Electrical stimulation of the cerebral cortex is a powerful tool for exploring cortical function. Stimulation of early visual cortical areas is easily detected by subjects and produces simple visual percepts known as phosphenes. A device implanted in visual cortex that generates patterns of phosphenes could be used as a substitute for natural vision in blind patients. We review the possibilities and limitations of such a device, termed a visual cortical prosthetic. Currently, we can predict the location and size of phosphenes produced by stimulation of single electrodes. A functional prosthetic, however, must produce spatial temporal patterns of activity that will result in the perception of complex visual objects. Although stimulation of later visual cortical areas alone usually does not lead to a visual percept, it can alter visual perception and the performance of visual behaviors, and training subjects to use signals injected into these areas may be possible.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Afraz SR, Kiani R, Esteky H. 2006. Microstimulation of inferotemporal cortex influences face categorization. Nature 442:692–95 [Google Scholar]
  2. Albright TD, Desimone R, Gross CG. 1984. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51:16–31 [Google Scholar]
  3. Allison T, Ginter H, McCarthy G, Nobre AC, Puce A. et al. 1994. Face recognition in human extrastriate cortex. J. Neurophysiol. 71:821–25 [Google Scholar]
  4. Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM. 1990. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med. Biol. Eng. Comput 28257–59 [Google Scholar]
  5. Beauchamp MS, Sun P, Baum SH, Tolias AS, Yoshor D. 2012. Electrocorticography links human temporoparietal junction to visual perception. Nat. Neurosci. 15:957–59 [Google Scholar]
  6. Becker HG, Haarmeier T, Tatagiba M, Gharabaghi A. 2013. Electrical stimulation of the human homolog of the medial superior temporal area induces visual motion blindness. J. Neurosci. 33:18288–97 [Google Scholar]
  7. Blanke O, Landis T, Safran AB, Seeck M. 2002. Direction-specific motion blindness induced by focal stimulation of human extrastriate cortex. Eur. J. Neurosci. 15:2043–48 [Google Scholar]
  8. Blasdel GG. 1992. Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J. Neurosci. 12:3115–38 [Google Scholar]
  9. Blasdel GG, Salama G. 1986. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–85 [Google Scholar]
  10. Bonhoeffer T, Grinvald A. 1991. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–31 [Google Scholar]
  11. Born RT, Groh JM, Zhao R, Lukasewycz SJ. 2000. Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26:725–34 [Google Scholar]
  12. Bosking WH, Sun P, Özker M, Pei X, Foster BL. et al. 2017. Saturation in phosphene size with increasing current levels delivered to human visual cortex. J. Neurosci. 37:7188–97 [Google Scholar]
  13. Bradley DC, Troyk PR, Berg JA, Bak M, Cogan S. et al. 2005. Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol. 93:1659–70 [Google Scholar]
  14. Bredeson S, Kanneganti A, Deku F, Cogan S, Romero-Ortega M, Troyk P. 2015. Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator Presented at 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 25–29 Milan, Italy:
  15. Brindley GS, Donaldson PE, Falconer MA, Rushton DN. 1972. The extent of the region of occipital cortex that when stimulated gives phosphenes fixed in the visual field. J. Physiol. 225:57P–58P [Google Scholar]
  16. Brindley GS, Lewin WS. 1968a. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196:479–93 [Google Scholar]
  17. Brindley GS, Lewin WS. 1968b. The visual sensations produced by electrical stimulation of the medial occipital cortex. J. Physiol. 194:54P–55P [Google Scholar]
  18. Britten KH, van Wezel RJ. 1998. Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci. 1:59–63 [Google Scholar]
  19. Brock AA, Friedman RM, Fan RH, Roe AW. 2013. Optical imaging of cortical networks via intracortical microstimulation. J. Neurophysiol. 110:2670–78 [Google Scholar]
  20. Button J, Putnam T. 1962. Visual responses to cortical stimulation in the blind. J. Iowa State Med. Soc 5217–21 [Google Scholar]
  21. Button JC. 1958. Electronics brings light to the blind. Radio Electron 29:53–55 [Google Scholar]
  22. Celebrini S, Newsome WT. 1995. Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J. Neurophysiol. 73:437–48 [Google Scholar]
  23. Chen G, Lu HD, Roe AW. 2008. A map for horizontal disparity in monkey V2. Neuron 58:442–50 [Google Scholar]
  24. Cicmil N, Krug K. 2015. Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception. Philos. Trans. R. Soc. B 370:20140206 [Google Scholar]
  25. Cohen MR, Newsome WT. 2004. What electrical microstimulation has revealed about the neural basis of cognition. Curr. Opin. Neurobiol. 14:169–77 [Google Scholar]
  26. DeAngelis GC, Cumming BG, Newsome WT. 1998. Cortical area MT and the perception of stereoscopic depth. Nature 394:677–80 [Google Scholar]
  27. DeAngelis GC, Newsome WT. 1999. Organization of disparity-selective neurons in macaque area MT. J. Neurosci. 19:1398–415 [Google Scholar]
  28. DeAngelis GC, Newsome WT. 2004. Perceptual “read-out” of conjoined direction and disparity maps in extrastriate area MT. PLOS Biol 2:E77 [Google Scholar]
  29. Dobelle WH. 2000. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46:3–9 [Google Scholar]
  30. Dobelle WH, Mladejovsky MG. 1974. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol. 243:553–76 [Google Scholar]
  31. Dobelle WH, Mladejovsky MG, Evans JR, Roberts TS, Girvin JP. 1976. “Braille” reading by a blind volunteer by visual cortex stimulation. Nature 259:111–12 [Google Scholar]
  32. Dobelle WH, Mladejovsky MG, Girvin JP. 1974. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–44 [Google Scholar]
  33. Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA. 2003. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3:10586–98 [Google Scholar]
  34. Dumoulin SO, Wandell BA. 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:647–60 [Google Scholar]
  35. Duncan RO, Boynton GM. 2003. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38:659–71 [Google Scholar]
  36. Engel SA, Glover GH, Wandell BA. 1997. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7:181–92 [Google Scholar]
  37. Fernandes RA, Diniz B, Ribeiro R, Humayun M. 2012. Artificial vision through neuronal stimulation. Neurosci. Lett. 519:122–28 [Google Scholar]
  38. Ghose K, Maunsell JH. 2012. A strong constraint to the joint processing of pairs of cortical signals. J. Neurosci. 32:15922–33 [Google Scholar]
  39. Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:536–48 [Google Scholar]
  40. Grinvald A, Frostig RD, Siegel RM, Bartfeld E. 1991. High-resolution optical imaging of functional brain architecture in the awake monkey. PNAS 88:11559–63 [Google Scholar]
  41. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. 1986. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–64 [Google Scholar]
  42. Groh JM, Born RT, Newsome WT. 1997. How is a sensory map read out? Effects of microstimulation in visual area MT on saccades and smooth pursuit eye movements. J. Neurosci. 17:4312–30 [Google Scholar]
  43. Harvey BM, Dumoulin SO. 2011. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J. Neurosci. 31:13604–12 [Google Scholar]
  44. Histed MH, Bonin V, Reid RC. 2009. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:508–22 [Google Scholar]
  45. Histed MH, Ni AM, Maunsell JH. 2013. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog. Neurobiol. 103:115–30 [Google Scholar]
  46. Horiguchi H, Wandell BA, Winawer J. 2016. A predominantly visual subdivision of the right temporo-parietal junction (vTPJ). Cereb. Cortex 26:639–46 [Google Scholar]
  47. Horton JC, Hoyt WF. 1991. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch. Ophthalmol. 109:816–24 [Google Scholar]
  48. Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:574–91 [Google Scholar]
  49. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43 [Google Scholar]
  50. Ikezoe K, Mori Y, Kitamura K, Tamura H, Fujita I. 2013. Relationship between the local structure of orientation map and the strength of orientation tuning of neurons in monkey V1: a 2-photon calcium imaging study. J. Neurosci. 33:16818–27 [Google Scholar]
  51. Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvee M. et al. 2012. Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–88 [Google Scholar]
  52. Jonas J, Frismand S, Vignal JP, Colnat-Coulbois S, Koessler L. et al. 2014a. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum. Brain Mapp. 35:3360–71 [Google Scholar]
  53. Jonas J, Rossion B, Brissart H, Frismand S, Jacques C. et al. 2015. Beyond the core face-processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex 72:140–55 [Google Scholar]
  54. Jonas J, Rossion B, Krieg J, Koessler L, Colnat-Coulbois S. et al. 2014b. Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. NeuroImage 99:487–97 [Google Scholar]
  55. Krug K, Cicmil N, Parker AJ, Cumming BG. 2013. A causal role for V5/MT neurons coding motion-disparity conjunctions in resolving perceptual ambiguity. Curr. Biol. 23:1454–59 [Google Scholar]
  56. Lee HW, Hong SB, Seo DW, Tae WS, Hong SC. 2000. Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology 54:849–54 [Google Scholar]
  57. Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. 2015. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 1595:51–73 [Google Scholar]
  58. Lewis PM, Rosenfeld JV. 2016. Electrical stimulation of the brain and the development of cortical visual prostheses: an historical perspective. Brain Res 1630:208–24 [Google Scholar]
  59. Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F. et al. 2010. The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci. 13:1283–91 [Google Scholar]
  60. Lowery AJ, Rosenfeld JV, Lewis PM, Browne D, Mohan A. et al. 2015. Restoration of vision using wireless cortical implants: the Monash Vision Group project. Conf. Proc. IEEE Eng. Med. Biol. Soc 20151041–44 [Google Scholar]
  61. Lu HD, Roe AW. 2007. Optical imaging of contrast response in Macaque monkey V1 and V2. Cereb. Cortex 17:2675–95 [Google Scholar]
  62. Lu HD, Roe AW. 2008. Functional organization of color domains in V1 and V2 of Macaque monkey revealed by optical imaging. Cereb. Cortex 18:516–33 [Google Scholar]
  63. Luo YH, da Cruz L. 2016. The Argus® II Retinal Prosthesis System. Prog. Retin. Eye Res. 50:89–107 [Google Scholar]
  64. Megevand P, Groppe DM, Goldfinger MS, Hwang ST, Kingsley PB. et al. 2014. Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J. Neurosci. 34:5399–405 [Google Scholar]
  65. Mundel T, Milton JG, Dimitrov A, Wilson HW, Pelizzari C. et al. 2003. Transient inability to distinguish between faces: electrophysiologic studies. J. Clin. Neurophysiol. 20:102–10 [Google Scholar]
  66. Murasugi CM, Salzman CD, Newsome WT. 1993. Microstimulation in visual area MT: effects of varying pulse amplitude and frequency. J. Neurosci. 13:1719–29 [Google Scholar]
  67. Murphey DK, Maunsell JH. 2007. Behavioral detection of electrical microstimulation in different cortical visual areas. Curr. Biol. 17:862–67 [Google Scholar]
  68. Murphey DK, Maunsell JH, Beauchamp MS, Yoshor D. 2009. Perceiving electrical stimulation of identified human visual areas. PNAS 106:5389–93 [Google Scholar]
  69. Murphey DK, Yoshor D, Beauchamp MS. 2008. Perception matches selectivity in the human anterior color center. Curr. Biol. 18:216–20 [Google Scholar]
  70. Musallam S, Bak MJ, Troyk PR, Andersen RA. 2007. A floating metal microelectrode array for chronic implantation. J. Neurosci. Methods 160:122–27 [Google Scholar]
  71. Nasr S, Polimeni JR, Tootell RB. 2016. Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J. Neurosci. 36:1841–57 [Google Scholar]
  72. Nauhaus I, Nielsen KJ, Disney AA, Callaway EM. 2012. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat. Neurosci. 15:1683–90 [Google Scholar]
  73. Newsome WT, Britten KH, Salzman CD, Movshon JA. 1990. Neuronal mechanisms of motion perception. Cold Spring Harb. Symp. Quant. Biol. 55:697–705 [Google Scholar]
  74. Newsome WT, Salzman CD. 1993. The neuronal basis of motion perception. Ciba Foundation Symposium 174: Experimental and Theoretical Studies of Consciousness GR Bock, J Marsh 217–46 Chichester, UK: John Wiley & Sons [Google Scholar]
  75. Ni AM, Maunsell JH. 2010. Microstimulation reveals limits in detecting different signals from a local cortical region. Curr. Biol. 20:824–28 [Google Scholar]
  76. Nichols MJ, Newsome WT. 2002. Middle temporal visual area microstimulation influences veridical judgments of motion direction. J. Neurosci. 22:9530–40 [Google Scholar]
  77. Normann RA, Greger B, House P, Romero SF, Pelayo F, Fernandez E. 2009. Toward the development of a cortically based visual neuroprosthesis. J. Neural. Eng. 6:035001 [Google Scholar]
  78. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603 [Google Scholar]
  79. Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC. 2006. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442:925–28 [Google Scholar]
  80. Parvizi J, Jacques C, Foster BL, Witthoft N, Rangarajan V. et al. 2012. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32:14915–20 [Google Scholar]
  81. Penfield W. 1947. Some observations on the cerebral cortex of man. Proc. R. Soc. B 134:329–47 [Google Scholar]
  82. Penfield W, Rasmussen T. 1950. The Cerebral Cortex of Man New York: Macmillan Company
  83. Puce A, Allison T, McCarthy G. 1999. Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb. Cortex 9:445–58 [Google Scholar]
  84. Rangarajan V, Hermes D, Foster BL, Weiner KS, Jacques C. et al. 2014. Electrical stimulation of the left and right human fusiform gyrus causes different effects in conscious face perception. J. Neurosci. 34:12828–36 [Google Scholar]
  85. Rangarajan V, Parvizi J. 2016. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation. Neuropsychologia 83:29–36 [Google Scholar]
  86. Rauschecker AM, Dastjerdi M, Weiner KS, Witthoft N, Chen J. et al. 2011. Illusions of visual motion elicited by electrical stimulation of human MT complex. PLOS ONE 6:e21798 [Google Scholar]
  87. Richer F, Martinez M, Cohen H, Saint-Hilaire JM. 1991. Visual motion perception from stimulation of the human medial parieto-occipital cortex. Exp. Brain Res. 87:649–52 [Google Scholar]
  88. Rushton DN, Brindley GS. 1978. Properties of cortical electrical phosphenes. Frontiers in Visual Science SJ Cool, EL Smith III 574–93 Berlin: Springer [Google Scholar]
  89. Salzman CD, Britten KH, Newsome WT. 1990. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–77 [Google Scholar]
  90. Salzman CD, Murasugi CM, Britten KH, Newsome WT. 1992. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12:2331–55 [Google Scholar]
  91. Salzman CD, Newsome WT. 1994. Neural mechanisms for forming a perceptual decision. Science 264:231–37 [Google Scholar]
  92. Schiller PH, Slocum WM, Kwak MC, Kendall GL, Tehovnik EJ. 2011. New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated. PNAS 108:17809–14 [Google Scholar]
  93. Schiller PH, Tehovnik EJ. 2008. Visual prosthesis. Perception 37:1529–59 [Google Scholar]
  94. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O'Rourke DK, Vallabhanath P. 1996. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–22 [Google Scholar]
  95. Second Sight Med. Prod. 2015. Second sight announces first successful implant of model of Orion I visual cortical prosthesis News Release, April 8
  96. Second Sight Med. Prod. 2016. Second sight announces successful implantation and activation of wireless visual cortical stimulator in first human subject News Release, Oct. 25
  97. Seidemann E, Arieli A, Grinvald A, Slovin H. 2002. Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295:862–65 [Google Scholar]
  98. Selimbeyoglu A, Parvizi J. 2010. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4:46 [Google Scholar]
  99. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW. et al. 1995. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–93 [Google Scholar]
  100. Shiozaki HM, Tanabe S, Doi T, Fujita I. 2012. Neural activity in cortical area V4 underlies fine disparity discrimination. J. Neurosci. 32:3830–41 [Google Scholar]
  101. Sincich LC, Horton JC. 2005. The circuitry of V1 and V2: integration of color, form, and motion. Annu. Rev. Neurosci. 28:303–26 [Google Scholar]
  102. Srivastava NR, Troyk PR, Towle VL, Curry D, Schmidt E. et al. 2007. Estimating phosphene maps for psychophysical experiments used in testing a cortical visual prosthesis device Presented at 3rd Int. IEEE EMBS Conf. Neural Eng., Kohala Coast, HI
  103. Stoney SD Jr., Thompson WD, Asanuma H. 1968. Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. J. Neurophysiol. 31:659–69 [Google Scholar]
  104. Tanaka K. 1996. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19:109–39 [Google Scholar]
  105. Tehovnik EJ, Slocum WM. 2007a. Microstimulation of V1 delays visually guided saccades: a parametric evaluation of delay fields. Exp. Brain Res. 176:413–24 [Google Scholar]
  106. Tehovnik EJ, Slocum WM. 2007b. Phosphene induction by microstimulation of macaque V1. Brain Res. Rev. 53:337–43 [Google Scholar]
  107. Tehovnik EJ, Slocum WM. 2007c. What delay fields tell us about striate cortex. J. Neurophysiol. 98:559–76 [Google Scholar]
  108. Tehovnik EJ, Slocum WM. 2013. Electrical induction of vision. Neurosci. Biobehav. Rev. 37:803–18 [Google Scholar]
  109. Tehovnik EJ, Slocum WM, Carvey CE, Schiller PH. 2005a. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields. Eur. J. Neurosci. 22:2635–43 [Google Scholar]
  110. Tehovnik EJ, Slocum WM, Schiller PH. 2004. Microstimulation of V1 delays the execution of visually guided saccades. Eur J. Neurosci. 20:264–72 [Google Scholar]
  111. Tehovnik EJ, Slocum WM, Schiller PH. 2005b. Phosphene induction and the generation of saccadic eye movements by striate cortex. J. Neurophysiol. 93:1–19 [Google Scholar]
  112. Tehovnik EJ, Slocum WM, Smirnakis SM, Tolias AS. 2009. Microstimulation of visual cortex to restore vision. Prog. Brain Res. 175:347–75 [Google Scholar]
  113. Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK. 2006. Direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol. 96:512–21 [Google Scholar]
  114. Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ. et al. 2005. Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48:901–11 [Google Scholar]
  115. Tootell RB, Switkes E, Silverman MS, Hamilton SL. 1988. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8:1531–68 [Google Scholar]
  116. Troyk P, Bak M, Berg J, Bradley D, Cogan S. et al. 2003. A model for intracortical visual prosthesis research. Artif. Organs 27:1005–15 [Google Scholar]
  117. Troyk PR, Bradley D, Bak M, Cogan S, Erickson R. et al. 2005. Intracortical visual prosthesis research - approach and progress. Proc. IEEE Eng. Med. Biol. Soc., Shanghai, China7376–79 Piscataway, NJ: Inst. Electr. Electron. Eng. [Google Scholar]
  118. Ts'o DY, Frostig RD, Lieke EE, Grinvald A. 1990. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249:417–20 [Google Scholar]
  119. Uka T, DeAngelis GC. 2006. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. J. Neurosci. 26:6791–802 [Google Scholar]
  120. Wandell BA, Dumoulin SO, Brewer AA. 2007. Visual field maps in human cortex. Neuron 56:366–83 [Google Scholar]
  121. Wandell BA, Winawer J. 2011. Imaging retinotopic maps in the human brain. Vis. Res. 51:718–37 [Google Scholar]
  122. Wang G, Tanaka K, Tanifuji M. 1996. Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272:1665–68 [Google Scholar]
  123. Winawer J, Parvizi J. 2016. Linking electrical stimulation of human primary visual cortex, size of affected cortical area, neuronal responses, and subjective experience. Neuron 92:1213–19 [Google Scholar]
  124. Yoshor D, Bosking WH, Ghose GM, Maunsell JH. 2007. Receptive fields in human visual cortex mapped with surface electrodes. Cereb. Cortex 17:2293–302 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error