1932

Abstract

The mechanisms underlying the emergence of orientation selectivity in the visual cortex have been, and continue to be, the subjects of intense scrutiny. Orientation selectivity reflects a dramatic change in the representation of the visual world: Whereas afferent thalamic neurons are generally orientation insensitive, neurons in the primary visual cortex (V1) are extremely sensitive to stimulus orientation. This profound change in the receptive field structure along the visual pathway has positioned V1 as a model system for studying the circuitry that underlies neural computations across the neocortex. The neocortex is characterized anatomically by the relative uniformity of its circuitry despite its role in processing distinct signals from region to region. A combination of physiological, anatomical, and theoretical studies has shed some light on the circuitry components necessary for generating orientation selectivity in V1. This targeted effort has led to critical insights, as well as controversies, concerning how neural circuits in the neocortex perform computations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111815-114456
2016-10-14
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/vision/2/1/annurev-vision-111815-114456.html?itemId=/content/journals/10.1146/annurev-vision-111815-114456&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmed B, Allison JD, Douglas RJ, Martin KA. 1997. An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex. Cereb. Cortex 7:559–70 [Google Scholar]
  2. Alitto HJ, Usrey WM. 2004. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J. Neurophysiol. 91:2797–808 [Google Scholar]
  3. Anderson JS, Carandini M, Ferster D. 2000a. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84:909–26 [Google Scholar]
  4. Anderson JS, Lampl L, Gillespie D, Ferster D. 2000b. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290:1968–71 [Google Scholar]
  5. Arieli A, Shoham D, Hildesheim R, Grinvald A. 1995. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73:2072–93 [Google Scholar]
  6. Arieli A, Sterkin A, Grinvald A, Aertsen A. 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–71 [Google Scholar]
  7. Azouz R, Gray CM, Nowak LG, McCormick DA. 1997. Physiological properties of inhibitory interneurons in cat striate cortex. Cereb. Cortex 7:534–45 [Google Scholar]
  8. Barto AG, Sutton RS, Anderson CW. 1983. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13:834–46 [Google Scholar]
  9. Ben-Yishai R, Bar-Or RL, Sompolinsky H. 1995. Theory of orientation tuning in visual cortex. PNAS 92:3844–48 [Google Scholar]
  10. Bishop PO, Coombs JS, Henry GH. 1973. Receptive fields of simple cells in the cat striate cortex. J. Physiol. 231:31–60 [Google Scholar]
  11. Blakemore C, Tobin EA. 1972. Lateral inhibition between orientation detectors in the cat's visual cortex. Brain Res 15:439–440 [Google Scholar]
  12. Borg-Graham L, Monier C, Frégnac Y. 1998. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–73 [Google Scholar]
  13. Boudreau CE, Ferster D. 2005. Short-term depression in thalamocortical synapses of cat primary visual cortex. J. Neurosci. 25:7179–90 [Google Scholar]
  14. Boycott BB, Wassle H. 1974. The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. 240:397–419 [Google Scholar]
  15. Campbell FW, Kulikowski JJ. 1966. Orientational selectivity of the human visual system. J. Physiol. 187:437–45 [Google Scholar]
  16. Carandini M, Ferster D. 2000. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20:470–84 [Google Scholar]
  17. Carandini M, Heeger DJ, Senn W. 2002. A synaptic explanation of suppression in visual cortex. J. Neurosci. 22:10053–65 [Google Scholar]
  18. Carandini M, Ringach DL. 1997. Predictions of a recurrent model of orientation selectivity. Vis. Res. 37:3061–71 [Google Scholar]
  19. Cardin JA, Palmer LA, Contreras D. 2007. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27:10333–44 [Google Scholar]
  20. Chance FS, Abbott LF, Reyes AD. 2002. Gain modulation from background synaptic input. Neuron 35:773–82 [Google Scholar]
  21. Chapman B, Zahs KR, Stryker MP. 1991. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J. Neurosci. 11:1347–58 [Google Scholar]
  22. Chung S, Ferster D. 1998. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20:1177–89 [Google Scholar]
  23. Cleland BG, Levick WR. 1974. Properties of rarely encountered types of ganglion cells in the cat's retina and an overall classification. J. Physiol. 240:457–92 [Google Scholar]
  24. Cruz-Martin A, El-Danaf RN, Osakada F, Sriram B, Dhande OS. et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–61 [Google Scholar]
  25. Daugman JG. 1985. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2:1160–69 [Google Scholar]
  26. DeAngelis GC, Robson JG, Ohzawa I, Freeman RD. 1992. Organization of suppression in receptive fields of neurons in cat visual cortex. J. Neurophysiol. 68:144–63 [Google Scholar]
  27. Deweese MR, Zador AM. 2004. Shared and private variability in the auditory cortex. J. Neurophysiol. 92:1840–55 [Google Scholar]
  28. Douglas RJ, Koch C, Mahowald M, Martin KA, Suarez HH. 1995. Recurrent excitation in neocortical circuits. Science 269:981–85 [Google Scholar]
  29. Eysel UT, Crook JM, Machemer HF. 1990. GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex. Exp. Brain Res. 80:626–30 [Google Scholar]
  30. Ferster D. 1981. A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J. Physiol. 311:623–55 [Google Scholar]
  31. Ferster D. 1986. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J. Neurosci. 6:1284–301 [Google Scholar]
  32. Ferster D. 1988. Spatially opponent excitation and inhibition in simple cells of the cat visual cortex. J. Neurosci. 8:1172–80 [Google Scholar]
  33. Ferster D, Chung S, Wheat H. 1996. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380:249–52 [Google Scholar]
  34. Ferster D, Miller KD. 2000. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23:441–71 [Google Scholar]
  35. Finn IM, Priebe NJ, Ferster D. 2007. The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54:137–52 [Google Scholar]
  36. Fitzpatrick D. 2000. Cortical imaging: capturing the moment. Curr. Biol. 10:R187–90 [Google Scholar]
  37. Freeman TC, Durand S, Kiper DC, Carandini M. 2002. Suppression without inhibition in visual cortex. Neuron 35:759–71 [Google Scholar]
  38. Fregnac Y, Bathellier B. 2015. Cortical correlates of low-level perception: from neural circuits to percepts. Neuron 88:110–26 [Google Scholar]
  39. Fregnac Y, Bienenstock E, Shulz D, Thorpe S. 1988. A cellular analog of visual cortical plasticity. Nature 333:367–70 [Google Scholar]
  40. Gilbert CD, Sigman M, Crist RE. 2001. The neural basis of perceptual learning. Neuron 31:681–97 [Google Scholar]
  41. Goldberg JA, Rokni U, Sompolinsky H. 2004. Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42:489–500 [Google Scholar]
  42. Haider B, McCormick DA. 2009. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62:171–89 [Google Scholar]
  43. Hammond P. 1974. Cat retinal ganglion cells: size and shape of receptive field centres. J. Physiol. 242:99–118 [Google Scholar]
  44. Hansel D, van Vreeswijk C. 2002. How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J. Neurosci. 22:5118–28 [Google Scholar]
  45. Hansel D, van Vreeswijk C. 2012. The mechanism of orientation selectivity in primary visual cortex without a functional map. J. Neurosci. 32:4049–64 [Google Scholar]
  46. Hartline HK. 1949. Inhibition of activity of visual receptors by illuminating nearby retinal areas in the Limulus eye. Fed. Proc 869 [Google Scholar]
  47. Heeger DJ. 1992. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9:181–97 [Google Scholar]
  48. Hirsch JA, Alonso JM, Reid RC, Martinez LM. 1998. Synaptic integration in striate cortical simple cells. J. Neurosci. 18:9517–28 [Google Scholar]
  49. Hirsch JA, Martinez LM, Pillai C, Alonso JM, Wang Q, Sommer FT. 2003. Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat. Neurosci. 6:1300–8 [Google Scholar]
  50. Holt GR, Koch C. 1997. Shunting inhibition does not have a divisive effect on firing rates. Neural Comput 9:1001–13 [Google Scholar]
  51. Hubel DH. 1957. Tungsten microelectrode for recording from single units. Science 125:549–50 [Google Scholar]
  52. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  53. Hubel DH, Wiesel TN. 1977. Functional architecture of macaque visual cortex. Proc. R. Soc. Lond. Ser. B 198:1–59 [Google Scholar]
  54. Kaschube M, Schnabel M, Lowel S, Coppola DM, White LE, Wolf F. 2010. Universality in the evolution of orientation columns in the visual cortex. Science 330:1113–16 [Google Scholar]
  55. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature 425:954–56 [Google Scholar]
  56. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, Mrsic-Flogel TD. 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91 [Google Scholar]
  57. Koch E, Jin J, Wang Y, Kremkow J, Alonso JM, Zaidi Q. 2015. Cross-orientation suppression and the topography of orientation preferences. J. Vis. 15:121000 [Google Scholar]
  58. Kondo S, Ohki K. 2016. Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex. Nat. Neurosci. 19:316–19 [Google Scholar]
  59. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:37–68 [Google Scholar]
  60. Lampl I, Ferster D, Poggio T, Riesenhuber M. 2004. Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. J. Neurophysiol. 92:2704–13 [Google Scholar]
  61. Lampl L, Anderson JS, Gillespie D, Ferster D. 2001. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex. Neuron 30:263–74 [Google Scholar]
  62. Lauritzen TZ, Miller KD. 2003. Different roles for simple-cell and complex-cell inhibition in V1. J. Neurosci. 23:10201–13 [Google Scholar]
  63. Leventhal AG, Schall JD. 1983. Structural basis of orientation sensitivity of cat retinal ganglion cells. J. Comp. Neurol. 220:465–75 [Google Scholar]
  64. Levick WR, Thibos LN. 1980. Orientation bias of cat retinal ganglion cells. Nature 286:389–90 [Google Scholar]
  65. Li B, Thompson JK, Duong T, Peterson MR, Freeman RD. 2006. Origins of cross-orientation suppression in the visual cortex. J. Neurophysiol. 96:1755–64 [Google Scholar]
  66. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:1315–23 [Google Scholar]
  67. Marino J, Schummers J, Lyon DC, Schwabe L, Beck O. et al. 2005. Invariant computations in local cortical networks with balanced excitation and inhibition. Nat. Neurosci. 8:194–201 [Google Scholar]
  68. Marr D, Hildreth E. 1980. Theory of edge detection. Proc. R. Soc. Lond. Ser. B 207:187–217 [Google Scholar]
  69. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–20 [Google Scholar]
  70. Martin KA, Somogyi P, Whitteridge D. 1983. Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp. Brain Res. 50:193–200 [Google Scholar]
  71. Martinez LM, Alonso JM, Reid RC, Hirsch JA. 2002. Laminar processing of stimulus orientation in cat visual cortex. J. Physiol. 540:321–33 [Google Scholar]
  72. Martinez LM, Wang Q, Reid RC, Pillai C, Alonso JM. et al. 2005. Receptive field structure varies with layer in the primary visual cortex. Nat. Neurosci. 8:372–79 [Google Scholar]
  73. Mazzoni P, Andersen RA, Jordan MI. 1991. A more biologically plausible learning rule than backpropagation applied to a network model of cortical area 7A. Cereb. Cortex 1:293–307 [Google Scholar]
  74. McLaughlin D, Shapley R, Shelley M. 2003. Large-scale modeling of the primary visual cortex: influence of cortical architecture upon neuronal response. J. Physiol. 97:237–52 [Google Scholar]
  75. Meliza CD, Dan Y. 2006. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49:183–89 [Google Scholar]
  76. Miller KD, Troyer TW. 2002. Neural noise can explain expansive, power-law nonlinearities in neural response functions. J. Neurophysiol. 87:653–59 [Google Scholar]
  77. Monier C, Chavane F, Baudot P, Graham LJ, Fregnac Y. 2003. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37:663–80 [Google Scholar]
  78. Morrone MC, Burr DC, Maffei L. 1982. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc. R. Soc. Lond. Ser. B 216:335–54 [Google Scholar]
  79. Morrone MC, Burr DC, Speed HD. 1987. Cross-orientation inhibition in cat is GABA mediated. Exp. Brain Res. 67:635–44 [Google Scholar]
  80. Murphy BK, Miller KD. 2009. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61:635–48 [Google Scholar]
  81. Nauhaus I, Benucci A, Carandini M, Ringach DL. 2008. Neuronal selectivity and local map structure in visual cortex. Neuron 57:673–79 [Google Scholar]
  82. Nauhaus I, Busse L, Carandini M, Ringach DL. 2009. Stimulus contrast modulates functional connectivity in visual cortex. Nat. Neurosci. 12:70–76 [Google Scholar]
  83. Niell CM, Stryker MP. 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28:7520–36 [Google Scholar]
  84. Nowak LG, Sanchez-Vives MV, McCormick DA. 2008. Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. Cereb. Cortex 18:1058–78 [Google Scholar]
  85. Nowak LG, Sanchez-Vives MV, McCormick DA. 2010. Spatial and temporal features of synaptic to discharge receptive field transformation in cat area 17. J. Neurophysiol. 103:677–97 [Google Scholar]
  86. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603 [Google Scholar]
  87. Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC. 2006. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442:925–28 [Google Scholar]
  88. Ohki K, Reid RC. 2007. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17:401–7 [Google Scholar]
  89. Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD. 1994. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J. Neurosci. 14:7130–40 [Google Scholar]
  90. Perry VH, Oehler R, Cowey A. 1984. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–23 [Google Scholar]
  91. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56 [Google Scholar]
  92. Priebe NJ. 2008. The relationship between subthreshold and suprathreshold ocular dominance in cat primary visual cortex. J. Neurosci. 28:8553–59 [Google Scholar]
  93. Priebe NJ, Ferster D. 2006. Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat. Neurosci. 9:552–61 [Google Scholar]
  94. Priebe NJ, Mechler F, Carandini M, Ferster D. 2004. The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci. 7:1113–22 [Google Scholar]
  95. Reid RC, Alonso JM. 1995. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–84 [Google Scholar]
  96. Reig R, Gallego R, Nowak LG, Sanchez-Vives MV. 2006. Impact of cortical network activity on short-term synaptic depression. Cereb. Cortex 16:688–95 [Google Scholar]
  97. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:1019–25 [Google Scholar]
  98. Rubin DB, Van Hooser SD, Miller KD. 2015. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85:402–17 [Google Scholar]
  99. Rust NC, Schwartz O, Movshon JA, Simoncelli EP. 2005. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46:945–56 [Google Scholar]
  100. Sadagopan S, Ferster D. 2012. Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex. Neuron 74:911–23 [Google Scholar]
  101. Scholl B, Pattadkal JJ, Dilly GA, Zemelman BV, Priebe NJ. 2015. Local integration accounts for weak selectivity of mouse neocortical parvalbumin interneurons. Neuron 84:424–36 [Google Scholar]
  102. Scholl B, Tan AY, Corey J, Priebe NJ. 2013a. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:10616–24 [Google Scholar]
  103. Scholl B, Tan AY, Priebe NJ. 2013b. Strabismus disrupts binocular synaptic integration in primary visual cortex. J. Neurosci. 33:17108–22 [Google Scholar]
  104. Schummers J, Marino J, Sur M. 2002. Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36:969–78 [Google Scholar]
  105. Schummers J, Marino J, Sur M. 2004. Local networks in visual cortex and their influence on neuronal responses and dynamics. J. Physiol. Paris 98:429–41 [Google Scholar]
  106. Sclar G, Freeman RD. 1982. Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Exp. Brain Res. 46:457–61 [Google Scholar]
  107. Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18:3870–96 [Google Scholar]
  108. Shapley RM, Tolhurst DJ. 1973. Edge detectors in human vision. J. Physiol. 229:165–83 [Google Scholar]
  109. Shoham D, Glaser DE, Arieli A, Kenet T, Wijnbergen C. et al. 1999. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802 [Google Scholar]
  110. Shou T, Leventhal AG, Thompson KG, Zhou Y. 1995. Direction biases of X and Y type retinal ganglion cells in the cat. J. Neurophysiol. 73:1414–21 [Google Scholar]
  111. Sillito AM. 1975. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. 250:305–29 [Google Scholar]
  112. Skottun BC, Bradley A, Sclar G, Ohzawa I, Freeman R. 1987. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J. Neurophysiol. 57:773–86 [Google Scholar]
  113. Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB. 1991. Classifying simple and complex cells on the basis of response modulation. Vis. Res. 31:1079–86 [Google Scholar]
  114. Smith MA, Bair W, Movshon JA. 2006. Dynamics of suppression in macaque primary visual cortex. J. Neurosci. 26:4826–34 [Google Scholar]
  115. Smith PH, Populin LC. 2001. Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J. Comp. Neurol. 436:508–19 [Google Scholar]
  116. Smith SL, Smith IT, Branco T, Hausser M. 2013. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503:115–20 [Google Scholar]
  117. Somers DC, Nelson SB, Sur M. 1995. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15:5448–65 [Google Scholar]
  118. Somogyi P, Tamas G, Lujan R, Buhl EH. 1998. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev. 26:113–35 [Google Scholar]
  119. Sompolinsky H, Shapley R. 1997. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7:514–22 [Google Scholar]
  120. Stern EA, Kincaid AE, Wilson CJ. 1997. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 77:1697–715 [Google Scholar]
  121. Stimberg M, Wimmer K, Martin R, Schwabe L, Marino J. et al. 2009. The operating regime of local computations in primary visual cortex. Cereb. Cortex 19:2166–80 [Google Scholar]
  122. Sun W, Tan Z, Mensh BD, Ji N. 2016. Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19:308–15 [Google Scholar]
  123. Tan AY, Chen Y, Scholl B, Seidemann E, Priebe NJ. 2014. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509:226–29 [Google Scholar]
  124. Tanaka K. 1983. Cross-correlation analysis of geniculostriate neuronal relationships in cats. J. Neurophysiol. 49:1303–18 [Google Scholar]
  125. Tanaka K. 1985. Organization of geniculate inputs to visual cortical cells in the cat. Vis. Res. 25:357–64 [Google Scholar]
  126. Troyer TW, Krukowski AE, Miller KD. 2002. LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J. Neurophysiol. 87:2741–52 [Google Scholar]
  127. Troyer TW, Krukowski AE, Priebe NJ, Miller KD. 1998. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18:5908–27 [Google Scholar]
  128. Tsodyks M, Kenet T, Grinvald A, Arieli A. 1999. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–46 [Google Scholar]
  129. Ullman S, Bart E. 2004. Recognition invariance obtained by extended and invariant features. Neural Netw 17:833–48 [Google Scholar]
  130. van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–26 [Google Scholar]
  131. van Vreeswijk C, Sompolinsky H. 1998. Chaotic balanced state in a model of cortical circuits. Neural Comput 10:1321–71 [Google Scholar]
  132. Vidyasagar TR, Eysel UT. 2015. Origins of feature selectivities and maps in the mammalian primary visual cortex. Trends Neurosci 38:475–85 [Google Scholar]
  133. Vidyasagar TR, Pei X, Volgushev M. 1996. Multiple mechanisms underlying the orientation selectivity of visual cortical neurones. Trends Neurosci 19:272–77 [Google Scholar]
  134. Volgushev M, Pei X, Vidyasagar TR, Creutzfeldt OD. 1993. Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo. Vis. Neurosci. 10:1151–55 [Google Scholar]
  135. Volgushev M, Vidyasagar TR, Pei X. 1996. A linear model fails to predict orientation selectivity of cells in the cat visual cortex. J. Physiol. 496:597–606 [Google Scholar]
  136. Walker GA, Ohzawa I, Freeman RD. 1998. Binocular cross-orientation suppression in the cat's striate cortex. J. Neurophysiol. 79:227–39 [Google Scholar]
  137. Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:12751–63 [Google Scholar]
/content/journals/10.1146/annurev-vision-111815-114456
Loading
/content/journals/10.1146/annurev-vision-111815-114456
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error