1932

Abstract

Visual images can be described in terms of the illuminants and objects that are causal to the light reaching the eye, the retinal image, its neural representation, or how the image is perceived. Respecting the differences among these distinct levels of description can be challenging but is crucial for a clear understanding of color vision. This article approaches color by reviewing what is known about its neural representation in the early visual cortex, with a brief description of signals in the eye and the thalamus for context. The review focuses on the properties of single neurons and advances the general theme that experimental approaches based on knowledge of feedforward signals have promoted greater understanding of the neural code for color than approaches based on correlating single-unit responses with color perception. New data from area V1 illustrate the strength of the feedforward approach. Future directions for progress in color neurophysiology are discussed: techniques for improved single-neuron characterization, for investigations of neural populations and small circuits, and for the analysis of natural image statistics.

Keyword(s): colorcone-opponencycortexneuron
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081801
2020-09-15
2024-10-16
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081801.html?itemId=/content/journals/10.1146/annurev-vision-121219-081801&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Hashmi AM, Kramer DJ, Mullen KT 2011. Human vision with a lesion of the parvocellular pathway: an optic neuritis model for selective contrast sensitivity deficits with severe loss of midget ganglion cell function. Exp. Brain Res. 215:293–305
    [Google Scholar]
  2. Angelucci A, Levitt JB, Lund JS 2002. Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog. Brain Res. 136:373–88
    [Google Scholar]
  3. Aston S, Radonjic A, Brainard DH, Hurlbert AC 2019. Illumination discrimination for chromatically biased illuminations: implications for color constancy. J. Vis. 19:15
    [Google Scholar]
  4. Billock VA. 1991. The relationship between simple and double opponent cells. Vis. Res. 31:33–42
    [Google Scholar]
  5. Bosten JM, Beer RD, MacLeod DIA 2015. What is white. J. Vis. 15:5
    [Google Scholar]
  6. Brainard DH. 2019. Color, pattern, and the retinal cone mosaic. Curr. Opin. Behav. Sci. 30:41–47
    [Google Scholar]
  7. Brainard DH, Cottaris NP, Radonjic A 2018. The perception of colour and material in naturalistic tasks. Interface Focus 8:20180012
    [Google Scholar]
  8. Brouwer GJ, Heeger DJ. 2009. Decoding and reconstructing color from responses in human visual cortex. J. Neurosci. 29:13992–4003
    [Google Scholar]
  9. Bullier J, Kennedy H. 1983. Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey. Exp. Brain Res. 53:168–72
    [Google Scholar]
  10. Buzsaki G, Wang XJ. 2012. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35:203–25
    [Google Scholar]
  11. Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q et al. 2016. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34:199–203
    [Google Scholar]
  12. Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P 1994. M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371:70–72
    [Google Scholar]
  13. Callaway EM. 1998. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21:47–74
    [Google Scholar]
  14. Callaway EM. 2005. Neural substrates within primary visual cortex for interactions between parallel visual pathways. Prog. Brain Res. 149:59–64
    [Google Scholar]
  15. Callaway EM, Wiser AK. 1996. Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex. Vis. Neurosci. 13:907–22
    [Google Scholar]
  16. Chatterjee S, Callaway EM. 2003. Parallel colour-opponent pathways to primary visual cortex. Nature 426:668–71
    [Google Scholar]
  17. Conway BR. 2001. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 21:2768–83
    [Google Scholar]
  18. Conway BR. 2014. Color signals through dorsal and ventral visual pathways. Vis. Neurosci. 31:197–209
    [Google Scholar]
  19. Conway BR, Livingstone MS. 2006. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J. Neurosci. 26:10826–46
    [Google Scholar]
  20. Conway BR, Moeller S, Tsao DY 2007. Specialized color modules in macaque extrastriate cortex. Neuron 56:560–73
    [Google Scholar]
  21. Cottaris NP, De Valois RL 1998. Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395:896–900
    [Google Scholar]
  22. Dacey D. 2004. Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways. Cogn. Neurosci. 3:281–301
    [Google Scholar]
  23. Dacey DM, Lee BB. 1994. The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–35
    [Google Scholar]
  24. Daw NW. 1968. Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J. Physiol. 197:567–92
    [Google Scholar]
  25. De A, Horwitz GD. 2017. Detection thresholds for lime-magenta and orange-cyan differ in eccentricity- and spatial frequency-dependence. J. Vis. 17:59
    [Google Scholar]
  26. De Valois RL, Cottaris NP, Elfar SD, Mahon LE, Wilson JA 2000. Some transformations of color information from lateral geniculate nucleus to striate cortex. PNAS 97:4997–5002
    [Google Scholar]
  27. Delahunt PB, Brainard DH. 2004. Does human color constancy incorporate the statistical regularity of natural daylight. J. Vis. 4:57–81
    [Google Scholar]
  28. Derrington AM, Krauskopf J, Lennie P 1984. Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357:241–65
    [Google Scholar]
  29. DeYoe EA, Van Essen DC 1985. Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317:58–61
    [Google Scholar]
  30. Egmont-Petersen M, de Ridder D, Handels H 2002. Image processing with neural networks: a review. Pattern Recognit 35:2279–301
    [Google Scholar]
  31. El-Shamayleh Y, Ni AM, Horwitz GD 2016. Strategies for targeting primate neural circuits with viral vectors. J. Neurophysiol. 116:122–34
    [Google Scholar]
  32. Field GD, Gauthier JL, Sher A, Greschner M, Machado TA et al. 2010. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467:673–77
    [Google Scholar]
  33. Finlay BL. 2019. The neuroscience of vision and pain: evolution of two disciplines. Philos. Trans. R. Soc. Lond. B 374:20190292
    [Google Scholar]
  34. Fitzpatrick D, Itoh K, Diamond IT 1983. The laminar organization of the lateral geniculate-body and the striate cortex in the squirrel-monkey (Saimiri sciureus). J. Neurosci. 3:673–702
    [Google Scholar]
  35. Garg AK, Li P, Rashid MS, Callaway EM 2019. Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science 364:1275–79
    [Google Scholar]
  36. Gauthier JL, Field GD, Sher A, Greschner M, Shlens J et al. 2009. Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLOS Biol 7:e1000063
    [Google Scholar]
  37. Geisler WS. 2008. Visual perception and the statistical properties of natural scenes. Annu. Rev. Psychol. 59:167–92
    [Google Scholar]
  38. Goddard E, Mannion DJ, McDonald JS, Solomon SG, Clifford CW 2010. Combination of subcortical color channels in human visual cortex. J. Vis. 10:25
    [Google Scholar]
  39. Gordon J, Shapley R. 2006. Brightness contrast inhibits color induction: evidence for a new kind of color theory. Spat. Vis. 19:133–46
    [Google Scholar]
  40. Gouras P, Kruger J. 1979. Responses of cells in foveal visual cortex of the monkey to pure color contrast. J. Neurophysiol. 42:850–60
    [Google Scholar]
  41. Gouras P, Zrenner E. 1979. Enhancement of luminance flicker by color-opponent mechanisms. Science 205:587–89
    [Google Scholar]
  42. Hanazawa A, Komatsu H, Murakami I 2000. Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey. Eur. J. Neurosci. 12:1753–63
    [Google Scholar]
  43. Hansen T, Olkkonen M, Walter S, Gegenfurtner KR 2006. Memory modulates color appearance. Nat. Neurosci. 9:1367–68
    [Google Scholar]
  44. Hasantash M, Lafer-Sousa R, Afraz A, Conway BR 2019. Paradoxical impact of memory on color appearance of faces. Nat. Commun. 10:3010
    [Google Scholar]
  45. Hashemi-Nezhad M, Blessing EM, Dreher B, Martin PR 2008. Segregation of short-wavelength sensitive (“blue”) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets. Vis. Res. 48:2604–14
    [Google Scholar]
  46. Hass CA, Horwitz GD. 2013. V1 mechanisms underlying chromatic contrast detection. J. Neurophysiol 109:248394
    [Google Scholar]
  47. He M, Huang ZJ. 2018. Genetic approaches to access cell types in mammalian nervous systems. Curr. Opin. Neurobiol. 50:109–18
    [Google Scholar]
  48. Hendry SH, Reid RC. 2000. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23:127–53
    [Google Scholar]
  49. Hendry SH, Yoshioka T. 1994. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–77
    [Google Scholar]
  50. Henshilwood CS, Sealy JC, Yates R, Cruz-Uribe K, Goldberg P et al. 2001. Blombos Cave, Southern Cape, South Africa: preliminary report on the 1992–1999 excavations of the Middle Stone Age Levels. J. Archaeol. Sci. 28:421–48
    [Google Scholar]
  51. Horwitz GD, Albright TD. 2005. Paucity of chromatic linear motion detectors in macaque V1. J. Vis. 5:525–33
    [Google Scholar]
  52. Horwitz GD, Chichilnisky EJ, Albright TD 2005. Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. J. Neurophysiol. 93:2263–78
    [Google Scholar]
  53. Horwitz GD, Chichilnisky EJ, Albright TD 2007. Cone inputs to simple and complex cells in V1 of awake macaque. J. Neurophysiol. 97:3070–81
    [Google Scholar]
  54. Horwitz GD, Hass CA. 2012. Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing. Nat. Neurosci. 15:913–19
    [Google Scholar]
  55. Hubel DH, Livingstone MS. 1985. Complex-unoriented cells in a subregion of primate area 18. Nature 315:325–27
    [Google Scholar]
  56. Hubel DH, Livingstone MS. 1987. Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7:3378–415
    [Google Scholar]
  57. Hubel DH, Livingstone MS. 1990. Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. J. Neurosci. 10:2223–37
    [Google Scholar]
  58. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  59. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43
    [Google Scholar]
  60. Hubel DH, Wiesel TN. 1977. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B 198:1–59
    [Google Scholar]
  61. Ingling CR Jr., Drum BA. 1973. Retinal receptive fields: correlations between psychophysics and electrophysiology. Vis. Res. 13:1151–63
    [Google Scholar]
  62. Jepson LH, Hottowy P, Weiner GA, Dabrowski W, Litke AM, Chichilnisky EJ 2014. High-fidelity reproduction of spatiotemporal visual signals for retinal prosthesis. Neuron 83:87–92
    [Google Scholar]
  63. Johnson EN, Hawken MJ, Shapley R 2001. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat. Neurosci. 4:409–16
    [Google Scholar]
  64. Johnson EN, Hawken MJ, Shapley R 2004. Cone inputs in macaque primary visual cortex. J. Neurophysiol. 91:2501–14
    [Google Scholar]
  65. Johnson EN, Hawken MJ, Shapley R 2008. The orientation selectivity of color-responsive neurons in macaque V1. J. Neurosci. 28:8096–106
    [Google Scholar]
  66. Kellner CJ, Wachtler T. 2013. A distributed code for color in natural scenes derived from center-surround filtered cone signals. Front. Psychol. 4:661
    [Google Scholar]
  67. Kingdom FA. 2003. Color brings relief to human vision. Nat. Neurosci. 6:641–44
    [Google Scholar]
  68. Kiper DC, Fenstemaker SB, Gegenfurtner KR 1997. Chromatic properties of neurons in macaque area V2. Vis. Neurosci. 14:1061–72
    [Google Scholar]
  69. Klein C, Evrard HC, Shapcott KA, Haverkamp S, Logothetis NK, Schmid MC 2016. Cell-targeted optogenetics and electrical microstimulation reveal the primate koniocellular projection to supra-granular visual cortex. Neuron 90:143–51
    [Google Scholar]
  70. Koida K, Komatsu H. 2007. Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex. Nat. Neurosci. 10:108–16
    [Google Scholar]
  71. Kolb H, Dekorver L. 1991. Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J. Comp. Neurol. 303:617–36
    [Google Scholar]
  72. Krauskopf J, Gegenfurtner K. 1992. Color discrimination and adaptation. Vis. Res. 32:2165–75
    [Google Scholar]
  73. Kremkow J, Jin J, Wang Y, Alonso JM 2016. Principles underlying sensory map topography in primary visual cortex. Nature 533:52–57
    [Google Scholar]
  74. Kunsberg B, Holtmann-Rice D, Alexander E, Cholewiak S, Fleming R, Zucker SW 2018. Colour, contours, shading and shape: flow interactions reveal anchor neighbourhoods. Interface Focus 8:20180019
    [Google Scholar]
  75. Lachica EA, Beck PD, Casagrande VA 1992. Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. PNAS 89:3566–70
    [Google Scholar]
  76. Lafer-Sousa R, Conway BR. 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16:1870–78
    [Google Scholar]
  77. Lafer-Sousa R, Liu YO, Lafer-Sousa L, Wiest MC, Conway BR 2012. Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors. J. Opt. Soc. Am. A 29:657–70
    [Google Scholar]
  78. Land EH. 1959. Color vision and the natural image. Part I. PNAS 45:115–29
    [Google Scholar]
  79. Lecoq J, Orlova N, Grewe BF 2019. Wide. Fast. Deep: recent advances in multiphoton microscopy of in vivo neuronal activity. J. Neurosci. 39:9042–52
    [Google Scholar]
  80. Lee BB, Martin PR, Valberg A 1988. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J. Physiol. 404:32347
    [Google Scholar]
  81. Lehky SR, Sejnowski TJ. 1999. Seeing white: qualia in the context of decoding population codes. Neural Comput 11:1261–80
    [Google Scholar]
  82. Lennie P, Krauskopf J, Sclar G 1990. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10:649–69
    [Google Scholar]
  83. Lennie P, Pokorny J, Smith VC 1993. Luminance. J. Opt. Soc. Am. A 10:1283–93
    [Google Scholar]
  84. Levitt JB, Kiper DC, Movshon JA 1994. Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71:2517–42
    [Google Scholar]
  85. Lim H, Wang Y, Xiao Y, Hu M, Felleman DJ 2009. Organization of hue selectivity in macaque V2 thin stripes. J. Neurophysiol. 102:2603–15
    [Google Scholar]
  86. Livingstone M, Hubel D. 1988. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–49
    [Google Scholar]
  87. Livingstone MS, Hubel DH. 1984a. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4:309–56
    [Google Scholar]
  88. Livingstone MS, Hubel DH. 1984b. Specificity of intrinsic connections in primate primary visual cortex. J. Neurosci. 4:2830–35
    [Google Scholar]
  89. Livingstone MS, Hubel DH. 1987. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7:3416–68
    [Google Scholar]
  90. Lu HD, Roe AW. 2008. Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cereb. Cortex 18:516–33
    [Google Scholar]
  91. Malpeli JG, Schiller PH, Colby CL 1981. Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. J. Neurophysiol. 46:1102–19
    [Google Scholar]
  92. Marshak DW, Mills SL. 2014. Short-wavelength cone-opponent retinal ganglion cells in mammals. Vis. Neurosci. 31:165–75
    [Google Scholar]
  93. Masri RA, Percival KA, Koizumi A, Martin PR, Grunert U 2019. Survey of retinal ganglion cell morphology in marmoset. J. Comp. Neurol. 527:236–58
    [Google Scholar]
  94. Merigan WH. 1989. Chromatic and achromatic vision of macaques: role of the P pathway. J. Neurosci. 9:776–83
    [Google Scholar]
  95. Merigan WH, Eskin TA. 1986. Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells. Vis. Res. 26:1751–61
    [Google Scholar]
  96. Miller KD. 2003. Understanding layer 4 of the cortical circuit: a model based on cat V1. Cereb. Cortex 13:73–82
    [Google Scholar]
  97. Mollon JD. 2003. The origins of modern color science. The Science of Color S Shevell 1–39 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  98. Moutoussis K. 2015. The physiology and psychophysics of the color-form relationship: a review. Front. Psychol. 6:1407
    [Google Scholar]
  99. Mullen KT. 1985. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol. 359:381–400
    [Google Scholar]
  100. Mullen KT, Dumoulin SO, Hess RF 2008. Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI. Eur. J. Neurosci. 28:1911–23
    [Google Scholar]
  101. Murphey DK, Yoshor D, Beauchamp MS 2008. Perception matches selectivity in the human anterior color center. Curr. Biol. 18:216–20
    [Google Scholar]
  102. Nasr S, Tootell RBH. 2018. Columnar organization of mid-spectral and end-spectral hue preferences in human visual cortex. NeuroImage 181:748–59
    [Google Scholar]
  103. Nasser MR, Gold JI. 2013. A healthy fear of the unknown: perspectives on the interpretation of parameter fits from computational models in neuroscience. PLOS Comput. Biol. 9:e1003015
    [Google Scholar]
  104. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:360–72
    [Google Scholar]
  105. Nauhaus I, Nielsen KJ, Callaway EM 2016. Efficient receptive field tiling in primate V1. Neuron 91:893–904
    [Google Scholar]
  106. Nealey TA, Maunsell JH. 1994. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J. Neurosci. 14:2069–79
    [Google Scholar]
  107. Neitz J, Neitz M. 2017. Evolution of the circuitry for conscious color vision in primates. Eye 31:286–300
    [Google Scholar]
  108. Nichols MJ, Newsome WT. 2002. Middle temporal visual area microstimulation influences veridical judgments of motion direction. J. Neurosci. 22:9530–40
    [Google Scholar]
  109. Peres R, Soares JGM, Lima B, Fiorani M, Chiorri M et al. 2019. Neuronal response properties across cytochrome oxidase stripes in primate V2. J. Comp. Neurol. 527:651–67
    [Google Scholar]
  110. Peter A, Uran C, Klon-Lipok J, Roese R, van Stijn S et al. 2019. Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 8:e42101
    [Google Scholar]
  111. Rafegas I, Vanrell M. 2018. Color encoding in biologically-inspired convolutional neural networks. Vis. Res. 151:7–17
    [Google Scholar]
  112. Ray S, Ni AM, Maunsell JH 2013. Strength of gamma rhythm depends on normalization. PLOS Biol 11:e1001477
    [Google Scholar]
  113. Roe AW, Ts'o DY. 1995. Visual topography in primate V2: multiple representation across functional stripes. J. Neurosci. 15:3689–715
    [Google Scholar]
  114. Roe AW, Ts'o DY. 1999. Specificity of color connectivity between primate V1 and V2. J. Neurophysiol. 82:2719–30
    [Google Scholar]
  115. Roy S, Jayakumar J, Martin PR, Dreher B, Saalmann YB et al. 2009. Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus. Eur. J. Neurosci. 30:1517–26
    [Google Scholar]
  116. Rudd ME. 2017. Lightness computation by the human visual system. J. Electron. Imaging 26:031209
    [Google Scholar]
  117. Sawatari A, Callaway EM. 2000. Diversity and cell type specificity of local excitatory connections to neurons in layer 3B of monkey primary visual cortex. Neuron 25:459–71
    [Google Scholar]
  118. Schiller F, Valsecchi M, Gegenfurtner KR 2018. An evaluation of different measures of color saturation. Vis. Res. 151:117–34
    [Google Scholar]
  119. Schiller PH, Logothetis NK, Charles ER 1990. Role of the color-opponent and broad-band channels in vision. Vis. Neurosci. 5:321–46
    [Google Scholar]
  120. Schluppeck D, Engel SA. 2002. Color opponent neurons in V1: a review and model reconciling results from imaging and single-unit recording. J. Vis. 2:480–92
    [Google Scholar]
  121. Schwartz O, Pillow JW, Rust NC, Simoncelli EP 2006. Spike-triggered neural characterization. J. Vis. 6:484–507
    [Google Scholar]
  122. Shapley R, Nunez V, Gordon J 2019. Cortical double-opponent cells and human color perception. Curr. Opin. Behav. Sci. 30:1–7
    [Google Scholar]
  123. Shipp S, Zeki S. 2002. The functional organization of area V2, I: specialization across stripes and layers. Vis. Neurosci. 19:187–210
    [Google Scholar]
  124. Shirhatti V, Ray S. 2018. Long-wavelength (reddish) hues induce unusually large gamma oscillations in the primate primary visual cortex. PNAS 115:4489–94
    [Google Scholar]
  125. Sincich LC, Horton JC. 2002. Divided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science 295:1734–37
    [Google Scholar]
  126. Sincich LC, Horton JC. 2005. The circuitry of V1 and V2: integration of color, form, and motion. Annu. Rev. Neurosci. 28:303–26
    [Google Scholar]
  127. Sincich LC, Jocson CM, Horton JC 2007. Neurons in V1 patch columns project to V2 thin stripes. Cereb. Cortex 17:935–41
    [Google Scholar]
  128. Solomon SG, Lennie P. 2005. Chromatic gain controls in visual cortical neurons. J. Neurosci. 25:4779–92
    [Google Scholar]
  129. Solomon SG, Peirce JW, Lennie P 2004. The impact of suppressive surrounds on chromatic properties of cortical neurons. J. Neurosci. 24:148–60
    [Google Scholar]
  130. Tailby C, Solomon SG, Lennie P 2008. Functional asymmetries in visual pathways carrying S-cone signals in macaque. J. Neurosci. 28:4078–87
    [Google Scholar]
  131. Tailor DR, Finkel LH, Buchsbaum G 2000. Color-opponent receptive fields derived from independent component analysis of natural images. Vis. Res. 40:2671–76
    [Google Scholar]
  132. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T et al. 2016. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19:335–46
    [Google Scholar]
  133. Tolhurst DJ, Dean AF. 1990. The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex. Exp. Brain Res. 79:582–88
    [Google Scholar]
  134. Tootell RB, Silverman MS, Hamilton SL, De Valois RL, Switkes E 1988. Functional anatomy of macaque striate cortex. III. Color. J. Neurosci. 8:1569–93
    [Google Scholar]
  135. Ts'o DY, Gilbert CD. 1988. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8:1712–27
    [Google Scholar]
  136. Ts'o DY, Roe AW, Gilbert CD 2001. A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vis. Res. 41:1333–49
    [Google Scholar]
  137. Usrey WM, Reppas JB, Reid RC 1999. Specificity and strength of retinogeniculate connections. J. Neuro-physiol. 82:3527–40
    [Google Scholar]
  138. Valberg A, Lange-Malecki B, Seim T 1991. Colour changes as a function of luminance contrast. Perception 20:655–68
    [Google Scholar]
  139. Vladusich T. 2007. Chromatic aberration and the roles of double-opponent and color-luminance neurons in color vision. Neural Netw 20:153–55
    [Google Scholar]
  140. Wachtler T, Albright TD, Sejnowski TJ 2001. Nonlocal interactions in color perception: nonlinear processing of chromatic signals from remote inducers. Vis. Res. 41:1535–46
    [Google Scholar]
  141. Wang Y, Xiao Y, Felleman DJ 2007. V2 thin stripes contain spatially organized representations of achromatic luminance change. Cereb. Cortex 17:116–29
    [Google Scholar]
  142. Weller JP, Horwitz GD. 2018. Measurements of neuronal color tuning: procedures, pitfalls, and alternatives. Vis. Res. 151:53–60
    [Google Scholar]
  143. Wiesel TN, Hubel DH. 1966. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29:1115–56
    [Google Scholar]
  144. Wool LE, Packer OS, Zaidi Q, Dacey DM 2019. Connectomic identification and three-dimensional color tuning of S-OFF midget ganglion cells in the primate retina. J. Neurosci. 39:7893–909
    [Google Scholar]
  145. Xiao Y. 2014. Processing of the S-cone signals in the early visual cortex of primates. Vis. Neurosci. 31:189–95
    [Google Scholar]
  146. Xiao Y, Casti A, Xiao J, Kaplan E 2007. Hue maps in primate striate cortex. NeuroImage 35:771–86
    [Google Scholar]
  147. Xiao Y, Wang Y, Felleman DJ 2003. A spatially organized representation of colour in macaque cortical area V2. Nature 421:535–39
    [Google Scholar]
  148. Yabuta NH, Callaway EM. 1998a. Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1. Vis. Neurosci. 15:1007–27
    [Google Scholar]
  149. Yabuta NH, Callaway EM. 1998b. Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey. J. Neurosci. 18:9489–99
    [Google Scholar]
  150. Yoshioka T, Dow BM, Vautin RG 1996. Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex. Behav. Brain Res. 76:51–70
    [Google Scholar]
  151. Yoshioka T, Levitt JB, Lund JS 1994. Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections. Vis. Neurosci. 11:467–89
    [Google Scholar]
  152. Zaidi Q, Conway B. 2019. Steps towards neural decoding of colors. Curr. Opin. Behav. Sci. 30:169–77
    [Google Scholar]
  153. Zeiler MD, Fergus R. 2014. Visualizing and understanding convolutional networks Presented at the 13th European Conference on Computer Vision Sept 6–12 Zurich:
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081801
Loading
/content/journals/10.1146/annurev-vision-121219-081801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error