1932

Abstract

Much remains to be understood about visual system malfunction following injury. The resulting deficits range from dense, visual field scotomas to mild dysfunction of visual perception. Despite the predictive value of anatomical localization studies, much patient-to-patient variability remains regarding () perceptual abilities following injury and () the capacity of individual patients for visual rehabilitation. Visual field perimetry is used to characterize the visual field deficits that result from visual system injury. However, standard perimetry mapping does not always precisely correspond to underlying anatomical or functional deficits. Functional magnetic resonance imaging can be used to probe the function of surviving visual circuits, allowing us to classify better how the pattern of injury relates to residual visual perception. Identifying pathways that are potentially modifiable by training may guide the development of improved strategies for visual rehabilitation. This review discusses primary visual cortex lesions, which cause dense contralateral scotomas.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-111815-114535
2016-10-14
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/vision/2/1/annurev-vision-111815-114535.html?itemId=/content/journals/10.1146/annurev-vision-111815-114535&mimeType=html&fmt=ahah

Literature Cited

  1. Ahissar M, Nahum M, Nelken I, Hochstein S. 2009. Reverse hierarchies and sensory learning. Philos. Trans. R. Soc. Lond. Ser. B 364:285–99 [Google Scholar]
  2. Ajina S, Kennard C. 2012. Rehabilitation of damage to the visual brain. Rev. Neurol. 168:754–61 [Google Scholar]
  3. Ajina S, Kennard C, Rees G, Bridge H. 2015a. Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex. Brain 138:164–78 [Google Scholar]
  4. Ajina S, Rees G, Kennard C, Bridge H. 2015b. Abnormal contrast responses in the extrastriate cortex of blindsight patients. J. Neurosci. 35:8201–13 [Google Scholar]
  5. Amano K, Wandell BA, Dumoulin SO. 2009. Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J. Neurophysiol. 102:2704–18 [Google Scholar]
  6. Amicuzi I, Stortini M, Petrarca M, Di Giulio P, Di Rosa G. et al. 2006. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl. Neurocase 12:263–79 [Google Scholar]
  7. Baker CI, Dilks DD, Peli E, Kanwisher N. 2008. Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss. Vis. Res. 48:1910–19 [Google Scholar]
  8. Baker CI, Peli E, Knouf N, Kanwisher NG. 2005. Reorganization of Visual processing in macular degeneration. J. Neurosci. 25:614–18 [Google Scholar]
  9. Balliet R, Blood KM, Bach-y-Rita P. 1985. Visual field rehabilitation in the cortically blind?. J. Neurol. Neurosurg. Psychiatry 48:1113–24 [Google Scholar]
  10. Barbur JL, Watson JD, Frackowiak RS, Zeki S. 1993. Conscious visual perception without V1. Brain 116:1293–302 [Google Scholar]
  11. Barleben M, Stoppel CM, Kaufmann J, Merkel C, Wecke T. et al. 2015. Neural correlates of visual motion processing without awareness in patients with striate cortex and pulvinar lesions. Hum. Brain Mapp. 36:1585–94 [Google Scholar]
  12. Baseler HA, Brewer AA, Sharpe LT, Morland AB, Jagle H, Wandell BA. 2002. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nat. Neurosci. 5:364–70 [Google Scholar]
  13. Baseler HA, Gouws A, Haak KV, Racey C, Crossland MD. et al. 2011. Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat. Neurosci. 14:649–55 [Google Scholar]
  14. Baseler HA, Morland AB, Wandell BA. 1999. Topographic organization of human visual areas in the absence of input from primary cortex. J. Neurosci. 19:2619–27 [Google Scholar]
  15. Binda P, Thomas JM, Boynton GM, Fine I. 2013. Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping. J. Vis. 13:713Discusses the biases that arise in estimating visual cortex reorganization by fMRI in participants with visual system lesions. [Google Scholar]
  16. Bittar RG, Ptito M, Faubert J, Dumoulin SO, Ptito A. 1999. Activation of the remaining hemisphere following stimulation of the blind hemifield in hemispherectomized subjects. NeuroImage 10:339–46 [Google Scholar]
  17. Blythe IM, Kennard C, Ruddock KH. 1987. Residual vision in patients with retrogeniculate lesions of the visual pathways. Brain 110:887–905 [Google Scholar]
  18. Bouwmeester L, Heutink J, Lucas C. 2007. The effect of visual training for patients with visual field defects due to brain damage: a systematic review. J. Neurol. Neurosurg. Psychiatry 78:555–64 [Google Scholar]
  19. Bridge H, Hicks SL, Xie J, Okell TW, Mannan S. et al. 2010. Visual activation of extra-striate cortex in the absence of V1 activation. Neuropsychologia 48:4148–54 [Google Scholar]
  20. Bridge H, Thomas O, Jbabdi S, Cowey A. 2008. Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131:1433–44 [Google Scholar]
  21. Bruce BB, Zhang X, Kedar S, Newman NJ, Biousse V. 2006. Traumatic homonymous hemianopia. J. Neurol. Neurosurg. Psychiatry 77:986–88 [Google Scholar]
  22. Bruce CJ, Desimone R, Gross CG. 1986. Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. J. Neurophysiol. 55:1057–75 [Google Scholar]
  23. Chokron S, Perez C, Obadia M, Gaudry I, Laloum L, Gout O. 2008. From blindsight to sight: cognitive rehabilitation of visual field defects. Restor. Neurol. Neurosci. 26:305–20 [Google Scholar]
  24. Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L. et al. 1997. Functional relevance of cross-modal plasticity in blind humans. Nature 389:180–83 [Google Scholar]
  25. Cohen S, Kawasaki A. 1999. Introduction to formal visual field testing: Goldmann and Humphrey perimetry. J. Ophthalmic Nurs. Technol. 18:7–1135–36 [Google Scholar]
  26. Cowey A. 2010. The blindsight saga. Exp. Brain Res. 200:3–24 [Google Scholar]
  27. Cowey A, Stoerig P. 1989. Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: implications for residual vision. Exp. Brain Res. 75:631–38 [Google Scholar]
  28. Cowey A, Stoerig P. 1991. The neurobiology of blindsight. Trends Neurosci. 14:140–45 [Google Scholar]
  29. Cowey A, Stoerig P. 1995. Blindsight in monkeys. Nature 373:247–49 [Google Scholar]
  30. Cowey A, Walsh V. 2000. Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–73 [Google Scholar]
  31. Cowey A, Weiskrantz L. 1963. A perimetric study of visual field defects in monkey. Q. J. Exp. Psychol. 15:91–115 [Google Scholar]
  32. Cox RW, Jesmanowicz A, Hyde JS. 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33:230–36 [Google Scholar]
  33. Danckert J, Rossetti Y. 2005. Blindsight in action: What can the different sub-types of blindsight tell us about the control of visually guided actions?. Neurosci. Biobehav. Rev. 29:1035–46 [Google Scholar]
  34. Das A, Huxlin KR. 2010. New approaches to visual rehabilitation for cortical blindness: outcomes and putative mechanisms. Neuroscientist 16:374–87 [Google Scholar]
  35. Das A, Tadin D, Huxlin KR. 2014. Beyond blindsight: properties of visual relearning in cortically blind fields. J. Neurosci. 34:11652–64 [Google Scholar]
  36. deCharms RC. 2008. Applications of real-time fMRI. Nat. Rev. Neurosci. 9:720–29 [Google Scholar]
  37. Dilks DD, Baker CI, Liu Y, Kanwisher N. 2009. “Referred visual sensations”: rapid perceptual elongation after visual cortical deprivation. J. Neurosci. 29:8960–64 [Google Scholar]
  38. Dilks DD, Serences JT, Rosenau BJ, Yantis S, McCloskey M. 2007. Human adult cortical reorganization and consequent visual distortion. J. Neurosci. 27:9585–94 [Google Scholar]
  39. Dumoulin SO, Jirsch JD, Bernasconi A. 2007. Functional organization of human visual cortex in occipital polymicrogyria. Hum. Brain Mapp. 28:1302–12 [Google Scholar]
  40. Dumoulin SO, Wandell BA. 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:647–60Introduces population receptive field mapping methods. [Google Scholar]
  41. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH. et al. 1994. fMRI of human visual cortex. Nature 369:525 [Google Scholar]
  42. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47 [Google Scholar]
  43. Ffytche DH, Guy CN, Zeki S. 1996. Motion specific responses from a blind hemifield. Brain 119:1971–82 [Google Scholar]
  44. Fine I, Wade AR, Brewer AA, May MG, Goodman DF. et al. 2003. Long-term deprivation affects visual perception and cortex. Nat. Neurosci. 6:915–16 [Google Scholar]
  45. Giaschi D, Jan JE, Bjornson B, Young SA, Tata M. et al. 2003. Conscious visual abilities in a patient with early bilateral occipital damage. Dev. Med. Child Neurol. 45:772–81 [Google Scholar]
  46. Gilbert CD, Li W, Piech V. 2009. Perceptual learning and adult cortical plasticity. J. Physiol. 587:2743–51 [Google Scholar]
  47. Gilbert CD, Wiesel TN. 1992. Receptive field dynamics in adult primary visual cortex. Nature 356:150–52 [Google Scholar]
  48. Goebel R, Muckli L, Zanella FE, Singer W, Stoerig P. 2001. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vis. Res. 41:1459–74 [Google Scholar]
  49. Guzzetta A, Cioni G, Cowan F, Mercuri E. 2001a. Visual disorders in children with brain lesions: 1. Maturation of visual function in infants with neonatal brain lesions: correlation with neuroimaging. Eur. J. Paediatr. Neurol. 5:107–14 [Google Scholar]
  50. Guzzetta A, D'Acunto G, Rose S, Tinelli F, Boyd R, Cioni G. 2010. Plasticity of the visual system after early brain damage. Dev. Med. Child Neurol. 52:891–900 [Google Scholar]
  51. Guzzetta A, Mercuri E, Cioni G. 2001b. Visual disorders in children with brain lesions: 2. Visual impairment associated with cerebral palsy. Eur. J. Paediatr. Neurol. 5:115–19 [Google Scholar]
  52. Haak KV, Cornelissen FW, Morland AB. 2012. Population receptive field dynamics in human visual cortex. PLOS ONE 7:e37686 [Google Scholar]
  53. Haak KV, Langers DR, Renken R, van Dijk P, Borgstein J, Cornelissen FW. 2014. Abnormal visual field maps in human cortex: a mini-review and a case report. Cortex 56:14–25 [Google Scholar]
  54. Haak KV, Winawer J, Harvey BM, Renken R, Dumoulin SO. et al. 2013. Connective field modeling. NeuroImage 66:376–84Introduces corticocortical connective field modeling. [Google Scholar]
  55. Henriksson L, Raninen A, Nasanen R, Hyvarinen L, Vanni S. 2007. Training-induced cortical representation of a hemianopic hemifield. J. Neurol. Neurosurg. Psychiatry 78:74–81 [Google Scholar]
  56. Horton JC. 2005a. Disappointing results from Nova Vision's visual restoration therapy. Br. J. Ophthalmol. 89:1–2 [Google Scholar]
  57. Horton JC. 2005b. Vision restoration therapy: confounded by eye movements. Br. J. Ophthalmol. 89:792–94 [Google Scholar]
  58. Horton JC, Hocking DR. 1998. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J. Neurosci. 18:5433–55 [Google Scholar]
  59. Horton JC, Hoyt WF. 1991. Quadrantic visual field defects: a hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114:1703–18 [Google Scholar]
  60. Huber E, Webster JM, Brewer AA, MacLeod DI, Wandell BA. et al. 2015. A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychol. Sci. 26:393–401 [Google Scholar]
  61. Huxlin KR. 2007. Improving global motion perception in the blind field of adult humans with V1 damage Presented at Vis. Sci. Soc. Symp. Vis. Plast. Abnorm. Damaged Adult Brains, Sarasota, FL
  62. Huxlin KR. 2008. Perceptual plasticity in damaged adult visual systems. Vis. Res. 48:2154–66 [Google Scholar]
  63. Huxlin KR, Martin T, Kelly K, Riley M, Friedman DI. et al. 2009. Perceptual relearning of complex visual motion after V1 damage in humans. J. Neurosci. 29:3981–91Presents a human study arguing that intense training can improve visual motion discrimination thresholds inside dense, homonymous scotomas. [Google Scholar]
  64. Huxlin KR, Pasternak T. 2004. Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. Cereb. Cortex 14:81–90 [Google Scholar]
  65. Kaiser M. 2011. A tutorial in connectome analysis: topological and spatial features of brain networks. NeuroImage 57:892–907 [Google Scholar]
  66. Kelley TA, Yantis S. 2010. Neural correlates of learning to attend. Front. Hum. Neurosci. 4:216 [Google Scholar]
  67. Kennard M, Fulton JF. 1942. Age and reorganization of central nervous system. Mt. Sinai J. Med. 9:594–606 [Google Scholar]
  68. Kerkhoff G. 2000. Neurovisual rehabilitation: recent developments and future directions. Am. J. Ophthalmol. 130:687–88 [Google Scholar]
  69. Knyazeva MG, Maeder P, Kiper DC, Deonna T, Innocenti GM. 2002. Vision after early-onset lesions of the occipital cortex: II. Physiological studies. Neural Plast. 9:27–40 [Google Scholar]
  70. Koenraads Y, van der Linden DC, van Schooneveld MM, Imhof SM, Gosselaar PH. et al. 2014. Visual function and compensatory mechanisms for hemianopia after hemispherectomy in children. Epilepsia 55:909–17 [Google Scholar]
  71. Kong CK, Wong LY, Yuen MK. 2000. Visual field plasticity in a female with right occipital cortical dysplasia. Pediatr. Neurol. 23:256–60 [Google Scholar]
  72. Lee S, Papanikolaou A, Keliris GA, Smirnakis SM. 2015. Topographical estimation of visual population receptive fields by fMRI. J. Vis. Exp. 96:e51811 [Google Scholar]
  73. Lee S, Papanikolaou A, Logothetis NK, Smirnakis SM, Keliris GA. 2013. A new method for estimating population receptive field topography in visual cortex. NeuroImage 81:144–57 [Google Scholar]
  74. Levi DM. 2013. Linking assumptions in amblyopia. Vis. Neurosci. 30:277–87 [Google Scholar]
  75. Marx E, Stephan T, Bense S, Yousry TA, Dieterich M, Brandt T. 2002. Motion perception in the ipsilateral visual field of a hemispherectomized patient. J. Neurol. 249:1303–6 [Google Scholar]
  76. Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA. 2008. V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb. Cortex 18:2483–93 [Google Scholar]
  77. Masuda Y, Horiguchi H, Dumoulin SO, Furuta A, Miyauchi S. et al. 2010. Task-dependent V1 responses in human retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci. 51:5356–64 [Google Scholar]
  78. McKenna K, Cooke DM, Fleming J, Jefferson A, Ogden S. 2006. The incidence of visual perceptual impairment in patients with severe traumatic brain injury. Brain Inj. 20:507–18 [Google Scholar]
  79. Moore T, Rodman HR, Gross CG. 2001. Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey. PNAS 98:325–30 [Google Scholar]
  80. Moutoussis K, Zeki S. 2002. The relationship between cortical activation and perception investigated with invisible stimuli. PNAS 99:9527–32 [Google Scholar]
  81. Nelles G, de Greiff A, Pscherer A, Forsting M, Gerhard H. et al. 2007. Cortical activation in hemianopia after stroke. Neurosci. Lett. 426:34–38 [Google Scholar]
  82. Nelles G, Widman G, de Greiff A, Meistrowitz A, Dimitrova A. et al. 2002. Brain representation of hemifield stimulation in poststroke visual field defects. Stroke 33:1286–93 [Google Scholar]
  83. Newsome WT, Pare EB. 1988. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8:2201–11 [Google Scholar]
  84. Papageorgiou TD, Lisinski JM, McHenry MA, White JP, LaConte SM. 2013. Brain–computer interfaces increase whole-brain signal to noise. PNAS 110:13630–35 [Google Scholar]
  85. Papageorgiou TD, Papanikolaou A, Smirnakis SM. 2014. A systematic approach to visual system rehabilitation: population receptive field analysis and real-time functional magnetic resonance imaging neurofeedback methods. Advanced Brain Neuroimaging Topics in Health and Disease: Methods and Applications TD Papageorgiou, GI Christopoulos, SM Smirnakis. Rijeka, Croatia: InTech. doi: 10.5772/58258
  86. Papanikolaou A, Keliris GA, Lee S, Logothetis NK, Smirnakis SM. 2015. Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas. NeuroImage 120:176–90Demonstrates that nonlinear changes in population receptive field maps do not necessarily imply reorganization. [Google Scholar]
  87. Papanikolaou A, Keliris GA, Papageorgiou TD, Shao Y, Krapp E. et al. 2014. Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects. PNAS 111:E1656–65Argues that fMRI population receptive field analysis complements visual field perimetry in further classifying lesions of the visual pathways. [Google Scholar]
  88. Pasternak T, Merigan WH. 1994. Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb. Cortex 4:247–59 [Google Scholar]
  89. Payne BR, Lomber SG. 2002. Plasticity of the visual cortex after injury: What's different about the young brain?. Neuroscientist 8:174–85 [Google Scholar]
  90. Payne BR, Lomber SG, Gelston CD. 2000. Graded sparing of visually-guided orienting following primary visual cortex ablations within the first postnatal month. Behav. Brain Res. 117:1–11 [Google Scholar]
  91. Pelak VS, Dubin M, Whitney E. 2007. Homonymous hemianopia: a critical analysis of optical devices, compensatory training, and NovaVision. Curr. Treat. Options Neurol. 9:41–47 [Google Scholar]
  92. Polyak SL. 1957. The Vertebrate Visual System Chicago: Univ. Chicago Press
  93. Poppel E, Held R, Frost D. 1973. Residual visual function after brain wounds involving the central visual pathways in man. Nature 243:295–96 [Google Scholar]
  94. Pouget MC, Levy-Bencheton D, Prost M, Tilikete C, Husain M, Jacquin-Courtois S. 2012. Acquired visual field defects rehabilitation: critical review and perspectives. Ann. Phys. Rehabil. Med. 55:53–74 [Google Scholar]
  95. Ptito A, Leh SE. 2007. Neural substrates of blindsight after hemispherectomy. Neuroscientist 13:506–18 [Google Scholar]
  96. Raninen A, Vanni S, Hyvarinen L, Nasanen R. 2007. Temporal sensitivity in a hemianopic visual field can be improved by long-term training using flicker stimulation. J. Neurol. Neurosurg. Psychiatry 78:66–73 [Google Scholar]
  97. Raposo N, Cauquil AS, Albucher JF, Acket B, Celebrini S. et al. 2011. Poststroke conscious visual deficit: clinical course and changes in cerebral activations. Neurorehabil. Neural Repair 25:703–10 [Google Scholar]
  98. Reinhard J, Schreiber A, Schiefer U, Kasten E, Sabel BA. et al. 2005. Does visual restitution training change absolute homonymous visual field defects? A fundus controlled study. Br. J. Ophthalmol. 89:30–35 [Google Scholar]
  99. Riddoch G. 1917. Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40:15–57 [Google Scholar]
  100. Riggs RV, Andrews K, Roberts P, Gilewski M. 2007. Visual deficit interventions in adult stroke and brain injury: a systematic review. Am. J. Phys. Med. Rehabil. 86:853–60 [Google Scholar]
  101. Rodman HR, Gross CG, Albright TD. 1989. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J. Neurosci. 9:2033–50 [Google Scholar]
  102. Rodman HR, Gross CG, Albright TD. 1990. Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J. Neurosci. 10:1154–64 [Google Scholar]
  103. Rudolph K, Pasternak T. 1999. Transient and permanent deficits in motion perception after lesions of cortical areas MT and MST in the macaque monkey. Cereb. Cortex 9:90–100 [Google Scholar]
  104. Sabel BA. 2006. Vision restoration therapy and raising red flags too early. Br. J. Ophthalmol. 90:659–60 [Google Scholar]
  105. Sabel BA, Henrich-Noack P, Fedorov A, Gall C. 2011. Vision restoration after brain and retina damage: the “residual vision activation theory.”. Prog. Brain Res. 192:199–262 [Google Scholar]
  106. Sabel BA, Kasten E. 2000. Restoration of vision by training of residual functions. Curr. Opin. Ophthalmol. 11:430–36 [Google Scholar]
  107. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP. et al. 1996. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380:526–28 [Google Scholar]
  108. Sahraie A, Trevethan CT, MacLeod MJ, Murray AD, Olson JA, Weiskrantz L. 2006. Increased sensitivity after repeated stimulation of residual spatial channels in blindsight. PNAS 103:14971–76 [Google Scholar]
  109. Salazar RF, Kayser C, Konig P. 2004. Effects of training on neuronal activity and interactions in primary and higher visual cortices in the alert cat. J. Neurosci. 24:1627–36 [Google Scholar]
  110. Schmid MC, Mrowka SW, Turchi J, Saunders RC, Wilke M. et al. 2010. Blindsight depends on the lateral geniculate nucleus. Nature 466:373–77Area V2./V3 can be visually modulated in the absence of V1 input via input from the LGN. This is correlated with blindsight performance. [Google Scholar]
  111. Schmid MC, Panagiotaropoulos T, Augath MA, Logothetis NK, Smirnakis SM. 2009. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLOS ONE 4:e5527Argues that in the macaque, areas V2/V3 can be visually modulated in the absence of V1 input. [Google Scholar]
  112. Schmid MC, Schmiedt JT, Peters AJ, Saunders RC, Maier A, Leopold DA. 2013. Motion-sensitive responses in visual area V4 in the absence of primary visual cortex. J. Neurosci. 33:18740–45 [Google Scholar]
  113. Schoenfeld MA, Noesselt T, Poggel D, Tempelmann C, Hopf JM. et al. 2002. Analysis of pathways mediating preserved vision after striate cortex lesions. Ann. Neurol. 52:814–24 [Google Scholar]
  114. Schofield TM, Leff AP. 2009. Rehabilitation of hemianopia. Curr. Opin. Neurol. 22:36–40 [Google Scholar]
  115. Seghier ML, Huppi PS. 2010. The role of functional magnetic resonance imaging in the study of brain development, injury, and recovery in the newborn. Semin. Perinatol. 34:79–86 [Google Scholar]
  116. Seghier ML, Lazeyras F, Zimine S, Saudan-Frei S, Safran AB, Huppi PS. 2005. Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report. BMC Neurol. 5:17 [Google Scholar]
  117. Shao Y, Keliris GA, Papanikolaou A, Fischer MD, Zobor D. et al. 2013. Visual cortex organisation in a macaque monkey with macular degeneration. Eur. J. Neurosci. 38:3456–64 [Google Scholar]
  118. Shibata K, Watanabe T, Sasaki Y, Kawato M. 2011. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334:1413–15 [Google Scholar]
  119. Silvanto J. 2015. Why is “blindsight” blind? A new perspective on primary visual cortex, recurrent activity and visual awareness. Conscious. Cogn. 32:15–32Reviews the requirements for conscious visual perception. [Google Scholar]
  120. Silvanto J, Cowey A, Lavie N, Walsh V. 2007. Making the blindsighted see. Neuropsychologia 45:3346–50 [Google Scholar]
  121. Silvanto J, Rees G. 2011. What does neural plasticity tell us about role of primary visual cortex (V1) in visual awareness?. Front. Psychol. 2:6 [Google Scholar]
  122. Silvanto J, Walsh V, Cowey A. 2009. Abnormal functional connectivity between ipsilesional V5/MT+ and contralesional striate cortex (V1) in blindsight. Exp. Brain Res. 193:645–50 [Google Scholar]
  123. Sincich LC, Park KF, Wohlgemuth MJ, Horton JC. 2004. Bypassing V1: a direct geniculate input to area MT. Nat. Neurosci. 7:1123–28 [Google Scholar]
  124. Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schuz A. et al. 2005. Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435:300–7 [Google Scholar]
  125. Stasheff SF, Barton JJ. 2001. Deficits in cortical visual function. Ophthalmol. Clin. N. Am. 14:217–42 [Google Scholar]
  126. Stoerig P. 2006. Blindsight, conscious vision, and the role of primary visual cortex. Prog. Brain Res. 155:217–34 [Google Scholar]
  127. Stoerig P, Cowey A. 1995. Visual perception and phenomenal consciousness. Behav. Brain Res. 71:147–56 [Google Scholar]
  128. Stoerig P, Cowey A. 1997. Blindsight in man and monkey. Brain 120:535–59 [Google Scholar]
  129. Stoerig P, Kleinschmidt A, Frahm J. 1998. No visual responses in denervated V1: high-resolution functional magnetic resonance imaging of a blindsight patient. NeuroReport 9:21–25 [Google Scholar]
  130. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A. 2015. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138:1679–95 [Google Scholar]
  131. Teuber HL. 1975. Recovery of function after brain injury in man. Ciba Found. Symp. 34:159–90 [Google Scholar]
  132. Tiel K, Kolmel HW. 1991. Patterns of recovery from homonymous hemianopia subsequent to infarction in the distribution of the posterior cerebral artery. Neuro-Ophthalmology 11:33–39 [Google Scholar]
  133. Trevethan CT, Sahraie A, Weiskrantz L. 2007. Can blindsight be superior to ‘sighted-sight’?. Cognition 103:491–501 [Google Scholar]
  134. Umarova RM, Saur D, Kaller CP, Vry MS, Glauche V. et al. 2011. Acute visual neglect and extinction: distinct functional state of the visuospatial attention system. Brain 134:3310–25 [Google Scholar]
  135. Urbanski M, Coubard OA, Bourlon C. 2014. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques. Front. Integr. Neurosci. 8:74Reviews the use of brain imaging methods for mapping visual field defects. [Google Scholar]
  136. Vaina LM. 1994. Functional segregation of color and motion processing in the human visual cortex: clinical evidence. Cereb. Cortex 4:555–72 [Google Scholar]
  137. Vaina LM, Cowey A, Jakab M, Kikinis R. 2005. Deficits of motion integration and segregation in patients with unilateral extrastriate lesions. Brain 128:2134–45 [Google Scholar]
  138. Vaina LM, Soloviev S, Bienfang DC, Cowey A. 2000. A lesion of cortical area V2 selectively impairs the perception of the direction of first-order visual motion. NeuroReport 11:1039–44 [Google Scholar]
  139. Vaina LM, Soloviev S, Calabro FJ, Buonanno F, Passingham R, Cowey A. 2014. Reorganization of retinotopic maps after occipital lobe infarction. J. Cogn. Neurosci. 26:1266–82 [Google Scholar]
  140. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. 2010. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103:297–321 [Google Scholar]
  141. Wandell BA. 1999. Computational neuroimaging of human visual cortex. Annu. Rev. Neurosci. 22:145–73 [Google Scholar]
  142. Wandell BA, Smirnakis SM. 2009. Plasticity and stability of visual field maps in adult primary visual cortex. Nat. Rev. Neurosci. 10:873–84Critically reviews the evidence for visual field map plasticity in the adult primary visual cortex. [Google Scholar]
  143. Weiskrantz L. 2004. Roots of blindsight. Prog. Brain Res. 144:229–41 [Google Scholar]
  144. Weiskrantz L, Harlow A, Barbur JL. 1991. Factors affecting visual sensitivity in a hemianopic subject. Brain 114:2269–82 [Google Scholar]
  145. Weiskrantz L, Warrington EK, Sanders MD, Marshall J. 1974. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97:709–28 [Google Scholar]
  146. Werth R. 2008. Cerebral blindness and plasticity of the visual system in children: a review of visual capacities in patients with occipital lesions, hemispherectomy or hydranencephaly. Restor. Neurol. Neurosci. 26:377–89 [Google Scholar]
  147. Yang T, Maunsell JH. 2004. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24:1617–26 [Google Scholar]
  148. Zeki S, Ffytche DH. 1998. The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain 121:25–45 [Google Scholar]
  149. Zhang X, Kedar S, Lynn MJ, Newman NJ, Biousse V. 2006. Homonymous hemianopia in stroke. J. Neuroophthalmol. 26:180–83 [Google Scholar]
  150. Zihl J, von Cramon D. 1985. Visual field recovery from scotoma in patients with postgeniculate damage: a review of 55 cases. Brain 108:335–65 [Google Scholar]
  151. Zuiderbaan W, Harvey BM, Dumoulin SO. 2012. Modeling center-surround configurations in population receptive fields using fMRI. J. Vis. 12:310 [Google Scholar]
/content/journals/10.1146/annurev-vision-111815-114535
Loading
/content/journals/10.1146/annurev-vision-111815-114535
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error