1932

Abstract

Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-120222-014200
2023-09-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-120222-014200.html?itemId=/content/journals/10.1146/annurev-vision-120222-014200&mimeType=html&fmt=ahah

Literature Cited

  1. Aggleton JP, Brown MW. 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22:3425–44
    [Google Scholar]
  2. Aly M, Ranganath C, Yonelinas AP. 2013. Detecting changes in scenes: The hippocampus is critical for strength-based perception. Neuron 78:61127–37
    [Google Scholar]
  3. Annese J, Schenker-Ahmed NM, Bartsch H, Maechler P, Sheh C et al. 2014. Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction. Nat. Commun. 5:3122
    [Google Scholar]
  4. Avidan G, Hasson U, Malach R, Behrmann M. 2005. Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J. Cogn. Neurosci. 17:71150–67
    [Google Scholar]
  5. Axelrod V, Yovel G. 2012. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32:72442–52
    [Google Scholar]
  6. Baddeley A, Vargha-Khadem F, Mishkin M. 2001. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory?. J. Cogn. Neurosci. 13:3357–69
    [Google Scholar]
  7. Barense MD, Bussey TJ, Lee ACH, Rogers TT, Davies RR et al. 2005. Functional specialization in the human medial temporal lobe. J. Neurosci. 25:4410239–46
    [Google Scholar]
  8. Barense MD, Gaffan D, Graham KS. 2007. The human medial temporal lobe processes online representations of complex objects. Neuropsychologia 45:132963–74
    [Google Scholar]
  9. Barense MD, Groen IIA, Lee ACH, Yeung L-K, Brady SM et al. 2012. Intact memory for irrelevant information impairs perception in amnesia. Neuron 75:1157–67
    [Google Scholar]
  10. Barense MD, Henson RN, Graham KS. 2011. Perception and conception: temporal lobe activity during complex discriminations of familiar and novel faces and objects. J. Cogn. Neurosci. 23:103052–67
    [Google Scholar]
  11. Barense MD, Henson RNA, Lee ACH, Graham KS. 2010. Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: effects of viewpoint. Hippocampus 20:3389–401
    [Google Scholar]
  12. Barlow HB. 1972. Single units and sensation: a neuron doctrine for perceptual psychology?. Perception 1:4371–94
    [Google Scholar]
  13. Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ. 2007a. Perceptual functions of perirhinal cortex in rats: zero-delay object recognition and simultaneous oddity discriminations. J. Neurosci. 27:102548–59
    [Google Scholar]
  14. Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ. 2007b. Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. Learn. Memory 14:12821–32
    [Google Scholar]
  15. Barton JJS, Press DZ, Keenan JP, O'Connor M. 2002. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 58:171–78
    [Google Scholar]
  16. Baxter MG, Murray EA. 2001. Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus 11:161–71
    [Google Scholar]
  17. Bogacz R, Brown MW. 2003. Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus 13:4494–524
    [Google Scholar]
  18. Bonnen T, Yamins DLK, Wagner AD. 2021. When the ventral visual stream is not enough: a deep learning account of medial temporal lobe involvement in perception. Neuron 109:172755–66.e6
    [Google Scholar]
  19. Bowles B, Duke D, Rosenbaum RS, McRae K, Köhler S. 2016. Impaired assessment of cumulative lifetime familiarity for object concepts after left anterior temporal-lobe resection that includes perirhinal cortex but spares the hippocampus. Neuropsychologia 90:170–79
    [Google Scholar]
  20. Braak H, Braak E. 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82:4239–59
    [Google Scholar]
  21. Buckley MJ, Booth MCA, Rolls ET, Gaffan D. 2001. Selective perceptual impairments after perirhinal cortex ablation. J. Neurosci. 21:249824–36
    [Google Scholar]
  22. Buckley MJ, Gaffan D. 1997. Impairment of visual object-discrimination learning after perirhinal cortex ablation. Behav. Neurosci. 111:3467–75
    [Google Scholar]
  23. Buckley MJ, Gaffan D. 1998. Perirhinal cortex ablation impairs visual object identification. J. Neurosci. 18:62268–75
    [Google Scholar]
  24. Bussey TJ, Saksida LM. 2002. The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex: model of perirhinal cortex. Eur. J. Neurosci. 15:2355–64
    [Google Scholar]
  25. Bussey TJ, Saksida LM. 2007. Memory, perception, and the ventral visual-perirhinal-hippocampal stream: thinking outside of the boxes. Hippocampus 17:9898–908
    [Google Scholar]
  26. Bussey TJ, Saksida LM, Murray EA. 2002. Perirhinal cortex resolves feature ambiguity in complex visual discriminations: perirhinal cortex and feature ambiguity. Eur. J. Neurosci. 15:2365–74
    [Google Scholar]
  27. Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D et al. 2014. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Comput. Biol. 10:12e1003963
    [Google Scholar]
  28. Clarke A, Tyler LK. 2015. Understanding what we see: how we derive meaning from vision. Trends Cogn. Sci. 19:11677–87
    [Google Scholar]
  29. Cooke SF, Bear MF. 2015. Visual recognition memory: a view from V1. Curr. Opin. Neurobiol. 35:57–65
    [Google Scholar]
  30. Cooke SF, Komorowski RW, Kaplan ES, Gavornik JP, Bear MF. 2015. Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1. Nat. Neurosci. 18:2262–71
    [Google Scholar]
  31. Cooper RA, Ritchey M. 2020. Progression from feature-specific brain activity to hippocampal binding during episodic encoding. J. Neurosci. 40:81701–9
    [Google Scholar]
  32. Corkin S. 2002. What's new with the amnesic patient H.M.?. Nat. Rev. Neurosci. 3:2153–60
    [Google Scholar]
  33. Cosmides L, Tooby J. 1994. Beyond intuition and instinct blindness: toward an evolutionarily rigorous cognitive science. Cognition 50:1–341–77
    [Google Scholar]
  34. Cowell RA, Barense MD, Sadil PS. 2019. A roadmap for understanding memory: decomposing cognitive processes into operations and representations. eNeuro 6:4ENEURO.0122-19.2019
    [Google Scholar]
  35. Cowell RA, Bussey TJ, Saksida LM. 2006. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. J. Neurosci. 26:4712186–97
    [Google Scholar]
  36. Dalrymple KA, Oruç I, Duchaine B, Pancaroglu R, Fox CJ et al. 2011. The anatomic basis of the right face-selective N170 IN acquired prosopagnosia: a combined ERP/fMRI study. Neuropsychologia 49:92553–63
    [Google Scholar]
  37. Davachi L, Mitchell JP, Wagner AD. 2003. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. PNAS 100:42157–62
    [Google Scholar]
  38. Desimone R, Albright T, Gross C, Bruce C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4:82051–62
    [Google Scholar]
  39. Dew ITZ, Cabeza R. 2013. A broader view of perirhinal function: from recognition memory to fluency-based decisions. J. Neurosci. 33:3614466–74
    [Google Scholar]
  40. Diana RA, Yonelinas AP, Ranganath C. 2007. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn. Sci. 11:9379–86
    [Google Scholar]
  41. Drachman DA, Arbit J. 1966. Memory and the hippocampal complex: II. Is memory a multiple process?. Arch. Neurol. 15:152–61
    [Google Scholar]
  42. Duke D, Martin CB, Bowles B, McRae K, Köhler S. 2017. Perirhinal cortex tracks degree of recent as well as cumulative lifetime experience with object concepts. Cortex 89:61–70
    [Google Scholar]
  43. Eacott MJ, Gaffan D, Murray EA. 1994. Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur. J. Neurosci. 6:91466–78
    [Google Scholar]
  44. Eagleman SL, Dragoi V. 2012. Image sequence reactivation in awake V4 networks. PNAS 109:4719450–55
    [Google Scholar]
  45. Eichenbaum H, Otto T, Cohen NJ. 1994. Two functional components of the hippocampal memory system. Behav. Brain Sci. 17:3449–72
    [Google Scholar]
  46. Eichenbaum H, Yonelinas AP, Ranganath C. 2007. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30:123–52
    [Google Scholar]
  47. Ekman M, Kok P, de Lange FP. 2017. Time-compressed preplay of anticipated events in human primary visual cortex. Nat. Commun. 8:15276
    [Google Scholar]
  48. Eradath MK, Mogami T, Wang G, Tanaka K. 2015. Time context of cue-outcome associations represented by neurons in perirhinal cortex. J. Neurosci. 35:104350–65
    [Google Scholar]
  49. Erez J, Lee ACH, Barense MD. 2013. It does not look odd to me: perceptual impairments and eye movements in amnesic patients with medial temporal lobe damage. Neuropsychologia 51:1168–80
    [Google Scholar]
  50. Fahy FL, Riches IP, Brown MW. 1993. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96:3457–72
    [Google Scholar]
  51. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:11–47
    [Google Scholar]
  52. Ferko KM, Blumenthal A, Martin CB, Proklova D, Minos AN et al. 2022. Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision. eLife 11:e66884
    [Google Scholar]
  53. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. 2016. Experience-dependent spatial expectations in mouse visual cortex. Nat. Neurosci. 19:121658–64
    [Google Scholar]
  54. Fodor JA. 1983. The Modularity of Mind: An Essay on Faculty Psychology Cambridge, MA: MIT Press
  55. Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science 330:6005845–51
    [Google Scholar]
  56. Frenkel MY, Sawtell NB, Diogo AC, Yoon B, Neve RL, Bear MF. 2006. Instructive effect of visual experience in mouse visual cortex. Neuron 51:3339–49
    [Google Scholar]
  57. Gaffan D. 2001. What is a memory system? Horel's critique revisited. Behav. Brain Res. 127:1–25–11
    [Google Scholar]
  58. Gavornik JP, Bear MF. 2014. Learned spatiotemporal sequence recognition and prediction in primary visual cortex. Nat. Neurosci. 17:5732–37
    [Google Scholar]
  59. Gazzaniga MS. 2013. Shifting gears: seeking new approaches for mind/brain mechanisms. Annu. Rev. Psychol. 64:1–20
    [Google Scholar]
  60. Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends Neurosci. 15:120–25
    [Google Scholar]
  61. Goodale MA, Milner AD, Jakobson LS, Carey DP. 1991. A neurological dissociation between perceiving objects and grasping them. Nature 349:6305154–56
    [Google Scholar]
  62. Graham KS, Barense MD, Lee ACH. 2010. Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48:4831–53
    [Google Scholar]
  63. Grill-Spector K, Kourtzi Z, Kanwisher N. 2001. The lateral occipital complex and its role in object recognition. Vis. Res. 41:10–111409–22
    [Google Scholar]
  64. Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:8536–48
    [Google Scholar]
  65. Gross CG, Rocha-Miranda CE, Bender DB. 1972. Visual properties of neurons in inferotemporal cortex of the Macaque. J. Neurophysiol. 35:196–111
    [Google Scholar]
  66. Güçlü U, van Gerven MAJ. 2015. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35:2710005–14
    [Google Scholar]
  67. Hasselmo ME, Rolls ET, Baylis GC. 1989. The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey. Behav. Brain Res. 32:3203–18
    [Google Scholar]
  68. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:55392425–30
    [Google Scholar]
  69. Henson RNA, Cansino S, Herron JE, Robb WGK, Rugg MD. 2003. A familiarity signal in human anterior medial temporal cortex?. Hippocampus 13:2301–4
    [Google Scholar]
  70. Heusser AC, Awipi T, Davachi L. 2013. The ups and downs of repetition: modulation of the perirhinal cortex by conceptual repetition predicts priming and long-term memory. Neuropsychologia 51:122333–43
    [Google Scholar]
  71. Hietanen JK, Perrett DI, Oram MW, Benson PJ, Dittrich WH. 1992. The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex. Exp. Brain Res. 89:1157–71
    [Google Scholar]
  72. Inhoff MC, Heusser AC, Tambini A, Martin CB, O'Neil EB et al. 2019. Understanding perirhinal contributions to perception and memory: evidence through the lens of selective perirhinal damage. Neuropsychologia 124:9–18
    [Google Scholar]
  73. Inhoff MC, Ranganath C. 2015. Significance of objects in the perirhinal cortex. Trends Cogn. Sci. 19:6302–3
    [Google Scholar]
  74. Insausti R, Amaral DG, Cowan WM. 1987. The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neurol. 264:3356–95
    [Google Scholar]
  75. Ito M, Tamura H, Fujita I, Tanaka K. 1995. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol. 73:1218–26
    [Google Scholar]
  76. James TW, Culham J, Humphrey GK, Milner AD, Goodale MA. 2003. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:112463–75
    [Google Scholar]
  77. James W. 1890. The Principles of Psychology, Vol. I New York: Henry Holt Co.
  78. Kafkas A, Migo EM, Morris RG, Kopelman MD, Montaldi D, Mayes AR. 2017. Material specificity drives medial temporal lobe familiarity but not hippocampal recollection: familiarity-based recognition in the MTL. Hippocampus 27:2194–209
    [Google Scholar]
  79. Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL. 2008. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100:1129–39
    [Google Scholar]
  80. Kanwisher N, Chun MM, McDermott J, Ledden PJ. 1996. Functional imaging of human visual recognition. Brain Res. Cogn. Brain Res. 5:1–255–67
    [Google Scholar]
  81. Kanwisher N, McDermott J, Chun MM. 1997a. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:114302–11
    [Google Scholar]
  82. Kanwisher N, Woods RP, Iacoboni M, Mazziotta JC. 1997b. A locus in human extrastriate cortex for visual shape analysis. J. Cogn. Neurosci. 9:1133–42
    [Google Scholar]
  83. Kim S, Jeneson A, van der Horst AS, Frascino JC, Hopkins RO, Squire LR. 2011. Memory, visual discrimination performance, and the human hippocampus. J. Neurosci. 31:72624–29
    [Google Scholar]
  84. Kivisaari SL, Tyler LK, Monsch AU, Taylor KI. 2012. Medial perirhinal cortex disambiguates confusable objects. Brain 135:123757–69
    [Google Scholar]
  85. Klüver H, Bucy PC. 1937.. “ Psychic blindness” and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. Am. J. Physiol. 119:352–53
    [Google Scholar]
  86. Knutson AR, Hopkins RO, Squire LR. 2012. Visual discrimination performance, memory, and medial temporal lobe function. PNAS 109:3213106–11
    [Google Scholar]
  87. Kourtzi Z, Kanwisher N. 2001. Representation of perceived object shape by the human lateral occipital complex. Science 293:55341506–9
    [Google Scholar]
  88. Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn. Sci. 17:126–49
    [Google Scholar]
  89. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J et al. 2008. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:61126–41
    [Google Scholar]
  90. Lavenex P, Amaral DG. 2000. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:4420–30
    [Google Scholar]
  91. Lavenex P, Suzuki WA, Amaral DG. 2002. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447:4394–420
    [Google Scholar]
  92. Lavenex P, Suzuki WA, Amaral DG. 2004. Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections. J. Comp. Neurol. 472:3371–94
    [Google Scholar]
  93. Lee ACH, Buckley MJ, Pegman SJ, Spiers H, Scahill VL et al. 2005a. Specialization in the medial temporal lobe for processing of objects and scenes. Hippocampus 15:6782–97
    [Google Scholar]
  94. Lee ACH, Bussey TJ, Murray EA, Saksida LM, Epstein RA et al. 2005b. Perceptual deficits in amnesia: challenging the medial temporal lobe “mnemonic” view. Neuropsychologia 43:11–11
    [Google Scholar]
  95. Lee AC, Scahill VL, Graham KS. 2008. Activating the medial temporal lobe during oddity judgment for faces and scenes. Cereb. Cortex 18:3683–96
    [Google Scholar]
  96. Lehky SR, Tanaka K. 2016. Neural representation for object recognition in inferotemporal cortex. Curr. Opin. Neurobiol. 37:23–35
    [Google Scholar]
  97. Levy DA, Shrager Y, Squire LR. 2005. Intact visual discrimination of complex and feature-ambiguous stimuli in the absence of perirhinal cortex. Learn. Mem. 12:161–66
    [Google Scholar]
  98. Li AY, Ladyka-Wojcik N, Qazilbash H, Golestani A, Walther DB et al. 2022. Multimodal object representations rely on integrative coding. bioRxiv 2022.08.31.504599. https://doi.org/10.1101/2022.08.31.504599
    [Crossref]
  99. López-Aranda MF, López-Téllez JF, Navarro-Lobato I, Masmudi-Martín M, Gutiérrez A, Khan ZU. 2009. Role of layer 6 of v2 visual cortex in object-recognition memory. Science 325:593687–89
    [Google Scholar]
  100. Maass A, Berron D, Libby LA, Ranganath C, Düzel E. 2015. Functional subregions of the human entorhinal cortex. eLife 4:e06426
    [Google Scholar]
  101. Martin CB, Douglas D, Newsome RN, Man LL, Barense MD. 2018a. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. eLife 7:e31873
    [Google Scholar]
  102. Martin CB, McLean DA, O'Neil EB, Köhler S 2013. Distinct familiarity-based response patterns for faces and buildings in perirhinal and parahippocampal cortex. J. Neurosci. 33:2610915–23
    [Google Scholar]
  103. Martin CB, Sullivan JA, Wright J, Köhler S. 2018b. How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes. NeuroImage 166:425–36
    [Google Scholar]
  104. McCarthy G, Puce A, Gore JC, Allison T. 1997. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9:5605–10
    [Google Scholar]
  105. McClelland JL, McNaughton BL, O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102:3419–57
    [Google Scholar]
  106. McTighe SM, Cowell RA, Winters BD, Bussey TJ, Saksida LM. 2010. Paradoxical false memory for objects after brain damage. Science 330:60091408–10
    [Google Scholar]
  107. Meunier M, Bachevalier J, Mishkin M, Murray E 1993. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13:125418–32
    [Google Scholar]
  108. Mishkin M. 1978. Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:5660297–98
    [Google Scholar]
  109. Mishkin M, Ungerleider LG, Macko KA. 1983. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6:414–17
    [Google Scholar]
  110. Montaldi D, Spencer TJ, Roberts N, Mayes AR. 2006. The neural system that mediates familiarity memory. Hippocampus 16:5504–20
    [Google Scholar]
  111. Moscovitch M, Winocur G, Behrmann M. 1997. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J. Cogn. Neurosci. 9:5555–604
    [Google Scholar]
  112. Moss HE, Rodd JM, Stamatakis EA, Bright P, Tyler LK. 2005. Anteromedial temporal cortex supports fine-grained differentiation among objects. Cereb. Cortex 15:5616–27
    [Google Scholar]
  113. Murray EA, Bussey TJ. 1999. Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn. Sci. 3:4142–51
    [Google Scholar]
  114. Murray EA, Bussey TJ, Saksida LM. 2007. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu. Rev. Neurosci. 30:99–122
    [Google Scholar]
  115. Murray E, Mishkin M. 1984. Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J. Neurosci. 4:102565–80
    [Google Scholar]
  116. Murray E, Mishkin M. 1986. Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. J. Neurosci. 6:71991–2003
    [Google Scholar]
  117. Nasr S, Tootell RBH. 2012. Role of fusiform and anterior temporal cortical areas in facial recognition. NeuroImage 63:31743–53
    [Google Scholar]
  118. Norman KA, O'Reilly RC 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110:4611–46
    [Google Scholar]
  119. O'Neil EB, Cate AD, Kohler S. 2009. Perirhinal cortex contributes to accuracy in recognition memory and perceptual discriminations. J. Neurosci. 29:268329–34
    [Google Scholar]
  120. O'Neil EB, Hutchison RM, McLean DA, Köhler S. 2014. Resting-state fMRI reveals functional connectivity between face-selective perirhinal cortex and the fusiform face area related to face inversion. NeuroImage 92:349–55
    [Google Scholar]
  121. Op De Beeck H, Vogels R. 2000. Spatial sensitivity of macaque inferior temporal neurons. J. Comp. Neurol. 426:4505–18
    [Google Scholar]
  122. Orban GA, Van Essen D, Vanduffel W. 2004. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8:7315–24
    [Google Scholar]
  123. Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V et al. 2012. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32:4314915–20
    [Google Scholar]
  124. Penfield W, Milner B. 1958. Memory deficit produced by bilateral lesions in the hippocampal zone. Arch. Neurol. Psychiatry 79:5475–97
    [Google Scholar]
  125. Perrett DI, Hietanen JK, Oram MW, Benson PJ. 1992. Organization and functions of cells responsive to faces in the temporal cortex. Philos. Trans. R. Soc. Lond. B 335:127323–30
    [Google Scholar]
  126. Perrett DI, Oram MW, Harries MH, Bevan R, Hietanen JK et al. 1991. Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain Res. 86:1159–73
    [Google Scholar]
  127. Perrett DI, Rolls ET, Caan W. 1982. Visual neurones responsive to faces in the monkey temporal cortex. Exp. Brain Res. 47:3329–42
    [Google Scholar]
  128. Pohl W. 1973. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J. Comp. Physiol. Psychol. 82:2227–39
    [Google Scholar]
  129. Poldrack RA, Yarkoni T. 2016. From brain maps to cognitive ontologies: informatics and the search for mental structure. Annu. Rev. Psychol. 67:587–612
    [Google Scholar]
  130. Price CJ, Friston KJ. 2005. Functional ontologies for cognition: the systematic definition of structure and function. Cogn. Neuropsychol. 22:3–4262–75
    [Google Scholar]
  131. Pylyshyn ZW. 1986. Computation and Cognition: Toward a Foundation for Cognitive Science Cambridge, MA: MIT Press
  132. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. 2005. Invariant visual representation by single neurons in the human brain. Nature 435:70451102–7
    [Google Scholar]
  133. Ranganath C, Ritchey M. 2012. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 13:10713–26
    [Google Scholar]
  134. Richter FR, Cooper RA, Bays PM, Simons JS. 2016. Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife 5:e18260
    [Google Scholar]
  135. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:111019–25
    [Google Scholar]
  136. Rosenthal CR, Andrews SK, Antoniades CA, Kennard C, Soto D. 2016. Learning and recognition of a non-conscious sequence of events in human primary visual cortex. Curr. Biol. 26:6834–41
    [Google Scholar]
  137. Rust NC, DiCarlo JJ. 2010. Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. J. Neurosci. 30:3912978–95
    [Google Scholar]
  138. Saleem KS, Tanaka K. 1996. Divergent projections from the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey. J. Neurosci. 16:154757–75
    [Google Scholar]
  139. Schacter DL, Tulving E. 1994. What are the memory systems of 1994?. Memory Systems DL Schacter, E Tulving 2–38. Cambridge, MA: MIT Press
    [Google Scholar]
  140. Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20:111–21
    [Google Scholar]
  141. Shrager Y, Gold JJ, Hopkins RO, Squire LR. 2006. Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J. Neurosci. 26:82235–40
    [Google Scholar]
  142. Squire LR. 1987. Memory and Brain Oxford, UK: Oxford Univ. Press
  143. Squire LR, Wixted JT. 2011. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34:259–88
    [Google Scholar]
  144. Squire LR, Zola-Morgan S. 1991. The medial temporal lobe memory system. Science 253:50261380–86
    [Google Scholar]
  145. Steeves JKE, Culham JC, Duchaine BC, Pratesi CC, Valyear KF et al. 2006. The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia 44:4594–609
    [Google Scholar]
  146. Suzuki WA, Naya Y. 2014. The perirhinal cortex. Annu. Rev. Neurosci. 37:39–53
    [Google Scholar]
  147. Suzuki WL, Amaral DG. 1994. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350:4497–533
    [Google Scholar]
  148. Tanaka K. 1997. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7:4523–29
    [Google Scholar]
  149. Tanaka K, Saito H, Fukada Y, Moriya M. 1991. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66:1170–89
    [Google Scholar]
  150. Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS. 2006. A cortical region consisting entirely of face-selective cells. Science 311:5761670–74
    [Google Scholar]
  151. Tulving E 1972. Episodic and semantic memory. Organization of Memory E Tulving, W Donaldson 381–403. Cambridge, MA: Academic Press
    [Google Scholar]
  152. Tulving E. 1985a. How many memory systems are there?. Am. Psychol. 40:4385–98
    [Google Scholar]
  153. Tulving E. 1985b. Memory and consciousness. Can. Psychol. Psychol. Can. 26:11–12
    [Google Scholar]
  154. Vargha-Khadem F, Gadian DG, Watkins KE, Connelly A, Van Paesschen W, Mishkin M. 1997. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:5324376–80
    [Google Scholar]
  155. Voss JL, Hauner KKY, Paller KA. 2009. Establishing a relationship between activity reduction in human perirhinal cortex and priming. Hippocampus 19:9773–78
    [Google Scholar]
  156. Wang W-C, Lazzara MM, Ranganath C, Knight RT, Yonelinas AP. 2010. The medial temporal lobe supports conceptual implicit memory. Neuron 68:5835–42
    [Google Scholar]
  157. Warren DE, Duff MC, Tranel D, Cohen NJ. 2011. Observing degradation of visual representations over short intervals when medial temporal lobe is damaged. J. Cogn. Neurosci. 23:123862–73
    [Google Scholar]
  158. Wickelgren WA. 1968. Sparing of short-term memory in an amnesic patient: implications for strength theory of memory. Neuropsychologia 6:3235–44
    [Google Scholar]
  159. Wright P, Randall B, Clarke A, Tyler LK 2015. The perirhinal cortex and conceptual processing: effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia 76:192–207
    [Google Scholar]
  160. Xiang J-Z, Brown MW. 1998. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37:4–5657–76
    [Google Scholar]
  161. Yeung L-K, Ryan JD, Cowell RA, Barense MD. 2013. Recognition memory impairments caused by false recognition of novel objects. J. Exp. Psychol. Gen. 142:41384–97
    [Google Scholar]
  162. Yin S, Bo K, Liu Y, Thigpen N, Keil A, Ding M 2020. Fear conditioning prompts sparser representations of conditioned threat in primary visual cortex. Soc. Cogn. Affect. Neurosci. 15:9950–64
    [Google Scholar]
  163. Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ. 2019. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat. Rev. Neurosci. 20:6364–75
    [Google Scholar]
  164. You Y, Brown J, Li W. 2021. Human sensory cortex contributes to the long-term storage of aversive conditioning. J. Neurosci. 41:143222–33
    [Google Scholar]
/content/journals/10.1146/annurev-vision-120222-014200
Loading
/content/journals/10.1146/annurev-vision-120222-014200
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error