, Watt CB, Strettoi E. 2003. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22:5607–55 [Google Scholar]
  76. Margalit E, Babai N, Luo J, Thoreson WB. 2011. Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice. Vis. Neurosci. 28:145–54 [Google Scholar]
  77. Margalit E, Thoreson WB. 2006. Inner retinal mechanisms engaged by retinal electrical stimulation. Investig. Ophthalmol. Vis. Sci. 47:62606–12 [Google Scholar]
  78. Margolis DJ, Detwiler PB. 2011. Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. J. Ophthalmol. 2011:1–6 [Google Scholar]
  79. Margolis DJ, Gartland AJ, Singer JH, Detwiler PB. 2014. Network oscillations drive correlated spiking of ON and OFF ganglion cells in the rd1 mouse model of retinal degeneration. PLOS ONE 9:11–12 [Google Scholar]
  80. Margolis DJ, Newkirk G, Euler T, Detwiler PB. 2008. Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. J. Neurosci. 28:256526–36 [Google Scholar]
  81. Martinez-Conde S, Macknik SL, Troncoso XG, Dyar TA. 2006. Microsaccades counteract visual fading during fixation. Neuron 49:2297–305 [Google Scholar]
  82. Mathieson K, Loudin J, Goetz G, Huie P, Wang L. et al. 2012. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6:6391–97 [Google Scholar]
  83. Matteucci PB, Chen SC, Tsai D, Dodds CWD, Dokos S. et al. 2013. Current steering in retinal stimulation via a quasimonopolar stimulation paradigm. Investig. Ophthalmol. Vis. Sci. 54:64307–20 [Google Scholar]
  84. Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W. et al. 2012. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye 26:4501–9 [Google Scholar]
  85. Milam AH, Li ZY, Fariss RN. 1998. Histopathology of the human retina in retinitis pigmentosa. Prog. Retin. Eye Res. 17:2175–205 [Google Scholar]
  86. Nanduri D. 2011. Prosthetic vision in blind human patients: predicting the percepts of epiretinal stimulation Dissertation, University of Southern California [Google Scholar]
  87. Nanduri D, Fine I, Horsager A, Boynton GM, Humayun MS. et al. 2012. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Investig. Ophthalmol. Vis. Sci. 53:1205–14 [Google Scholar]
  88. Nasiatka PJ, Hauer MC, Stiles NRB, Lue J-C, Takahashi S. et al. 2007. An intraocular camera for retinal prostheses. Proc. Am. Soc. Mech. Eng., Irvine, CA, June 7–823–24 [Google Scholar]
  89. Nirenberg S, Pandarinath C. 2012. Retinal prosthetic strategy with the capacity to restore normal vision. PNAS 109:3715012–17 [Google Scholar]
  90. Oyster CW. 1999. The human eye: structure and function Sunderland, MA: Sinauer Associates [Google Scholar]
  91. Palanker D, Vankov A, Huie P, Baccus S. 2005. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2:1S105–20 [Google Scholar]
  92. Pérez Fornos A, Sommerhalder J, da Cruz L, Sahel JA, Mohand-Said S. et al. 2012. Temporal properties of visual perception on electrical stimulation of the retina. Investig. Ophthalmol. Vis. Sci. 53:62720–31 [Google Scholar]
  93. Potts AM, Inoue J. 1969. The electrically evoked response of the visual system (EER) II. Effect of adaptation and retinitis pigmentosa. Investig. Ophthalmol. Vis Sci. 8:6605–12 [Google Scholar]
  94. Potts AM, Inoue J. 1970. The electrically evoked response of the visual system (EER) III. Further contribution to the origin of the EER. Investig. Ophthalmol. Vis. Sci. 9:10814–19 [Google Scholar]
  95. Protti DA, Flores-Herr N, von Gersdorff H. 2000. Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 25:215–27 [Google Scholar]
  96. Ranck JB Jr. 1975. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98:3417–40 [Google Scholar]
  97. Rattay F. 1999. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89:2335–46 [Google Scholar]
  98. Rattay F, Resatz S, Lutter P, Minassian K, Jilge B, Dimitrijevic MR. 2003. Mechanisms of electrical stimulation with neural prostheses. Neuromodulation 6:142–56 [Google Scholar]
  99. Riggs LA, Ratliff F, Cornsweet JC, Cornsweet TN. 1953. The disappearance of steadily fixated visual test objects. J. Opt. Soc. Am. 43:6495–501 [Google Scholar]
  100. Rizzo JF III. 2011. Update on retinal prosthetic research: the Boston Retinal Implant Project. J. Neuro-Ophthalmol. 31:2160–68 [Google Scholar]
  101. Santos A, Humayun MS, de Juan E Jr., Greenburg RJ, Marsh MJ, Klock IB, Milam AH. 1997. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch. Ophthalmol. 115:511–15 [Google Scholar]
  102. Saszik S, DeVries SH. 2012. A mammalian retinal bipolar cell uses both graded changes in membrane voltage and all-or-nothing Na+ spikes to encode light. J. Neurosci. 32:1297–307 [Google Scholar]
  103. Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. 2006. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J. Neurophysiol. 95:63311–27 [Google Scholar]
  104. Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. 2008. High-resolution electrical stimulation of primate retina for epiretinal implant design. J. Neurosci. 28:174446–56 [Google Scholar]
  105. Sim SL, Szalewski RJ, Johnson LJ, Akah LE, Shoemaker LE. et al. 2014. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation. Vis. Res. 101:41–50 [Google Scholar]
  106. Stiles NR, Hauer MC, Lee P, Nasiatka PJ, Lue J-C. et al. 2007. Intraocular camera for retinal prostheses: design constraints based on visual psychophysics. Proc. Frontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion, Sam Jose, CA JWC46 Washington, DC: Opt. Soc. Am. [Google Scholar]
  107. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A. et al. 2013. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R. Sci. B 280:175720130077 [Google Scholar]
  108. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL. et al. 2015. Subretinal visual implant Alpha IMS – clinical trial interim report. Vis. Res. 111:149–60 [Google Scholar]
  109. Stone JL, Barlow WE, Humayun MS, de Juan E, Milam AH. 1992. Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch. Ophthalmol. 110:111634–39 [Google Scholar]
  110. Suzuki S, Tachibana M, Kaneko A. 1990. Effects of glycine and GABA on isolated bipolar cells of the mouse retina. J. Physiol. 421:1645–62 [Google Scholar]
  111. Tachibana M, Kaneko A. 1987. γ-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. PNAS 84:103501–5 [Google Scholar]
  112. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ. et al. 2011. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Investig. Ophthalmol. Vis. Sci. 52:52219–26 [Google Scholar]
  113. Tsai D, Morley JW, Suaning GJ, Lovell NH. 2011. Responses of starburst amacrine cells to prosthetic stimulation of the retina. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc, Boston, MA1053–56 [Google Scholar]
  114. Tschernutter M, Schlichtenbrede FC, Howe S, Balaggan KS, Munro PM. et al. 2005. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther. 12:8694–701 [Google Scholar]
  115. Twyford P, Cai C, Fried S. 2014. Differential responses to high-frequency electrical stimulation in ON and OFF retinal ganglion cells. J. Neural Eng. 11:2025001 [Google Scholar]
  116. Twyford P, Fried S. 2015. The retinal response to sinusoidal electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 24:4413–23 [Google Scholar]
  117. Van Wart A, Matthews G. 2006. Impaired firing and cell-specific compensation in neurons lacking Nav1.6 sodium channels. J. Neurosci. 26:277172–80 [Google Scholar]
  118. Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L. et al. 2012. Photovoltaic retinal prosthesis: implant fabrication and performance. J. Neural Eng. 9:4046014 [Google Scholar]
  119. Waschkowski F, Hesse S, Rieck AC, Lohmann T, Brockmann C. et al. 2014. Development of very large electrode arrays for epiretinal stimulation (VLARS). BioMed. Eng. OnLine 13:111 [Google Scholar]
  120. Watson AB. 2014. A formula for human retinal ganglion cell receptive field density as a function of visual field location. J. Vis. 14:71–17 [Google Scholar]
  121. Weiland JD, Humayun MS, Dagnelie G, de Juan E Jr., Greenberg RJ, Iliff NT. 1999. Understanding the origin of visual percepts elicited by electrical stimulation of the human retina. Graefe's Arch. Clin. Exp. Ophthalmol. 237:121007–13 [Google Scholar]
  122. Weitz AC, Behrend MR, Lee NS, Klein RL, Chiodo VA. et al. 2013. Imaging the response of the retina to electrical stimulation with genetically encoded calcium indicators. J. Neurophysiol. 109:1979–88 [Google Scholar]
  123. Weitz AC, Nanduri D, Behrend MR, Gonzalez-Calle A, Greenberg RJ. et al. 2015. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci. Transl. Med. 7:318318ra203 [Google Scholar]
  124. Zenisek D, Matthews G. 1998. Calcium action potentials in retinal bipolar neurons. Vis. Neurosci. 15:69–75 [Google Scholar]
  125. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A. et al. 2011. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B: Biol. Sci. 278:17111489–97 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error