1932

Abstract

Inherited and age-associated vision loss is often associated with degeneration of the cells of the retina, the light-sensitive layer at the back of the eye. The mammalian retina, being a postmitotic neural tissue, does not have the capacity to repair itself through endogenous regeneration. There has been considerable excitement for the development of cell replacement approaches since the isolation and development of culture methods for human pluripotent stem cells, as well as the generation of induced pluripotent stem cells. This has now been combined with novel three-dimensional organoid culture systems that closely mimic human retinal development in vitro. In this review, we cover the current state of the field, with emphasis on the cell delivery challenges, role of the recipient immunological microenvironment, and challenges related to connectivity between transplanted cells and host circuitry both locally and centrally to the different areas of the brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-120222-012817
2023-09-15
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-120222-012817.html?itemId=/content/journals/10.1146/annurev-vision-120222-012817&mimeType=html&fmt=ahah

Literature Cited

  1. Akhtar T, Xie H, Khan MI, Zhao H, Bao J et al. 2019. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res. 39:101491
    [Google Scholar]
  2. Aramant R, Seiler M, Turner JE. 1988. Donor age influences on the success of retinal grafts to adult rat retina. Investig. Ophthalmol. Vis. Sci. 29:498–503
    [Google Scholar]
  3. Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M et al. 2014. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2:662–74
    [Google Scholar]
  4. Bell CM, Zack DJ, Berlinicke CA. 2020. Human organoids for the study of retinal development and disease. Annu. Rev. Vis. Sci. 6:91–114
    [Google Scholar]
  5. Ben M'Barek K, Habeler W, Plancheron A, Jarraya M, Regent F et al. 2017. Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci. Transl. Med. 9:eaai7471
    [Google Scholar]
  6. Berger AS, Tezel TH, Del Priore LV, Kaplan HJ. 2003. Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. Ophthalmology 110:383–91
    [Google Scholar]
  7. Binder S, Krebs I, Hilgers RD, Abri A, Stolba U et al. 2004. Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Investig. Ophthalmol. Vis. Sci. 45:4151–60
    [Google Scholar]
  8. Chen H, Li Y, Lin X, Cui D, Cui C et al. 2015. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol. Res. 48:59
    [Google Scholar]
  9. Chew SH, Martinez C, Chirco KR, Kandoi S, Lamba DA. 2022. Timed Notch inhibition drives photoreceptor fate specification in human retinal organoids. Investig. Ophthalmol. Vis Sci. 63:12
    [Google Scholar]
  10. Chirco KR, Chew S, Moore AT, Duncan JL, Lamba DA. 2021. Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model. Stem Cell Rep. 16:2690–702
    [Google Scholar]
  11. Cui Q, Yip HK, Zhao RC, So KF, Harvey AR. 2003. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol. Cell Neurosci. 22:49–61
    [Google Scholar]
  12. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH et al. 2018. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36:328–37
    [Google Scholar]
  13. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G et al. 2019. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37:252–58
    [Google Scholar]
  14. D'Orazi FD, Suzuki SC, Wong RO. 2014. Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci. 37:594–603
    [Google Scholar]
  15. Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR. 2015. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–56
    [Google Scholar]
  16. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56
    [Google Scholar]
  17. Fariss RN, Li ZY, Milam AH. 2000. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am. J. Ophthalmol. 129:215–23
    [Google Scholar]
  18. Gagliardi G, Ben M'Barek K, Chaffiol A, Slembrouck-Brec A, Conart J-B et al. 2018. Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids. Stem Cell Rep. 11:665–80
    [Google Scholar]
  19. Gasparini SJ, Llonch S, Borsch O, Ader M. 2019. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog. Retin. Eye Res. 69:1–37
    [Google Scholar]
  20. Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M et al. 2017. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep. 9:820–37
    [Google Scholar]
  21. Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS et al. 2017. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35:765–72
    [Google Scholar]
  22. Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. 2005. Impaired RPE survival on aged submacular human Bruch's membrane. Exp. Eye Res. 80:235–48
    [Google Scholar]
  23. Gust J, Reh TA. 2011. Adult donor rod photoreceptors integrate into the mature mouse retina. Investig. Ophthalmol. Vis. Sci. 52:5266–72
    [Google Scholar]
  24. Heisterkamp P, Borsch O, Lezama ND, Gasparini S, Fathima A et al. 2022. Evidence for endogenous exchange of cytoplasmic material between a subset of cone and rod photoreceptors within the adult mammalian retina via direct cell-cell connections. Exp. Eye Res. 219:109033
    [Google Scholar]
  25. Kalargyrou AA, Basche M, Hare A, West EL, Smith AJ et al. 2021. Nanotube-like processes facilitate material transfer between photoreceptors. EMBO Rep. 22:e53732
    [Google Scholar]
  26. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H et al. 2018. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 10:eaao4097
    [Google Scholar]
  27. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. 2016. Inflammation and its role in age-related macular degeneration. Cell Mol. Life Sci. 73:1765–86
    [Google Scholar]
  28. Kramer J, Chirco KR, Lamba DA. 2019. Immunological considerations for retinal stem cell therapy. Adv. Exp. Med. Biol. 1186:99–119
    [Google Scholar]
  29. Kurimoto T, Yin Y, Habboub G, Gilbert HY, Li Y et al. 2013. Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 33:14816–24
    [Google Scholar]
  30. Lamba DA, Karl MO, Ware CB, Reh TA. 2006. Efficient generation of retinal progenitor cells from human embryonic stem cells. PNAS 103:12769–74
    [Google Scholar]
  31. Lee I-K, Ludwig AL, Phillips MJ, Lee J, Xie R et al. 2021. Ultrathin micromolded 3D scaffolds for high-density photoreceptor layer reconstruction. Sci. Adv. 7:eabf0344
    [Google Scholar]
  32. Lee S, Huh JY, Turner DM, Lee S, Robinson J et al. 2018. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells 36:1552–66
    [Google Scholar]
  33. Lewis GP, Linberg KA, Fisher SK. 1998. Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Investig. Ophthalmol. Vis. Sci. 39:424–34
    [Google Scholar]
  34. Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G et al. 2020. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Investig. Ophthalmol. Vis. Sci. 61:34
    [Google Scholar]
  35. Lu P, Chen J, He L, Ren J, Chen H et al. 2013. Generating hypoimmunogenic human embryonic stem cells by the disruption of beta 2-microglobulin. Stem Cell Rev. Rep. 9:806–13
    [Google Scholar]
  36. Ludwig AL, Gamm DM. 2021. Outer retinal cell replacement: putting the pieces together. Transl. Vis. Sci. Technol. 10:15
    [Google Scholar]
  37. MacLaren RE, Bird AC, Sathia PJ, Aylward GW. 2005. Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology 112:2081–87
    [Google Scholar]
  38. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE et al. 2006. Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–7
    [Google Scholar]
  39. Maeda T, Sugita S, Kurimoto Y, Takahashi M. 2021. Trends of stem cell therapies in age-related macular degeneration. J. Clin. Med. 10:1785
    [Google Scholar]
  40. Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito S-I et al. 2017a. IPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Rep. 8:69–83
    [Google Scholar]
  41. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C et al. 2017b. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376:1038–46
    [Google Scholar]
  42. Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X et al. 2017. Diverse central projection patterns of retinal ganglion cells. Cell Rep. 18:2058–72
    [Google Scholar]
  43. Mattapally S, Pawlik KM, Fast VG, Zumaquero E, Lund FE et al. 2018. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J. Am. Heart. Assoc. 7:e010239
    [Google Scholar]
  44. McCannel CA. 2020. Retina and Vitreous San Francisco: Am. Acad. Ophthalmol.
    [Google Scholar]
  45. McGill TJ, Stoddard J, Renner LM, Messaoudi I, Bharti K et al. 2018. Allogeneic iPSC-derived RPE cell graft failure following transplantation into the subretinal space in nonhuman primates. Investig. Ophthalmol. Vis. Sci. 59:1374–83
    [Google Scholar]
  46. McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB et al. 2018. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Investig. Ophthalmol Vis. Sci. 59:2586–603
    [Google Scholar]
  47. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS et al. 2011. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–18
    [Google Scholar]
  48. Nakano T, Ando S, Takata N, Kawada M, Muguruma K et al. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–85
    [Google Scholar]
  49. Neves J, Chirco KR, Cedron-Craft W, Chew S, Zhu J et al. 2020. MANF delivery improves retinal homeostasis and cell replacement therapies in ageing mice. Exp. Gerontol. 134:110893
    [Google Scholar]
  50. Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R et al. 2016. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 353:aaf3646
    [Google Scholar]
  51. Nickerson PEB, Ortin-Martinez A, Wallace VA. 2018. Material exchange in photoreceptor transplantation: updating our understanding of donor/host communication and the future of cell engraftment science. Front. Neural Circuits 12:17
    [Google Scholar]
  52. Oster SF, Sretavan DW. 2003. Connecting the eye to the brain: the molecular basis of ganglion cell axon guidance. Br. J. Ophthalmol. 87:639–45
    [Google Scholar]
  53. Oswald J, Kegeles E, Minelli T, Volchkov P, Baranov P. 2021. Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. Mol. Ther. Methods Clin. Dev. 21:180–98
    [Google Scholar]
  54. Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N et al. 2016. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat. Commun. 7:13029
    [Google Scholar]
  55. Petrash CC, Palestine AG, Canto-Soler MV. 2021. Immunologic rejection of transplanted retinal pigmented epithelium: mechanisms and strategies for prevention. Front. Immunol. 12:621007
    [Google Scholar]
  56. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. 2008. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am. J. Ophthalmol. 146:172–82
    [Google Scholar]
  57. Rein DB, Wittenborn JS, Zhang P, Sublett F, Lamuda PA et al. 2022. The economic burden of vision loss and blindness in the United States. Ophthalmology 129:369–78
    [Google Scholar]
  58. Ripolles-Garcia A, Dolgova N, Phillips MJ, Savina S, Ludwig AL et al. 2022. Systemic immunosuppression promotes survival and integration of subretinally implanted human ESC-derived photoreceptor precursors in dogs. Stem Cell Rep. 17:1824–41
    [Google Scholar]
  59. Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M. 2016. Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat. Commun. 7:13028
    [Google Scholar]
  60. Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–20
    [Google Scholar]
  61. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ et al. 2015. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–16
    [Google Scholar]
  62. Seiler MJ, Aramant RB. 2012. Cell replacement and visual restoration by retinal sheet transplants. Prog. Retin. Eye Res. 31:661–87
    [Google Scholar]
  63. Shao J, Zhou P-Y, Peng G-H. 2017. Experimental study of the biological properties of human embryonic stem cell-derived retinal progenitor cells. Sci. Rep. 7:42363
    [Google Scholar]
  64. Sharma R, Bose D, Maminishkis A, Bharti K. 2019a. Retinal pigment epithelium replacement therapy for age-related macular degeneration: Are we there yet?. Annu. Rev. Pharmacol. Toxicol. 60:553–72
    [Google Scholar]
  65. Sharma R, Khristov V, Rising A, Jha BS, Dejene R et al. 2019b. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 11:eaat5580
    [Google Scholar]
  66. Sherpa T, Fimbel SM, Mallory DE, Maaswinkel H, Spritzer SD et al. 2008. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev. Neurobiol. 68:166–81
    [Google Scholar]
  67. Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S et al. 2016. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. PNAS 113:E81–90
    [Google Scholar]
  68. Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D et al. 2016. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat. Commun. 7:13537
    [Google Scholar]
  69. Singh RK, Mallela RK, Cornuet PK, Reifler AN, Chervenak AP et al. 2015. Characterization of three-dimensional retinal tissue derived from human embryonic stem cells in adherent monolayer cultures. Stem Cells Dev. 24:2778–95
    [Google Scholar]
  70. Smith PD, Sun F, Park KK, Cai B, Wang C et al. 2009. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64:617–23
    [Google Scholar]
  71. Sohn EH, Jiao C, Kaalberg E, Cranston C, Mullins RF et al. 2015. Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study. Sci. Rep. 5:11791
    [Google Scholar]
  72. Song WK, Park K-M, Kim H-J, Lee JH, Choi J et al. 2015. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 4:860–72
    [Google Scholar]
  73. Sousa-Victor P, Neves J, Cedron-Craft W, Ventura PB, Liao CY et al. 2019. MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nat. Metab. 1:276–90
    [Google Scholar]
  74. Sugita S, Mandai M, Kamao H, Takahashi M. 2021. Immunological aspects of RPE cell transplantation. Prog. Retin. Eye Res. 84:100950
    [Google Scholar]
  75. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72
    [Google Scholar]
  76. Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76
    [Google Scholar]
  77. Tanna P, Strauss RW, Fujinami K, Michaelides M. 2017. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 101:25–30
    [Google Scholar]
  78. Thoreson WB, Dacey DM. 2019. Diverse cell types, circuits, and mechanisms for color vision in the vertebrate retina. Physiol. Rev. 99:1527–73
    [Google Scholar]
  79. Todd L, Jenkins W, Finkbeiner C, Hooper MJ, Donaldson PC et al. 2022. Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors. Sci. Adv. 8:eabq7219
    [Google Scholar]
  80. Todd L, Reh TA. 2022. Comparative biology of vertebrate retinal regeneration: restoration of vision through cellular reprogramming. Cold Spring Harb. Perspect. Biol. 14:a040816
    [Google Scholar]
  81. Tsuchiya S, Higashide T, Udagawa S, Sugiyama K. 2021. Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors. Eye 35:919–28
    [Google Scholar]
  82. Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA et al. 2022. Regenerative and restorative medicine for eye disease. Nat. Med. 28:1149–56
    [Google Scholar]
  83. Van Meurs JC, Ter Averst E, Hofland LJ, Van Hagen PM, Mooy CM et al. 2004. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br. J. Ophthalmol. 88:110–13
    [Google Scholar]
  84. Van Zeeburg EJT, Maaijwee KJM, Missotten TOAR, Heimann H, Van Meurs JC. 2012. A free retinal pigment epithelium-choroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am. J. Ophthalmol. 153:120–27.e2
    [Google Scholar]
  85. Venugopalan P, Wang Y, Nguyen T, Huang A, Muller KJ, Goldberg JL. 2016. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 7:10472
    [Google Scholar]
  86. Waldron PV, Di Marco F, Kruczek K, Ribeiro J, Graca AB et al. 2018. Transplanted donor- or stem cell-derived cone photoreceptors can both integrate and undergo material transfer in an environment-dependent manner. Stem Cell Rep. 10:406–21
    [Google Scholar]
  87. Wang B, Iriguchi S, Waseda M, Ueda N, Ueda T et al. 2021. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5:429–40
    [Google Scholar]
  88. Wei X, Zhang Z, Zeng H, Wang X-F, Zhan W et al. 2020. Regeneration of functional retinal ganglion cells by neuronal identity reprogramming. bioRxiv 2020.07.16.203497. https://doi.org/10.1101/2020.07.16.203497
    [Crossref]
  89. West EL, Pearson RA, Barker SE, Luhmann UFO, Maclaren RE et al. 2010. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28:1997–2007
    [Google Scholar]
  90. White CE, Olabisi RM. 2017. Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J. Tissue Eng. 8:2041731417720841
    [Google Scholar]
  91. Wong KA, Benowitz LI. 2022. Retinal ganglion cell survival and axon regeneration after optic nerve injury: role of inflammation and other factors. Int. J. Mol. Sci. 23:10179
    [Google Scholar]
  92. Wu Y-R, Hashiguchi T, Sho J, Chiou S-H, Takahashi M, Mandai M. 2021. Transplanted mouse embryonic stem cell–derived retinal ganglion cells integrate and form synapses in a retinal ganglion cell-depleted mouse model. Investig. Ophthalmol. Vis. Sci. 62:26
    [Google Scholar]
  93. Xiang P, Wu K-C, Zhu Y, Xiang L, Li C et al. 2014. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 35:9777–88
    [Google Scholar]
  94. Xiao D, Qiu S, Huang X, Zhang R, Lei Q et al. 2019. Directed robust generation of functional retinal ganglion cells from Müller glia. bioRxiv 735357. https://doi.org/10.1101/735357
  95. Xu H, Wang B, Ono M, Kagita A, Fujii K et al. 2019. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24:566–78.e7
    [Google Scholar]
  96. Yoshimatsu T, D'Orazi FD, Gamlin CR, Suzuki SC, Suli A et al. 2016. Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nat. Commun. 7:10590
    [Google Scholar]
  97. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–20
    [Google Scholar]
  98. Zhang KY, Aguzzi EA, Nagalingam A, Keuthan C, Chang X et al. 2022. Intercellular material transfer following retinal ganglion cell transplantation. Investig. Ophthalmol. Vis. Sci. 63:1119
    [Google Scholar]
  99. Zhang KY, Tuffy C, Mertz JL, Quillen S, Wechsler L et al. 2021. Role of the internal limiting membrane in structural engraftment and topographic spacing of transplanted human stem cell-derived retinal ganglion cells. Stem Cell Rep. 16:149–67
    [Google Scholar]
  100. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN et al. 2014. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5:4047
    [Google Scholar]
  101. Zhu J, Cifuentes H, Reynolds J, Lamba DA. 2017. Immunosuppression via loss of IL2rγ enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell 20:374–84.e5
    [Google Scholar]
  102. Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S et al. 2018. Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem Cells Transl. Med. 7:210–19
    [Google Scholar]
/content/journals/10.1146/annurev-vision-120222-012817
Loading
/content/journals/10.1146/annurev-vision-120222-012817
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error