1932

Abstract

The physiological response properties of neurons in the visual system are inherited mainly from feedforward inputs. Interestingly, feedback inputs often outnumber feedforward inputs. Although they are numerous, feedback connections are weaker, slower, and considered to be modulatory, in contrast to fast, high-efficacy feedforward connections. Accordingly, the functional role of feedback in visual processing has remained a fundamental mystery in vision science. At the core of this mystery are questions about whether feedback circuits regulate spatial receptive field properties versus temporal responses among target neurons, or whether feedback serves a more global role in arousal or attention. These proposed functions are not mutually exclusive, and there is compelling evidence to support multiple functional roles for feedback. In this review, the role of feedback in vision will be explored mainly from the perspective of corticothalamic feedback. Further generalized principles of feedback applicable to corticocortical connections will also be considered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081716
2020-09-15
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081716.html?itemId=/content/journals/10.1146/annurev-vision-121219-081716&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander GM, Godwin DW. 2005. Presynaptic inhibition of corticothalamic feedback by metabotropic glutamate receptors. J. Neurophysiol. 94:163–75
    [Google Scholar]
  2. Alitto HJ, Usrey WM. 2008. Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57:135–46
    [Google Scholar]
  3. Alonso J-M, Usrey WM, Reid RC 1996. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383:815–19
    [Google Scholar]
  4. Anderson JC, Da Costa NM, Martin KAC 2009. The W cell pathway to cat primary visual cortex. J. Comp. Neurol. 516:20–35
    [Google Scholar]
  5. Anderson JC, Martin KAC. 2009. The synaptic connections between cortical areas V1 and V2 in macaque monkey. J. Neurosci. 29:11283–93
    [Google Scholar]
  6. Andolina IM, Jones HE, Sillito AM 2013. Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. J. Neurophysiol. 109:889–99
    [Google Scholar]
  7. Andolina IM, Jones HE, Wang W, Sillito AM 2007. Corticothalamic feedback enhances stimulus response precision in the visual system. PNAS 104:1685–90
    [Google Scholar]
  8. Angelucci A, Bijanzadeh M, Nurminen L, Federer F, Merlin S, Bressloff PC 2017. Circuits and mechanisms for surround modulation in visual cortex. Annu. Rev. Neurosci. 40:425–51
    [Google Scholar]
  9. Angelucci A, Bressloff PC. 2006. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog. Brain Res. 154:93–120
    [Google Scholar]
  10. Angelucci A, Levitt JB, Walton EJS, Hupe J-M, Bullier J, Lund JS 2002. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22:8633–46
    [Google Scholar]
  11. Angelucci A, Sainsbury K. 2006. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN. J. Comp. Neurol. 498:330–51
    [Google Scholar]
  12. Bal T, Debay D, Destexhe A 2000. Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. J. Neurosci. 20:7478–88
    [Google Scholar]
  13. Bickford ME. 2016. Thalamic circuit diversity: modulation of the driver/modulator framework. Front. Neural Circuits 9:86
    [Google Scholar]
  14. Blasdel GG, Lund JS. 1983. Termination of afferent axons in macaque striate cortex. J. Neurosci. 3:1389–413
    [Google Scholar]
  15. Bondy AG, Haefner RM, Cumming BG 2018. Feedback determines the structure of correlated variability in primary visual cortex. Nat. Neurosci. 21:598–606
    [Google Scholar]
  16. Bortone DS, Olsen SR, Scanziani M 2014. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82:474–85
    [Google Scholar]
  17. Briggs F. 2017. Mammalian visual system organization. Oxford Research Encyclopedia of Neuroscience SM Sherman 1–20 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  18. Briggs F, Callaway EM. 2001. Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex. J. Neurosci. 21:3600–8
    [Google Scholar]
  19. Briggs F, Kiley CW, Callaway EM, Usrey WM 2016. Morphological substrates for parallel streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey. Neuron 90:388–99
    [Google Scholar]
  20. Briggs F, Usrey WM. 2005. Temporal properties of feedforward and feedback pathways between thalamus and visual cortex in the ferret. Thalamus Relat. Syst. 3:133–39
    [Google Scholar]
  21. Briggs F, Usrey WM. 2007. A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J. Neurosci. 27:5431–36
    [Google Scholar]
  22. Briggs F, Usrey WM. 2008. Emerging views of corticothalamic function. Curr. Opin. Neurobiol. 18:403–7
    [Google Scholar]
  23. Briggs F, Usrey WM. 2009. Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62:135–46
    [Google Scholar]
  24. Brumberg JC, Hamzei-Sichani F, Yuste R 2003. Morphological and physiological characterization of layer 6 corticofugal neurons of mouse primary visual cortex. J. Neurophysiol. 89:2854–67
    [Google Scholar]
  25. Buffalo EA, Fries P, Landman R, Liang H, Desimone R 2010. A backward progression of attentional effects in the ventral stream. PNAS 107:361–65
    [Google Scholar]
  26. Bullier J, Henry GH. 1979. Ordinal position of neurons in cat striate cortex. J. Neurophysiol. 42:1251–63
    [Google Scholar]
  27. Bullier J, Henry GH. 1980. Ordinal position and afferent input of neurons in monkey striate cortex. J. Comp. Neurol. 193:913–35
    [Google Scholar]
  28. Bullier J, Norton TT. 1979. X and Y relay cells in cat lateral geniculate nucleus: quantitative analysis of receptive-field properties and classification. J. Neurophysiol. 42:244–73
    [Google Scholar]
  29. Choi I, Lee J-Y, Lee S-H 2018. Bottom-up and top-down modulation of multisensory integration. Curr. Opin. Neurobiol. 52:115–22
    [Google Scholar]
  30. Claps A, Casagrande VA. 1990. The distribution and morphology of corticogeniculate axons in ferrets. Brain Res 530:126–29
    [Google Scholar]
  31. Cleland BG, Dubin MW, Levick WR 1971. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J. Physiol. 217:473–96
    [Google Scholar]
  32. Conley M, Raczkowski D. 1990. Sublaminar organization within layer 6 of the striate cortex in galago. J. Comp. Neurol. 302:425–36
    [Google Scholar]
  33. Connelly WM, Crunelli V, Errington AC 2016. Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites. J. Neurosci. 36:3735–54
    [Google Scholar]
  34. Conway BR, Livingstone MS. 2006. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J. Neurosci. 26:10826–46
    [Google Scholar]
  35. Crandall SR, Cruikshank SJ, Connors BW 2015. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86:768–82
    [Google Scholar]
  36. Crick F, Koch C. 1998. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391:245–50
    [Google Scholar]
  37. Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW 2010. Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65:230–45
    [Google Scholar]
  38. Cudiero J, Rivadulla C, Grieve KL 2000. Visual response augmentation in cat (and macaque) LGN: potentiation by corticofugally mediated gain control in the temporal domain. Eur. J. Neurosci. 12:1135–44
    [Google Scholar]
  39. Cumming BG, Nienborg H. 2016. Feedforward and feedback sources of choice probability in neural population responses. Curr. Opin. Neurobiol. 37:126–32
    [Google Scholar]
  40. Cumming BG, Parker AJ. 1997. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389:280–83
    [Google Scholar]
  41. Da Costa NM, Martin KAC 2009. Selective targeting of dendrites of corticothalamic cells by thalamic afferents in area 17 of the cat. J. Neurosci. 29:13919–28
    [Google Scholar]
  42. Dacey DM, Crook JD, Packer OS 2014. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis. Neurosci. 31:139–51
    [Google Scholar]
  43. Denman DJ, Contreras D. 2015. Complex effects on in vivo visual responses by specific projections from mouse cortical layer 6 to dorsal lateral geniculate nucleus. J. Neurosci. 35:9265–80
    [Google Scholar]
  44. Derrington AM, Fuchs AF. 1979. Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. J. Physiol. 293:347–64
    [Google Scholar]
  45. Derrington AM, Krauskopf J, Lennie P 1984. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357:241–65
    [Google Scholar]
  46. Derrington AM, Lennie P. 1984. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357:219–40
    [Google Scholar]
  47. Destexhe A. 2000. Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J. Physiol. Paris 94:391–410
    [Google Scholar]
  48. Edwards G, Vetter P, McGruer F, Petro LS, Muckli L 2017. Predictive feedback to V1 dynamically updates with sensory input. Sci. Rep. 7:16538
    [Google Scholar]
  49. Eiber CD, Rahman AS, Pietersen ANJ, Zeater N, Dreher B et al. 2018. Receptive field properties of koniocellular On/Off neurons in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 38:10384–98
    [Google Scholar]
  50. Enroth-Cugell C, Robson JG. 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–52
    [Google Scholar]
  51. Erisir A, Van Horn SC, Bickford ME, Sherman SM 1997a. Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J. Comp. Neurol. 377:535–49
    [Google Scholar]
  52. Erisir A, Van Horn SC, Sherman SM 1997b. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. PNAS 94:1517–20
    [Google Scholar]
  53. Eyding D, Macklis JD, Neubacher U, Funke K, Worgotter F 2003. Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity. J. Neurosci. 23:7021–33
    [Google Scholar]
  54. Felleman DJ, Van Essen DC 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  55. Ferster D, Lindstrom S. 1983. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J. Physiol. 342:181–215
    [Google Scholar]
  56. Ferster D, Lindstrom S. 1985. Augmenting responses evoked in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells. J. Physiol. 367:217–32
    [Google Scholar]
  57. Field GD, Chichilnisky EJ. 2007. Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30:1–30
    [Google Scholar]
  58. Fitzpatrick D, Usrey WM, Schofield BR, Einstein G 1994. The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis. Neurosci. 11:307–15
    [Google Scholar]
  59. Freund TF, Martin KAC, Soltesz I, Somogyi P, Whitteridge D 1989. Arborization pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. J. Comp. Neurol. 289:315–36
    [Google Scholar]
  60. Freund TF, Martin KAC, Whitteridge D 1985. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic affrents. I. Arborization patterns and quantitative distribution of postsynaptic elements. J. Comp. Neurol. 242:263–74
    [Google Scholar]
  61. Fuentealba P, Steriade M. 2005. The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog. Neurobiol. 75:125–41
    [Google Scholar]
  62. Funke K, Nelle E, Li B, Worgotter F 1996. Corticofugal feedback improves the timing of retino-geniculate signal transmission. NeuroReports 7:2130–34
    [Google Scholar]
  63. Garg AK, Li P, Rashid MS, Callaway EM 2019. Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science 364:1275–79
    [Google Scholar]
  64. Geisert EE, Langsetmo A, Spear PD 1981. Influence of the cortico-geniculate pathway on response properties of cat lateral geniulate nucleus. Brain Res 208:409–15
    [Google Scholar]
  65. Gilbert CD, Kelly JP. 1975. The projections of cells in different layers of the cat's visual cortex. J. Comp. Neurol. 163:81–106
    [Google Scholar]
  66. Girard P, Hupe JM, Bullier J 2001. Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85:1328–31
    [Google Scholar]
  67. Gregoriou GG, Gotts SJ, Zhou H, Desimone R 2009. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324:1207–10
    [Google Scholar]
  68. Grieve KL, Sillito AM. 1995. Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J. Neurosci. 15:4868–74
    [Google Scholar]
  69. Guillery RW. 1969. A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Z. Zellforsch. Mikrosk. Anat. 96:39–48
    [Google Scholar]
  70. Gulyas B, Lagae L, Eysel UT, Orban GA 1990. Corticofugal feedback influences the responses of geniculate neurons to moving stimuli. Exp. Brain Res. 79:441–46
    [Google Scholar]
  71. Guo W, Clause AR, Barth-Maron A, Polley DB 2017. A corticothalamic circuit for dynamic switching between feature detection and discrimination. Neuron 95:180–98
    [Google Scholar]
  72. Gur M, Kagan I, Snodderly DM 2005. Orientation and direction selectivity of neurons in V1 of alert monkeys: functional relationships and laminar distributions. Cereb. Cortex 15:1207–21
    [Google Scholar]
  73. Harvey AR. 1978. Characteristics of corticothalamic neurons in area 17 of the cat. Neurosci. Lett. 7:177–81
    [Google Scholar]
  74. Hasse JM, Bragg EM, Murphy AJ, Briggs F 2019. Morphological heterogeneity among corticogeniculate neurons in ferrets: quantification and comparison with a previous report in macaque monkeys. J. Comp. Neurol. 527:546–57
    [Google Scholar]
  75. Hasse JM, Briggs F. 2017a. Corticogeniculate feedback sharpens the temporal precision and spatial resolution of visual signals in the ferret. PNAS 114:E6222–30
    [Google Scholar]
  76. Hasse JM, Briggs F. 2017b. A cross-species comparison of corticogeniculate structure and function. Vis. Neurosci. 34:E016
    [Google Scholar]
  77. Hei X, Stoelzel CR, Zhuang J, Bereshpolova Y, Huff JM et al. 2014. Directional selective neurons in the awake LGN: response properties and modulation by brain state. J. Neurophysiol. 112:362–73
    [Google Scholar]
  78. Hendrickson AE, Wilson JR, Ogren MP 1978. The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in the old world and new world primates. J. Comp. Neurol. 182:123–36
    [Google Scholar]
  79. Hendry S, Reid RC. 2000. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23:127–53
    [Google Scholar]
  80. Hendry SH, Yoshioka T. 1994. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–77
    [Google Scholar]
  81. Hilgetag CC, Grant S. 2010. Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. NeuroImage 51:1006–17
    [Google Scholar]
  82. Hirsch JA, Martinez LM, Alonso J-M, Desai K, Pillai C, Pierre C 2002. Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J. Physiol. 540:335–50
    [Google Scholar]
  83. Hoffmann K-P, Stone J, Sherman SM 1972. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol. 35:518–31
    [Google Scholar]
  84. Hubel D. 1960. Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. 150:91–104
    [Google Scholar]
  85. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual system. J. Physiol. 160:106–54
    [Google Scholar]
  86. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  87. Hubel DH, Wiesel TN. 1972. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146:421–50
    [Google Scholar]
  88. Humphrey AL, Sur M, Uhlrich DJ, Sherman SM 1985. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J. Comp. Neurol. 233:159–89
    [Google Scholar]
  89. Hupe J-M, James AC, Girard P, Lomber SG, Payne BR, Bullier J 2001. Feedback connections act on the early part of the response in monkey visual cortex. J. Neurophysiol. 85:134–45
    [Google Scholar]
  90. Ichida JM, Casagrande VA. 2002. Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 454:272–83
    [Google Scholar]
  91. Ichida JM, Mavity-Hudson JA, Casagrande VA 2014. Distinct patterns of corticogeniculate feedback to different layers of the lateral geniculate nucleus. Eye Brain 6:57–73
    [Google Scholar]
  92. Iwai L, Ohashi Y, van der List D, Usrey WM, Miyashita Y, Kawasaki H 2013. FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cereb. Cortex 23:2204–12
    [Google Scholar]
  93. Jiang Z, Johnson R, Burkhalter A 1993. Visualization of dendritic morphology of cortical projection neurons by retrograde axonal tracing. J. Neurosci. Methods 50:45–60
    [Google Scholar]
  94. Johnson EN, Hawken MJ, Shapley R 2001. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat. Neurosci. 4:409–16
    [Google Scholar]
  95. Jones HE, Andolina IM, Ahmed B, Shipp S, Clements JTC et al. 2012. Differential feedback modulation of center and surround mechanisms in parvocellular cells in the visual thalamus. J. Neurosci. 32:15946–51
    [Google Scholar]
  96. Jones HE, Andolina IM, Oakely NM, Murphy PC, Sillito AM 2000. Spatial summation in lateral geniculate nucleus and visual cortex. Exp. Brain Res. 135:279–84
    [Google Scholar]
  97. Kaas JH, Lyon DC. 2007. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res. Rev. 55:285–96
    [Google Scholar]
  98. Kaplan E. 2004. The M, P, and K pathways of the primate visual system. The Visual Neurosciences L Chalupa, J Werner 481–93 Cambridge, MA: MIT Press
    [Google Scholar]
  99. Kaplan E, Shapley R. 1982. X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol. 330:125–43
    [Google Scholar]
  100. Katz LC. 1987. Local circuitry of identified projection neurons in cat visual cortex brain slices. J. Neurosci. 7:1223–49
    [Google Scholar]
  101. Kawasaki H, Crowley JC, Livesey FJ, Katz LC 2004. Molecular organization of the ferret visual thalamus. J. Neurosci. 24:9962–70
    [Google Scholar]
  102. Kim J, Matney CJ, Blankenship A, Hestrin S, Brown SP 2014. Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. J. Neurosci. 34:9656–64
    [Google Scholar]
  103. Klink PC, Dagnino B, Gariel-Mathis M-A, Roelfsema PR 2017. Distinct feedforward and feedback effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation. Neuron 95:209–20
    [Google Scholar]
  104. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:37–68
    [Google Scholar]
  105. Lam Y-W, Sherman SM. 2010. Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cereb. Cortex 20:13–24
    [Google Scholar]
  106. Lamme VAF, Super H, Spekreijse H 1998. Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8:529–35
    [Google Scholar]
  107. Li G, Ye X, Song T, Yang Y, Zhou Y 2011. Contrast adaptation in cat lateral geniculate nucleus and influence of corticothalamic feedback. Eur. J. Neurosci. 34:622–31
    [Google Scholar]
  108. Liang H, Gong X, Chen M, Yan Y, Li W, Gilbert CD 2017. Interactions between feedback and lateral connections in the primary visual cortex. PNAS 114:8637–42
    [Google Scholar]
  109. Lin CS, Kaas JH. 1977. Projections from cortical visual areas 17, 18, and MT onto the dorsal lateral geniculate nucleus in owl monkeys. J. Comp. Neurol. 173:457–74
    [Google Scholar]
  110. Ling S, Pratte M, Tong F 2015. Attention alters orientation processing in the human lateral geniculate nucleus. Nat. Neurosci. 18:496–98
    [Google Scholar]
  111. Lund JS, Boothe RG. 1975. Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. J. Comp. Neurol. 159:305–34
    [Google Scholar]
  112. Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF 1975. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164:287–303
    [Google Scholar]
  113. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L et al. 2014. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24:17–36
    [Google Scholar]
  114. Marques T, Nguyen J, Fioreze G, Petreanu L 2018. The functional organization of cortical feedback inputs to primary visual cortex. Nat. Neurosci. 21:757–64
    [Google Scholar]
  115. Marrocco RT, McClurkin JW, Alkire MT 1996. The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells. Brain Res 737:110–18
    [Google Scholar]
  116. McAlonan K, Cavanaugh JR, Wurtz RH 2006. Attentional modulation of thalamic reticular neurons. J. Neurosci. 26:4444–50
    [Google Scholar]
  117. McAlonan K, Cavanaugh JR, Wurtz RH 2008. Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–94
    [Google Scholar]
  118. McClurkin JW, Optican LM, Richmond BJ 1994. Cortical feedback increases visual information transmitted by monkey parvlcellular lateral geniculate nucleus neurons. Vis. Neurosci. 11:601–17
    [Google Scholar]
  119. Michalareas G, Vezoli J, van Pelt S, Schoffelen J-M, Kennedy H, Fries P 2016. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89:384–97
    [Google Scholar]
  120. Mock VL, Luke KL, Hembrook-Short JR, Briggs F 2018. Dynamic communication of attention signals between the LGN and V1. J. Neurophysiol. 120:1625–39
    [Google Scholar]
  121. Murphy PC, Sillito AM. 1987. Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329:727–29
    [Google Scholar]
  122. Murphy PC, Sillito AM. 1996. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J. Neurosci. 16:1180–92
    [Google Scholar]
  123. Nassi JJ, Callaway EM. 2007. Specialized circuits from primary visual cortex to V2 and area MT. Neuron 55:799–808
    [Google Scholar]
  124. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:360–72
    [Google Scholar]
  125. Nassi JJ, Lomber SG, Born RT 2013. Corticocortical feedback contributes to surround suppression in V1 of the alert primate. J. Neurosci. 33:8504–17
    [Google Scholar]
  126. Niell C. 2015. Cell types, circuits, and receptive fields in the mouse visual cortex. Annu. Rev. Neurosci. 38:413–31
    [Google Scholar]
  127. Niell C, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79
    [Google Scholar]
  128. Noudoost B, Chang MH, Steinmetz NA, Moore T 2010. Top-down control of visual attention. Curr. Opin. Neurobiol. 20:183–90
    [Google Scholar]
  129. Nurminen L, Merlin S, Bijanzadeh M, Federer F, Angelucci A 2018. Top-down feedback controls spatial summation and response amplitude in primate visual cortex. Nat. Commun. 9:2281
    [Google Scholar]
  130. O'Connor DH, Fukui MM, Pinsk MA, Kastner S 2002. Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5:1203–9
    [Google Scholar]
  131. Olsen SR, Bortone DS, Adesnik H, Scanziani M 2012. Gain control by layer six in cortical circuits of vision. Nature 483:47–52
    [Google Scholar]
  132. Pennartz CMA, Dora S, Muckli L, Lorteije JAM 2019. Towards a unified view on pathways and functions of neural recurrent processing. Trends Neurosci 42:589–603
    [Google Scholar]
  133. Poltoratski S, Maier A, Newton AT, Tong F 2019. Figure-ground modulation in the human lateral geniculate nucleus is distinguishable from top-down attention. Curr. Biol. 29:2051–57
    [Google Scholar]
  134. Przybyszewski AW, Gaska JP, Foote W, Pollen DA 2000. Striate cortex increases contrast gain of macaque LGN neurons. Vis. Neurosci. 17:485–94
    [Google Scholar]
  135. Rao RPN, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87
    [Google Scholar]
  136. Reid RC, Alonso J-M. 1995. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–84
    [Google Scholar]
  137. Robson JA. 1983. The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 216:89–103
    [Google Scholar]
  138. Rockland KS. 1997. Elements of cortical architecture: hierarchy revisited. Cerebral Cortex KS Rockland, JH Kaas, A Peters 243–93 New York: Plenum Press
    [Google Scholar]
  139. Rockland KS, Knutson T. 2000. Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J. Comp. Neurol. 425:345–68
    [Google Scholar]
  140. Rockland KS, Virga A. 1989. Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: a study using immunohistochemistry of anterogradely transported Phaseolus vulgaris-leucoagglutinin. J. Comp. Neurol. 285:54–72
    [Google Scholar]
  141. Scholl B, Tan AYY, Corey J, Priebe NJ 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:10616–24
    [Google Scholar]
  142. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD 2017. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40:499–538
    [Google Scholar]
  143. Sherman SM, Guillery RW. 1998. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators. .” PNAS 95:7121–26
    [Google Scholar]
  144. Sherman SM, Guillery RW. 2006. Exploring the Thalamus and Its Role in Cortical Function Cambridge, MA: MIT Press
    [Google Scholar]
  145. Shmuel A, Korman M, Sterkin A, Harel M, Ullman S et al. 2005. Retinotopic axis specificity and selective clustering of feedback projections from V2 to V1 in the owl monkey. J. Neurosci. 25:2117–31
    [Google Scholar]
  146. Sillito AM, Cudeiro J, Murphy PC 1993. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp. Brain Res. 93:6–16
    [Google Scholar]
  147. Sillito AM, Jones HE, Gerstein GL, West DC 1994. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369:479–82
    [Google Scholar]
  148. Sincich LC, Horton JC. 2005. The circuitry of V1 and V2: integration of color, form, and motion. Annu. Rev. Neurosci. 28:303–26
    [Google Scholar]
  149. Soto-Sanchez C, Wang X, Vaingankar V, Sommer FT, Hirsch JA 2017. Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus. Nat. Commun. 8:800
    [Google Scholar]
  150. Steriade M. 2003. The corticothalamic system in sleep. Front. Biosci. 8:d878–99
    [Google Scholar]
  151. Stettler DD, Das A, Bennett J, Gilbert CD 2002. Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–50
    [Google Scholar]
  152. Stoelzel CR, Bereshpolova Y, Alonso J-M, Swadlow HA 2017. Axonal conduction delays, brain state, and corticogeniculate communication. J. Neurosci. 37:6342–58
    [Google Scholar]
  153. Sur M, Sherman SM. 1982. Retinogeniculate terminations in cats: morphological differences between X and Y cell axons. Science 218:389–91
    [Google Scholar]
  154. Swadlow HA, Weyand TG. 1981. Efferent systems of the rabbit visual cortex: laminar distribution of cells of origin, axonal conduction velocities, and identification of axonal branches. J. Comp. Neurol. 203:799–822
    [Google Scholar]
  155. Swadlow HA, Weyand TG. 1987. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal. J. Neurophysiol. 57:977–1001
    [Google Scholar]
  156. Tsumoto T, Creutzfeldt OD, Legendy CR 1978. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat. Exp. Brain Res. 32:345–64
    [Google Scholar]
  157. Tsumoto T, Suda K. 1980. Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. J. Comp. Neurol. 193:223–36
    [Google Scholar]
  158. Usrey WM, Alonso J-M, Reid RC 2000. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20:5461–67
    [Google Scholar]
  159. Usrey WM, Fitzpatrick D. 1996. Specificity in the axonal connections of layer 6 neurons in tree shrew striate cortex: evidence for distinct granular and supragranular systems. J. Neurosci. 16:1203–18
    [Google Scholar]
  160. Usrey WM, Sherman SM. 2018. Corticofugal circuits: communication lines from the cortex to the rest of the brain. J. Comp. Neurol. 527:640–50
    [Google Scholar]
  161. van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis M-A, Poort J et al. 2014. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. PNAS 111:14332–41
    [Google Scholar]
  162. Vanduffel W, Tootell RBH, Orban G 2000. Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cereb. Cortex 10:109–26
    [Google Scholar]
  163. Wang W, Andolina IM, Lu Y, Jones HE, Sillito AM 2018. Focal gain control of thalamic visual receptive fields by layer 6 corticothalamic feedback. Cereb. Cortex 28:267–80
    [Google Scholar]
  164. Wang W, Jones HE, Andolina IM, Salt TE, Sillito AM 2006. Functional alignment of feedback effects from visual cortex to thalamus. Nat. Neurosci. 9:1330–36
    [Google Scholar]
  165. Webb BS, Tinsley CJ, Barraclough NE, Easton A, Parker A, Derrington AM 2002. Feedback from V1 and inhibition from beyond the classical receptive field modulates the response of neurons in the primate lateral geniculate nucleus. Vis. Neurosci. 19:583–92
    [Google Scholar]
  166. Wiser AK, Callaway EM. 1996. Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex. J. Neurosci. 16:2724–39
    [Google Scholar]
  167. Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T 2005. Synaptic background activity controls spike transfer from thalamus to cortex. Nat. Neurosci. 8:1760–67
    [Google Scholar]
  168. Yukie M, Iwai E. 1985. Laminar origin of direct projection from cortex area V1 to V4 in rhesus monkey. Brain Res 346:383–86
    [Google Scholar]
  169. Zarrinpar A, Callaway EM. 2006. Local connections to specific types of layer 6 neurons in the rat visual cortex. J. Neurophysiol. 95:1751–61
    [Google Scholar]
  170. Zhang Q-F, Li H, Chen M, Guo A, Wen Y, Poo M 2018. Functional organization of intrinsic and feedback presynaptic inputs in the primary visual cortex. PNAS 115:E5174–82
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081716
Loading
/content/journals/10.1146/annurev-vision-121219-081716
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error